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Abstract 
 

A novel approach for treating the uncertainty about the real levels of finished products during production planning and scheduling process 

is presented in the paper. Interval arithmetic is used to describe uncertainty concerning the production that was planned to cover potential 

defective products, but meets customer’s quality requirement and can be delivered as fully valuable products. Interval lot sizing and 

scheduling model to solve this problem is proposed, then a dedicated version of genetic algorithm that is able to deal with interval 

arithmetic is used to solve the test problems taken from a real-world example described in the literature. The achieved results are compared 

with a standard approach in which no uncertainty about real production of valuable castings is considered. It has been shown that interval 

arithmetic can be a valuable method for modeling uncertainty, and proposed approach can provide more accurate information to the 

planners allowing them to take more tailored decisions. 
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1. Introduction 
 

At the present times, manufacturers are struggling with 

increasingly demanding customers. Orders are accepted in small 

batches, lead times are short, and there is a risk of defective 

production for newly designed products, there is a risk of defective 

production (need of remanufacturing or the necessity of 

overproduction due to the likelihood of faulty products). In 

addition, customers can change the parameters of orders, or delivery 

conditions or and requirements for further processing. Because of 

this these factors, uncertainty becomes an integral part of the 

decision-making process at all levels of management activities, 

including production planning and scheduling.  

A lot of different models have been defined in the literature to 

support production planning and scheduling in various industries. 

An extensive review of such models for foundry industry has been 

provided by the authors in [9]. However, it should be underlined 

that the problem of addressing the uncertainty in those models still 

remains virtually unsolved.  Recently the authors have proposed an 

approach in which fuzzy theory was used to describe uncertainty 

regarding the demand for castings [7]. However, in that case, the 

final results had to be defuzzified before they were presented to a 

planner. This study is focused on the uncertainty concerning 

defective products, i.e. those that do not meet quality requirements 

of a customer. Interval arithmetic is applied to describe the 

uncertain number of finished products that can be delivered to the 

end customer as valuable ones. Moreover, the results will be kept in 

the form of intervals and they will be presented to the planner in 

this form as well. Thanks to this the planner will obtain more 

complete information about possible number of finished products 

and the possible costs of production. 

The paper is organized as follows: Section 2 presents the 

concept of interval arithmetic and its application to production 

planning and scheduling described in the literature. In section 3 a 

lot-sizing and scheduling model presented by the authors in [4] is 
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adapted to the requirements of interval arithmetic and a discussion 

about its advantages and limitations is provided. Section 4 presents 

the results and the interpretation of computational experiments 

involving the use of a specialized version of a genetic algorithm that 

was adjusted to solve interval optimization problem. Finally, the 

conclusions and directions for future research in this area are shown 

in Section 5.  

 

 

2. Interval arithmetic and its 

application to production planning 
 

Interval arithmetic was proposed by Moore [7] in 1966, 

initially to treat rounding errors of computer programs. However, 

it is worth to notice, that the first steps in this field have been 

made ten years earlier by Warmus, Polish mathematician and 

computer scientist. Since then it has been applied to many 

different fields, like construction engineering, chemical 

engineering, robotics, global optimization and pattern recognition.  

Real interval A is defined as [4][5]: 

 ],[ aaa   

where a  is the lower bound of the interval a , a is its upper 

bound and a is the set }:{ axax  . 

Basic arithmetical operators are defined as follows: 

],[ bababa    

],[ bababa   
)],,,max(),,,,[min( bababababababababa   

)]/,/,/,/max(),/,/,/,/[min(/ bababababababababa   

If two intervals need to be ranked, which is the case e.g. in 
solving optimization problems, it can be done using a formula: 

bababa    

However, when two intervals overlap it is more practical to use a 
formula based on the middles of intervals: 

)()( bmamba   

where middle point m(a) can be calculated as: 

2/)()( aaaam   

After the review conducted by the authors it one has to admit 

that interval arithmetic has not been widely used for solving 

problems of production planning and scheduling, especially when 

compared e.g. with the fuzzy number theory. However, in last few 

years few papers on job scheduling problem with interval time 

parameters have been published. Lei [5] introduced an interval job 

shop scheduling problem in which uncertain processing times 

were described using intervals. He proposed a genetic algorithm 

to solve the problem. Lei and Guo [6] dealt with a dual-resource 

constrained (DRC) job shop problem with interval processing 

time and heterogeneous resources. They proposed an efficient 

variable neighborhood search algorithm to solve this problem. 

