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The Fourier method is applied to the description of the room acoustics field with the combination of
uniform impedance boundary conditions imposed on some walls. These acoustic boundary conditions are
expressed by absorption coefficient values In this problem, the Fourier method is derived as the combi-
nation of three one-dimensional Sturm-Liouville (S-L) problems with Robin-Robin boundary conditions
at the first and second dimension and Robin-Neumann ones at the third dimension. The Fourier method
requires an evaluation of eigenvalues and eigenfunctions of the Helmholtz equation, via the solution of the
eigenvalue equation, in all directions. The graphic-analytical method is adopted to solve it It is assumed
that the acoustic force constitutes a monopole source and finally the forced acoustic field is calculated.
As a novelty, it is demonstrated that the Fourier method provides a useful and efficient approach for
a room acoustics with different values of wall impedances. Theoretical considerations are illustrated for
rectangular cross-section of the room with particular ratio. Results obtained in the paper will be a point
of reference to the numerical calculations.
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1. Introduction

The influence of wall impedances on the acoustic
field in the cinema, theatre room, and so on is an im-
portant and interesting problem both from the practi-
cal and theoretical points of view. Thus, there is a need
to apply some methods for solving the acoustic room
problem and walls with arbitrary impedances. But the
description of the sound field in such a room is not
simple. For this purpose several approximate and exact
methods have been developed; most of these methods
in general forms are described in (Morse, Ingard,
1987; Brański, 2013).

Approximate methods, based on heuristic premises,
are used in many papers. They use statistical-acoustic
methods (Summers, 2012), the diffusion-equation
model (Luizard et al., 2014), geometric acoustics
methods (Luizard et al., 2014; Lehmann, Johans-
son, 2008), the combination of radiosity method, geo-
metrical acoustic one (Korany et al., 2001), and so on.

Wave-based approximate methods solve the wave
equation in an approximate manner. In the descrip-

tion of the sound field, the most useful methods are
finite element method (FEM) (Okuzono et al., 2014;
Thompson, Pinsky, 1995), the singular boundary ele-
ment method (BEM), (Lin et al., 2014; Fu et al., 2014;
Chen et al., 2014), the nonsingular BEM (Brański
et al., 2012; Brański, Borkowska, 2015) and the fi-
nite difference method (FDM) (Lopez et al., 2013).
All the above methods are numerical.

The Fourier method belongs to exact ones and
it may be used for solving boundary problems of
the room acoustics (Blackstock, 2000; Kuttruff,
2000), being inherent to the modal analysis (Naka
et al., 2005). It requires an evaluation of eigenval-
ues of the Helmholtz equation assuming some bound-
ary conditions imposed on the walls. Since the acous-
tic eigenvalue equation is complicated, the numerical
method should be applied to find eigenvalues (Naka
et al., 2005; Kuttruff, 2000; Bistafa, Morrissey,
2003), e.g. the Newton or bisection method. Describ-
ing the wave nature of the sound field (Meissner,
2009) and the modal localisation is the benefit of the
Fourier method (Meissner, 2009). Other versions of
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this method may be found in (Xu, Sommerfeldt,
2010). The Fourier method is difficult to apply for
rooms with complex shapes and complex boundary
conditions, and in more practical cases it is unusable
(Meissner, 2012; 2013a; 2013b).

Although the modal theory of the room acoustics
was fully established many years ago, the solution of it
is still incomplete. In particular, there is no exact gen-
eral method for finding eigenvalues and, consequently,
room modes for walls with arbitrary impedances. Only
for rooms with perfectly flexible or rigid walls this
problem is exactly solved (Blackstock, 2000; Kut-
truff, 2000). But for some impedance on each pair of
parallel walls it is only estimated.

To make a more general analysis of the modal
acoustic boundary problem, it is appropriate to refer
to the Sturm-Liouville eigenvalue problem (Johnson,
2006; Dautray, Lions, 2000; Korn, Korn, 1968).
The S-L problems arise throughout applied mathemat-
ics and in a standard form they describe the vibrational
modes of various systems, among others the acous-
tic ones. Then, they arise directly as eigenvalue prob-
lems in one-dimensional space (1D). However, they also
commonly arise from linear PDEs in multidimensional
spaces when the equations are separable in some co-
ordinate systems, exactly like in the three dimensional
acoustic problem.

