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Abstract 
 

Heating process in the domain of thin metal film subjected to a strong laser pulse are discussed. The mathematical model of the process 

considered is based on the dual-phase-lag equation (DPLE) which results from the generalized form of the Fourier law. This approach is, 

first of all, used in the case of micro-scale heat transfer problems (the extremely short duration, extreme temperature gradients and very 

small geometrical dimensions of the domain considered). The external heating (a laser action) is substituted by the introduction of internal 

heat source to the DPLE. To model the melting process in domain of pure metal (chromium) the approach basing on the artificial mushy 

zone introduction is used and the main goal of investigation is the verification of influence of the artificial mushy zone ‘width’ on the 

results of melting modeling. At the stage of numerical modeling the author’s version of the Control Volume Method is used. In the final 

part of the paper the examples of computations and conclusions are presented. 

 

Keywords: Theoretical basis of foundry processes, Solidification process, Micro-scale heat transfer, Dual phase lag model, Control 

volume method 

 

 

 

1. Introduction  
 

The base for the macroscopic model of alloys solidification or 

melting is the well known Fourier equation with an additional 

term (the source function) controlling the evolution of latent heat 

[1-3]. The assumption that the local and temporary value of solid 

state volumetric fraction is the known temperature-dependent 

function allows one to transform the basic energy equation, and 

then the parameter called ‘a substitute thermal capacity’ appears 

(e.g. [2]). Such an approach is known as a one domain method or 

a fixed domain method. It turned out that the similar 

transformation can be done in the case of dual-phase-lag 

equation [4]. The one domain method describes the melting or 

solidification processes in the case of materials for which the 

phase transition proceeds in the interval of temperature (e.g. 

binary alloys). In the case of pure metal solidification the 

solidification point T* has to be replaced by a certain temperature 

interval [T* − ∆T, T* + ∆T] and in this way the artificial mushy 

zone is introduced. Next, for this interval the substitute thermal 

capacity should be defined [1-3]. In literature the macro models of 

melting (solidification) are widely discussed (e.g. [1-3], [5-7]), 

while the number of papers concerning the micro-scale models is 

rather small, among others [4, 8, 9, 10]. In this paper the analysis 

of relationships between width of the border temperatures interval 

T* − ∆T and T* + ∆T and the results of numerical solution of the 

task discussed is done. The similar research concerning the macro 

models of melting (solidification) process has been presented by 

Szopa in [5]. 
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2. Mathematical model  
 

The dual phase lag equation results from the generalized form of 

the Fourier law containing two lag times, in particular the relaxation 

and to thermalization times [11, 12, 13] 

 

   , , λ , ,q Tr z t T r z t      q   (1) 

 

where τq and τT are the phase lags (relaxation and thermalization 

times), while q is a heat flux, λ is a thermal conductivity, r, z are the 

geometrical co-ordinates (axially-symmetrical problem is 

considered), t is a time.  

Using the Taylor series expansions, the following first-order 

approximation of equation (1) is obtained 
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Introducing this formula to the well known diffusion equation 

after the mathematical manipulations one has  
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(3) 

 

Here c is a volumetric specific heat of material, Q is the capacity 

of internal heat sources. In the case considered the function Q is 

the sum of two components. The first of them is connected with 

the laser beam action and according to [11] the suitable source 

term is of the form 
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where I0 [J/m
2] is a laser intensity, tp [s] is a characteristic time of 

laser pulse, δ [m] is an optical penetration depth, R is a reflectivity of 

irradiated surface, rD [m] is a laser beam radius. The derivative of QL 

with respect to time (equation (4)) can be found analytically.  

The second source function is connected with the evolution of 

latent heat. The well known form of this component is the following 
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where L is a volumetric latent heat, fS is a volumetric solid state 

fraction at the neighborhood of point considered. 

Let us assume that the function fS in the interval [T* − ∆T, 

T* + ∆T] is a linear one, this means  
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One can see that outside the interval between the border 

temperatures the function fS takes the values 1 and 0 (solid and 

liquid states). In the paper [4] was shown that the source term 

controlling the evolution of latent heat can be written as follows  
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(7) 

 

and finally one obtains the DPLE in the form 

 

 

  

2

2

( , , ) ( , , )
τ λ ( , , )

λ ( , , ) ( , , )
τ ( , , ) τ

q

L
T L q

T r z t T r z t
C T r z t

t t

T r z t Q r z t
Q r z t

t t

  
     

  

   
 

 

  

(8) 

 

where  
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while cL, cS are the volumetric specific heats of liquid and solid 

state, cM is (for example) the arithmetic mean of cL and cS. 

The no-flux boundary condition given on the external surface 

of the system is the following [4, 14] 
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where  , ,T r z tn  is the temperature derivative in the normal 

direction. 

The initial conditions (the initial temperature of domain and 

the initial heating rate) are also given 
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where T0 is the initial temperature of domain. 