Han et al. [3] proposed an evolutionary algorithm with a new 

crossover to solve multi-objective blocking lot-streaming flow 

shop scheduling with interval processing times. Finally, 

Pereira [8] described a single machine scheduling with interval 

processing times and total weighted completion time objective. In 

order to solve the problem, he used a branch and bound method. 

The authors could not found any paper regarding the lot sizing 

and scheduling problem, so the study presented in this paper may 

be regarded as a pioneering one in this field. 

 

 

3. Interval lot-sizing and scheduling 

model with variable finished products 
 

In [2] the authors described many different models developed 

to solve production and scheduling problem in foundries. Some 

researchers focused on the problem of production sequencing and 

for its definition they usually provided some variants of the 

classic job shop scheduling problem, but most recently the 

research is mainly focused on the furnace utilization, as it is 

usually a bottleneck in a production process. A variant of multi-

item lot sizing and scheduling problem is usually used to solve 

such problems. In [5] the authors presented and discussed a 

variant provided by Araujo et al. for an automated foundry in 

Brazil [6]. 

In this study, we will extend that model to precisely describe 

the number of defective products. In the classic, crisp models it is 

assumed that the production of defective products is added to the 

production that fully meets the quality requirements of the 

customers. To ensure that the demand for a given customer will 

be satisfied the production is planned with some surplus that may 

vary from 3-5% for the castings for which the technology is well-

known, up to 20% for the castings with a complex production 

technology or newly introduced products. In result at the end of 

the production period we can have some extra valuable products 

that can be supplied to the customer, and we do not have to plan 

their production in the subsequent periods. That is why the 

concept of a variable number of finished products is introduced in 

this point and intervals are used to describe its value. 

The number of finished product that may be supplied to the 

customer is expressed as: 

],[ itit xx - number of valuable items i produced in sub-period, 

where itx is a minimal value (when all the extra castings are 

faulty) and itx is a maximal value (when there are no faulty 

products at all). 

The mixed integer programming model for the decision 

variables defined above looks as follows: 

Minimize 
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where: 

T – number of days in planning horizon,  

N – number of subperiods (loads of the furnace), 

dit - demand for item i in day t, 

wi - weight of item I, 

ai
k = 1, if item i is produced from alloy k, otherwise 0, 

stk - setup cost for alloy k, 

C - loading capacity of the furnace, 

hit
–, hit

+ - penalty for delaying (–) and storing (+) production of 

item i in day t, 

],[ __

itit II  - interval (uncertain) number of items i delayed at the 

end of day t, 

],[ 

itit II  - interval (uncertain) number of items i stored at the end 

of day t, 

zn
k = 1, if there is a setup (resulting from a change) of alloy k in 

sub-period n, otherwise 0, 

yn
k = 1, if alloy k is produced in n in sub-period, otherwise 0. 

The goal (1) is now defined as the sum of the interval costs of 

delayed production, interval storage costs of finished goods and 

the setup cost, if the alloy is changed during furnace load. 

Equation (2) compares valuable finished production in a given 

period, delayed production and production finished to early, both 

expressed in the form of intervals with the demand for casting i in 

day t. Constraint (3) ensures that maximum number of produced 

castings will not exceed furnace capacity - this time only upper 

bounds of intervals are taken into consideration, as alloy has to be 

provided equally for valuable and defective products. Similarly, to 

the standard model, constraint (4) sets variable zn
k to 1, if there is 

a change in alloys in the subsequent subperiods, while constraint 

(5) ensures that only one alloy is produced in each subperiod. 

Finally, constrains (6)-(8) ensures that the lower and upper 

bounds in intervals describing production are nonnegative integer 

numbers, and the stored and delayed production levels are 0 at the 

beginning of the production planning process. 

After optimization of the presented model the planner obtains 

the lower and the upper approximation of amount of valuable 

finished products along with the lower and the upper 

approximation of the cost function (1). 

 

 

4. Computational experiments with 

genetic algorithm 
 

In order to show a practical application of the proposed approach 

we will use the same test problem, as suggested by by Araujo et al. 

[2][1]. The number of items to be planned is I=50 that are made 

out of K=10 different alloys. Planning horizon is T=5 days with 

N=10 subperiods. Demand dit has been generated in a random 

way from the range [10,60], weight of castings wi from the range 

[1,30] and the setup for alloy stk from the range of [5,10]. The only 

change introduced to the test data is the percentage value of 

defective products and it was generated for each order from the 

range of [1%-20%]. 