The aim of the paper is to derive an exact solution
of the 3D real acoustic problem by the Fourier method.
The arbitrary but uniform impedances are imposed on
separate walls. The values of the wall impedance, for
all possible values of wall absorption coefficients, are
considered. Assuming different absorption coefficients
imposed on walls, the appropriate eigenvalue equations
are solved graphically, hence the set of eigenvalues and
consequently the set of modes is obtained. Next, the
forced acoustic field is calculated. The theory is verified
via several numerical calculations.

2. Regular S-L problem

The regular S-L problem is defined in (Kashdan,
2017; Fasshauer, 2011); some part of the theory, use-
ful for the 3D acoustic problem, is repeated below in
1D space. Consider the S-L differential equation,

Dx (R(x)DxX(x)) + (Q(x) + λP (x))X(x) = 0,

x = (ax, bx) ≡ Ω,
(1)

with the Robin boundary conditions (Fasshauer,
2011; Peirce, 2014):

A1aX(ax) +A2aDxX(ax) = 0, (2)

A1bX(bx) +A2bDxX(bx) = 0, (3)

where ax, bx are boundary points of the x-coordinate in
Cartesian coordinates; Dx(...) = d(...)/ dx, R(x), and

Q(x) are coefficient functions, P (x) is the weighting
function, R(x) and P (x) are continuous on [ax, bx] and
Q(x) is continuous on (ax, bx), λ is an eigenvalue.

Note that if R(x) = 1, Q(x) = 0, and P (x) = 1, the
S-L equation leads to the 1D Helmholtz equation. It is
proved that all conclusions derived for S-L problem
are valid for 1D Helmholtz problem and they are also
valid for 3D Helmholtz one. Furthermore, 3D boundary
problem for the Helmholtz equation with Robin condi-
tions is a product of three 1D problems for Helmholtz
problem in separate coordinates.

3. Three dimensional acoustic problem

Let the 3D acoustic boundary problem in the
cuboid, physical domain Ω with the boundary Γ of
this domain be given. The mathematical model is de-
scribed by the 3D wave equation and Robin boundary
conditions.

D2u(x, t)− (1/c2)D2
t u(x, t) = f(x, t), x ∈ Ω, (4)

A1u(x, t) +A2Dnu(x, t) = 0, x ∈ Γ, (5)

where the initial conditions are assumed equal to ze-
ros, c [m/s] is the speed of sound in that medium;
x = (x, y, z) [m]; t [s] is the time; u = u(x, t), acoustic
potential as a function of time and geometrical vari-
ables; f(x, t) is the exciting of the acoustic wave in 3D,
it is the harmonic monopole acoustic source which may
be constituted by the sphere with a very little radius;
A1, A2 are arbitrary constants, and n is a unit nor-
mal vector to the Γ pointing outward Ω, D2u(x, t) =
∂2u
∂x2 + ∂2u

∂y2 , D2
t u(x, t) = ∂2u

∂t2 , Dnu(x, t) = ∂u
∂n .

3.1. Separation of variables

Using Fourier method, first it is assumed that
(Neta, 2012; Bowles, 2007)

u(x, t) = U(x)T (t), (6)

and next
U(x) = X(x)Y (y)Z(z), (7)

where U(x) is the acoustic potential as a function of
spatial variables only.

As it can be seen, substituting Eqs. (6) and (7)
into Eq. (4) yields four ordinary differential equations
(ODE) expressing T (t), X(x), Y (y), and Z(z). Com-
bining the last three ODEs yields a partial differential
equation (PDE) for U(x). So, the wave Eq. (4) gener-
ates four ODEs:

D2
tT (t) + ω2T (t) = 0, (8)

D2
xX(x) + k2xX(x) = 0, x ∈ (ax, bx), (9)

D2
yY (y) + k2yY (y) = 0, y ∈ (ay, by), (10)

D2
zZ(z) + k2zZ(z) = 0, z ∈ (az, bz), (11)
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where ω [rad/s] is the angular frequency; k [rad/m] is
the wave number: k = ω/c; k2 = k2x + k2y + k2z .