 

 

3. Control Volume Method  
 

At the stage of numerical computations the Control Volume 

Mehod (CVM) in the version proposed by Ciesielski and 

Mochnacki [14] is applied. As is well known, the CVM algorithm 

allows one to find the transient temperature field at the set of 

nodes corresponding to the central points of control volumes. The 

nodal temperatures can be found on the basis of energy balances 
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for the successive volumes. The energy balances corresponding to 

heat exchange between the analyzed control volume and adjoining 

control volumes results from the integration of equation (8) with 

respect to control volume and time. In Figure 1 the cylindrical, 

axially symmetrical domain and its discretization is shown. 

 

 

Fig. 1. The discretization of domain 

 

So, the energy equation (8) should be integrated over the 

control volume i,j 
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Integration of the left hand side of equation (12) gives 

 

   

,

2

2

2

, ,

, ,2

, , , ,

d d

d d

i j

q

i j i j

i j q i j

T r z t T r z t
c d

t t

T T
c V

t t



  
       

 
   

 
 


 (13) 

 

The source term in Eq. (8) is treated in a similar way. 
Applying the divergence theorem to the term determining heat 

conduction between the volume i,j bounded by the surfaces ∆Ai,j 

and its neighbourhoods one obtains 
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and next this term can be written in the form 
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and (k)i,j are the harmonic mean thermal conductivities between 

two central points of adjoining control volumes. After the 

introduction of all discrete terms into equation (12) one obtains  
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The second stage of CVM is the integration of equation (20) 

with respect to time and then the energy balances written in the 

convention of ‘explicit’ scheme (for the transition t f 1 to t f, f = 

2,...,F) take the form 
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where ∆t denotes a time step. The heat fluxes appearing in the last 

equation (after non complex mathematical manipulations) can be 

written as follows 
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The acceptation of the ‘directional’ thermal conductivities as 

the harmonic means of the nodal values causes that in the 

formulas (30) determining heat fluxes q the thermal resistances 

between the neighbouring nodes appear [15], in particular for the 

internal nodes 
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while for the boundary ones the thermal resistance in direction ‘to 

the boundary’ can be assuned as a very big number, e.g. 1010.  

The final form of the CVM equations can be written in the 

form 
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At the same time     ,, ,
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shows that in the case of hyperbolic equations three-level CVM 
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Because the explicit scheme has been used, therefore the 

stability conditions should be fulfilled. The authors found that this 

condition for the task considered is the following 
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 (32) 

 

From inequality (32) one can determine the proper time step t 

 

 
2

max max

max

1 1 8
0,

2 2

T q T
W W

t
W

         
 

 

  (33) 

 

where 
 

 1

max ,
, ,

max f

i j
i j f

W W  . 

 

 

4. Examples of computations  
 

Numerical simulation of a thermal process proceeding in 

fomain of thin metal film subjected to the short laser pulse has 

been done for the cylindrical domain with dimensions Z = 

100 nm, R = 100 nm – Figure 2 [14]. 

 

 
 

Fig. 2. Micro-domain considered 

 

Thermophysical parameters of material (chromium) are equal 

to = 93 W/(mK), cS = cL = 3.2148·106 J/(m3K), q = 0.136 ps, 

T = 7.86 ps [16], L = 2904·106 J/m3, solidification point T* = 

1857 oC, ∆T = 3, 5, 8 K, respectively. The parameters of the bell-

type laser pulse are following: rd = 50 nm, I0 = 3000 J/m2, Rf = 

0.93,  = 15.3 nm, tp = 100 fs. The initial temperature of the metal 

is T0 = 20 oC. The mesh steps used in this example: z = 10-9 m, 

r = 10-9 m and the time step t = 10-17 s. 

The results of computations presented in Figures 3-5 illustrate 

the temperature histories at three selected nodes in the domain for 

the different values of ∆T. In Figure 6 the temperature field for 

time 0.3 ps is shown.  
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Fig. 3. Heating/cooling curves at the point P1 

 

 
Fig. 4. Heating/cooling curves at the point P2 

 

 
Fig. 5. Heating/cooling curves at the point P3 

 

 
Fig. 6. Temperature field for time 0.3 ps (∆T = 5[K]) 

5. Final remarks 

 
The authors solved the problem of pure metal melting and re-

solidification by the introduction of artificial mushy zone to the 
mathematical model of the process. At the stage of numerical 

computations the different values of ∆T (a width of mushy zone) 
have been taken into account. The differences of numerical 

solutions are small, but visible. The same example has been also 

solved using the Fourier equation (both q and T are equal to 

zero). It turned out that for this model the heating process 
proceeds more intensively and for I0 = 3000 J/m2 the metal 

temperature (close to the point P1) exceeds the evaporation point. 
The results closer to the presented above have been obtained for 

I0 = 2600 J/m2. The typical decrease of heating/cooling rate close 
to the solidification point (easily visible in the case of macro-scale 

solidification models – e.g. [5]) is here almost unnoticeable. It 
results from essential differences between capacity of internal 

heat source resulting from the laser action and the capacity of heat 
source resulting from the melting or solidification processes.  
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