We used a genetic algorithm similar to the one described in 

[9], however two changes have to be made. First of all, the 

representation of solutions has to comply with interval values of 

production. An exemplary representation for 5 subperiods is 

shown in Fig. 1. The first three rows represent the interval for 

valuable items produced in subsequent subperiods, the next three 

rows represent the numbers identifying different orders, and the 

last row repents the number identifying the alloy type. 

 

i 1 2 3 4 5 

x1i [9,12] [90,97] [16,20] [20,25] [32,36] 

x2 i [50, 55] [14,18] [66,69] [28,30] [64,70] 

x3 i [31,33] [35,42] [61,68] [81,95] [15,17] 

o1 i 3 8 5 6 1 

o2 i 4 6 3 8 2 

o3 i 2 9 2 10 4 

a i 1 2 3 2 1 

Fig. 1. Solution representation in GA adjusted to interval approach 

 

The same genetic operators as in [10] were used, i.e. one-

point crossover and three types of the mutation operator: first 

mutation that alters the number of produced items (x vectors), 

second mutation that can alter the orders (o vectors) and third 

mutation altering the alloy type (vector a). However, additional 

constraint had to be introduced to the first mutation – if lower 

bound for interval became higher than its upper bound, the 

bounds were exchanged to get a proper interval.  

The genetic algorithm with a population of 50 solutions was 

run for 50,000 generations, and it took ca. 180 seconds to get a 

final result (machine with Intel i7-2630QM processor). Since GA 

is a heuristic that every time can deliver slightly different results, 

we repeated the computations 20 times. Next, we compared the 

results for the interval approach with the standard approach in 

which both variables and parameters were represented as crisp 

numbers, and the production represents the number of valuable 

products (nett production) excluding any extra product that was 

manufactured to cover the expected number of defective products 

and treating them as defective ones in advance. The results for 

both the standard and the interval approach are gathered in 

Table 1. 

 

Table 1. 

Results achieved by GA for production planning with the interval 

and the standard approach. 

Approach 
 

Overall production 

volume 
Cost function 

Interval 
Best 

Average 

[8,265; 8,686] 

[7,743; 8,183] 

[45,487; 48,695]  

[52,333; 56,128] 

Standard 
Best 

Average 

7,897 

7,672 

59,121 

63,453 
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The results achieved in the experiments confirmed our 
expectations. As some part of the customers’ demand can be 

satisfied by extra products that were planned for production to 
cover potentially defective items, both overall valuable production 

volume and the production cost function are better in the interval 
approach when compared to the standard approach.  The overall 

valuable production is higher by 4.5-9.9% for the best result and 
by 0.9-6.6% on average. The cost function occurred to be better 

by 21.4-29.9% for the best result and 13.1-21.2% for average 
result.  

 

 

5. Conclusions 
 

In this paper an innovative approach to production planning 
and scheduling in a foundry has been presented. Interval 

arithmetic was applied in order to describe uncertainty regarding 
the real number of valuable products that met customers’ quality 

requirements. Thanks to this approach the planner receives more 
complete information about the potential number of finished 

products manufactured in a given planning horizon, as well as the 
more accurate estimation of the potential costs.  

Certainly, the uncertainty in the proposed model can be 
reduced with the progress of the planning process. At the end of 

each subperiod the planners will know the exact number of 
products that can be qualified as good and delivered to the end 

customer. In result, at the end of the planning horizon the planner 
will have crisp numbers instead of intervals. But by analyzing the 

production values stored in the form of intervals it acquires 
additional information that can be used for more precise decision 

making concerning e.g. necessary inventory levels for raw 

materials or cores that have to be prepared earlier. 
In further research, we will extend the tests to larger instances 

of the problem with even higher value of uncertainty about the 
potential defective production. Other uncertainties may be 

introduced to the model including the load of the furnace, 
machine breakdowns or a human factor. Also, the genetic 

algorithm should be improved to give more stable results, i.e. to 
reduce the distance between average and the best results. 

Nevertheless, is has been shown, with compliance to the latest 
trends in the world literature dedicated to production planning and 

scheduling, that interval arithmetic can be a valuable method for 

modeling uncertainty that the planners have to deal with in 

everyday decision making process. 
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