3.2. Acoustic boundary conditions

Equations (8)–(11) are derived from Eq. (4) and
together with the boundary condition, Eq. (5), consti-
tute a new formulation of the boundary problem. To
make it the acoustic boundary problem, the boundary
condition Eq. (5) ought to be interpreted on the basis
of acoustics.

First of all, note that the function T (t) = exp(i ω t),
where i =

√
−1, ω is the angular frequency, satisfies

Eq. (8). Substituting this function to the boundary
condition Eq. (5) leads to

A1U(x) +A2DnU(x) = 0, x ∈ Γ. (12)

In acoustics, the Robin boundary condition corre-
sponds to specifying the surface acoustic impedance,

z(x) = p(x)/v(x), (13)

where p(x) [Pa] is the acoustics pressure; v(x) [m/s] is
the particle velocity.

Sound parameters described with U(x) take the
forms

p(x) = i ρ ω U(x), (14)

v(x) = −DnU(x) = − gradU(x), (15)

where ρ [kg/m3] is the air density.
As it can be seen, the impedance boundary condi-

tion, Eq. (13), can be written in the form

z(x)DnU(x) + i ρ ω U(x) = 0, x ∈ Γ. (16)

Hereunder this boundary condition is considered;
note that comparing Eq. (16) to Eq. (12) one obtains
A1 = ρω and A2 = z(x).

In practice, the acoustic impedance z(x) [N · s/m3]
is in fact the acoustic impedance of any material and
it is wined through the measure of the absorption co-
efficient α(x). There are several methods to measure
the α(x) or the acoustic impedance of acoustic ma-
terials. The classification of them is given in (Gerai,
1993) and three main groups of methods are specified
there: reverberation room methods (ISO 354, 2003;
Ducourneaua, Planeaub, 2003), in situ reflection
methods (Takahashi, 2005), and tube methods (ISO
10354-1, 1996). Both α(x) and z(x) are connected to
each other by the formula (Kuttruff, 2000)

z(x) = ρ c
1 + (1− α(x))1/2

1− (1− α(x))1/2
. (17)

For complex impedance, the boundary conditions will
typically depend on frequency and consequently, both

the eigenfunctions and resonant frequencies depend on
frequency.

On account of Eq. (7), instead of Eq. (15), it is

DnX(x) + z0(x)X(x) = 0, x ∈ (ax, bx), (18)

DnY (y) + z0(y)Y (y) = 0, y ∈ (ay, by), (19)

DnZ(z) + z0(z)Z(z) = 0, z ∈ (az, bz), (20)

where z0(x) = (ω ρ)/z(x).

3.3. Solution of the acoustic modal problem

For the practical acoustic case the floor is modelled
through the rigid boundary condition (Neumann/N),
but walls and ceiling are modelled through impedance
boundary conditions (Robin/R).

Further on the following is assumed (see also
Fig. 1):

• in the x-direction, impedance boundary conditions
Eq. (18), denoted by R, namely

DnX(ax)+z0(ax)X(ax) = 0, Dn(...)=−Dx(...), (21)

DnX(bx)+z0(bx)X(bx) = 0, Dn(...)=Dx(...), (22)

• in the y-direction, impedance boundary conditions
Eq. (19), denoted by R, namely

DnY (ay)+z0(ay)Y (ay) = 0, Dn(...)=−Dy(...), (23)

DnY (by)+z0(by)Y (by) = 0, Dn(...)=Dy(...), (24)

• in the z-direction, the rigid boundary condition at
ay, denoted by N , and the impedance boundary con-
dition at by, denoted by R, hence from Eq. (20) it
holds that

DnZ(az) = 0, Dn(...)=−Dz(...), (25)

DnZ(bz)+z0(bz)Z(bz) = 0, Dn(...)=Dz(...). (26)

Fig. 1. Cross-section geometry of the problem; x0 – source
point, xi – arbitrary domain point, ri – distance between
x0 and xi, R – Robin boundary condition, N– Neumann

boundary condition.
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Hereunder eigenvalues and eigenfunctions in the
x-direction and y-direction are derived in the case
when the impedance at the left end z0(ax)/z0(ay)
is different from the impedance at the right end
z0(bx)/z0(by). Thus, it is necessary to solve Eq. (9)
and Eq. (10) with impedance boundary conditions
Eqs. (21) and Eq. (22); the solution of Eq. (9) is pre-
sented in details, but the solution of Eq. (10) is written
by analogy.

The general solution of Eq. (9) is assumed in the
form

X(x) = C1 cos(kµx) + C2 sin(kµx), (27)

hereunder kµ = kx.
Substituting Eq. (27) into Eq. (21) and Eq. (22)

gives C1 = (C2 kx)/z0(ax) and after some calculations
one obtains the eigenvalues equation

tan(wx) =
wx(Zax + Zbx)

w2
x − ZaxZbx

, (28)

where wx = kµ(bx − ax) and Zax = z0(ax)(bx − ax),
Zbx = z0(bx)(bx − ax).

The above equation may be solved graphically and
the set of eigenvalues {kµ}may be read from the graph.

Substituting the obtained above results into
Eq. (27) one obtains the general solution and the set
of eigenfunctions {Xµ(x)} in x-direction,

X(x) =
∑
µ

C2µXµ(x)

=
∑
µ

C2µ [(kµ/z0(ax)) cos(kµx) + sin(kµx)], (29)

where Xµ(x) = [...].
By analogy, the general solution of Eq. (10) and

the set eigenfunctions {Xι(x)} in y-direction take the
form

Y (y) =
∑
ι

C2ιYι(y)

=
∑
ι

C2ι [(kι/z0(ay)) cos(kιy) + sin(kιy)], (30)

where kι = ky and Yι(y) = [...].
Now, one solves Eq. (11) in the z-direction, with

boundary conditions Eqs. (25) and (26). The general
solution takes the form, cf. Eq. (27),

Z(z) = D1 cos(kνz) +D2 sin(kνz), (31)

where kν = kz.
Substituting Eq. (31) into Eqs. (25) and (26) gives

D2 = 0. Next, the set of eigenvalues {kν} ought to
be found. They are solutions of the eigenvalues equa-
tion which can be obtained from Eq. (29). For this
purpose one takes: kµ ≡ kν , ax ≡ az, bx ≡ bz,

z0(ax) ≡ z0(az) = 0, z0(bx) ≡ z0(bz), hence instead
of Eq. (28) it is

tan(wz) = Zbz/wz, (32)

where wz = kν(bz − az) and Zbz = z0(bz)(bz − az).
Substituting the results obtained above into

Eq. (31) leads to the set of eigenfunctions {Zν(z)},

Z(z) =
∑
ν

D1νZν(z) =
∑
ν

D1ν cos(kνz), (33)

where Zν(z) = cos(kνz).
In the end, the µ ι ν-eigenfunctions (µ ι ν-modes)

are expressed with the product

Uµιν(x) = Xµ(x)Yι(y)Zν(z). (34)

As it can be seen, all solutions of the 3D indoor
acoustic problems may be achieved through the Fourier
method.

4. Forced acoustic vibrations

The differential equation of these vibrations is given
by Eq. (4). Let initial conditions be zeros. For problem
formulated this way, the solution of it is given by the
equation u(x, t) = u1(x, t)+u2(x, t), where u1(x, t) are
the free vibrations, u2(x, t) are the forced vibrations. In
the following, just forced vibrations ought to be found;
for simplicity of their notation u2(x, t) = u(x, t).

The periodic vibrations have a practical mean-
ing and they, in turn, can be described by means of
harmonic vibrations. Acoustic vibrations are excited
through f(x, t), in Eq. (4), i.e., the point acoustic
source. It is assumed that the source (a pulsating little
sphere) vibrates with an angular frequency ωf . At the
beginning, let

f(x, t) = F (x)eiωf t. (35)

The forced acoustic vibrations in the room are assumed
in the similar form

u(x, t) = U(x)eiωf t. (36)

Substituting Eqs. (35) and (36) in Eq. (4), one obtains
the inhomogeneous equation of excited acoustic vibra-
tions in the steady state (Helmholtz inhomogeneous
equation)

D2U(x) + k2fU(x) = F (x), (37)

where kf = ωf/c.
An acoustic source in 3D is represented by the

function F (x) in Eq. (35). In mathematical interpre-
tation, the F (x) constitutes the solution of the ra-
dial part of the Bessel’s differential equation in spher-
ical coordinates (Korn, Korn, 1968; McLachlan,
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1964; Evans, 2002). Here, the 0-order, spherical Han-
kel function of the second kind h(2)0 (kfr) plays the ma-
jor role. This is because it describes the outward prop-
agating spherical wave.

The solution of Eq. (37) is now formulated as some
sum of eigenfunctions. In a similar manner, the source
function F (x) is represented, then

U(x) =
∑
µιν

aµινUµιν(x)

=
∑
µιν

aµινXµ(x)Yι(y)Zν(z), (38)

F (x) =
∑
µιν

bµινUµιν(x)

=
∑
µιν

bµινXµ(x)Yι(y)Zν(z), (39)

where {aµιν}, {bµιν} are sets of some constants.
Since the function of F (x) is known in advance,

then constants bµιν are first calculated. The Eq. (39)
is the expansion of F (x) in the triple Fourier series. In
such case, constants bµιν are given by the formula

bµιν = (1/βµιν)

bx∫
ax

by∫
ay

bz∫
az

·F (x)Xµ(x)Yι(y)Zν(y) dxdy dz, (40)

where

βµιν = βµβιβν

=

bx∫
ax

X2
µ(x) dx

by∫
ay

Y 2
ι (y) dy

bz∫
az

Z2
ν (z) dz. (41)

Now, constants aµιν should be computed. To achieve
this, Eqs. (38) and (39) are substituted into Eq. (37),
hence∑
µιν

aµιν
(
D2U(x)+k2fUµιν(x)

)
=
∑
µιν

bµινUµιν(x). (42)

Since
D2Uµιν(x) + k2µινUµιν(x) = 0, (43)

hence D2Uµιν(x) = −k2µινUµιν(x) and instead of
Eq. (42) one has∑
µιν

aµιν
(
k2f − k2µιν

)
Uµιν(x) =

∑
µιν

bµινUµιν(x), (44)

where k2µιν = k2µ + k2ι + k2ν .
Comparing the coefficients at the same separate

modes Uµιν(x) one obtains

aµιν =
bµιν(

k2f − k2µιν
) . (45)

Substituting Eq. (45) into Eq. (38) gives

U(x) =
∑
µιν

aµινUµιν(x)

=
∑
µιν

bµιν(
k2f − k2µιν

)Xµ(x)Yι(y)Zν(z). (46)

Finally, forced acoustical vibrations are described by
Eq. (36).

In practice, instead of the acoustic potential, the
acoustic pressure and secondary acoustic quantities
play a major role. First of all, the amplitude of the
acoustic pressure by Eq. (14) is calculated and conse-
quently, the value of the sound pressure level L(x) [dB]
is given by

L(x) = 20 log |p(x)/p0| , (47)

where p(x) is the acoustics pressure and p0 = 2·10−5 Pa.
To notice quantitative change of the L(x) in

a whole acoustic room, the mean value of it ought to
be calculated based on the equation

Lm = 1/ni
∑
i

L(xi), (48)

where i = 1, 2, ..., ni number of calculated points in-
side the acoustic room.

5. Numerical calculations

In this section, numerical calculations are per-
formed assuming the following values: absorption co-
efficients: {α} = {0, step 0.1, 1} and frequency: f =
250 Hz. Numerical details are presented for chosen val-
ues of absorption coefficients, i.e. {α} = {0.1, 0.5, 0.9}.

The following global values and symbols are as-
sumed: ρ = 1.205 kg/m3, c = 344 m/s, {ax, bx} =
{0, 5} m, {ay, by} = {0, 5} m, {az, bz} = {0, 2.5} m,
the point forced source is placed at the point
x0 = {x0, y0, z0} = {2.5, 2.5, 1.25} m. Furthermore,
z0(ax) ≡ z0(bx) ≡ z0(by) = Z, since it is the most fre-
quent assumption made in acoustics, where e.g. z0(ax)
is z0(x) on the edge ax and so on. However, z0(ay) = 0
as a result of the Neumann boundary condition. Hence
Zax = Zbx = Z(bx − ax) = Zx.

In the x-direction, instead of Eq. (28), the following
eigenvalue equation is obtained:

tan(wx) =
2wxZx
w2
x − Z2

x

. (49)

The same equation as Eq. (49) for the y-direction
is derived; in this case wx ought to be replaced by wy
and Zx is replaced by Zy.

In the same way, in the z-direction, instead of
Eq. (32) the following eigenvalue equation is obtained:

tan(wz) = Zz/wz, (50)

where Zz = Z(bz − az).
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Fig. 2. Graphical solution of Eq. (49), α = 0.5.

Fig. 3. Graph of {kµ} versus α; e.g. stars (↔) mean first values of kµ for different values of α.

At the first step, sets of eigenvalues {wx}/{wy} and
{wz} are calculated in all coordinate directions. So, in
x-/y-direction, sets {kµ}/{kι} and {kν} can be calcu-
lated based on Eq. (49) and Eq. (50), respectively.

The eigenvalues equation, Eq. (49), may be solved
in many ways (Alquran, Al-Khaled, 2010), but in
this work it is solved in the graphical manner (Peirce,
2014; Meziani, 2016). It is done by finding the points
of intersection of graphs of the left hand side (LHS/L)
and right hand side (RHS/R) of Eq. (49). For exam-
ple, the result for α = 0.5 is depicted in Fig. 2, where
dashed lines and solid lines on the graphs mean L
and R, respectively. The results for other values of αare
calculated in the same way. To make the paper shorter,
the results are presented in detail in x-direction, i.e.
{wx} and {kµ}, but in y-direction {wy} and {kι} are
written by analogy.

It was assumed that seven values of wµ ought to
be used in order to obtain correct results, hence the
wµ-axis on the graphs is limited to the range wµ ∈

[0, 30]. After retrieving values {wµ} from Fig. 2, the
set of {kµ} = {kµ(α)} is calculated. The results of
{kµ} for all values of {α} = {0.1, step 0.1, 0.9} are
depicted in Fig. 3, where one marker type represents
successive values of kµfor different values of α (stars
represent first values of kµ, rectangles stand for second
ones, etc.). Note that the set of {kι} is the same as the
set of {kµ}.

Next, in quite the same way as above, the solution
of Eq. (50) in z-direction is derived. First the set {wµ}
and next the set {kν} are calculated; the results for
α = 0.5 are presented in Fig. 4 and Fig. 5, respecti-
vely.

In the next step, sets of eigenfunctions are cal-
culated. So, in x-/y-directions, basing on Eqs. (29)
and (30), sets {Xµ(x)}/{Yι(y)} are calculated respec-
tively. But in the z-direction, basing on Eq. (33), the
set {Zν(z)} is calculated. To use the Fourier method,
the values of orthogonality of the {Xµ(x)}, {Yν(y)}
and {Zν(z)}, through Eq. (41), are calculated. As a re-
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Fig. 4. Graphical solution of Eq. (50), α = 0.5.

Fig. 5. Graph of {kν} versus α; e.g. stars (↔) mean first values of kν for different values of α.

sult, sets {βµ}, {βι}, and {βν} are obtained and they
are presented in Tables 1–3.

Table 1. Values of {βµ}/{βι} and {βν}, α = 0.1.

{βµ}/{βι} 6.09 2.82 2.59 2.54 2.52 2.51 2.51

{βν} 2.28 1.28 1.25 1.25 1.25 1.25 1.25

Table 2. Values of {βµ}/{βι} and {βν}, α = 0.5.

{βµ}/{βι} 15.2 5.29 3.59 3.06 2.83 2.72 2.65

{βν} 1.74 1.39 1.30 1.27 1.26 1.25 1.25

Table 3. Values of {βµ}/{βι} and {βν}, α = 0.9.

{βµ}/{βι} 59.1 16.5 8.59 5.84 4.60 3.93 3.53

{βν} 1.45 1.39 1.33 1.30 1.28 1.27 1.26

The information about values of {βµιν} permits to
calculate {bµιν} by Eq. (40) and {aµιν} by Eq. (45),

respectively. In the following it is assumed that F (x) =

Ah
(2)
0 (kfr) and, to make the final results real, an in-

tensity of the source A = 5.51 · 10−3 is assumed. To
omit the singularity of h(2)0 (kf r) at r = 0, some space
around the source is omitted; this is the cube space
with dimensions 0.2× 0.2× 0.2 m. Finally, the sound
pressure level L(x), through Eq. (47), is calculated.

Since the depiction of function in 3D space is diffi-
cult, the results are presented in selected, characteristic
surfaces or lines. First, the pictures of L(x) are shown
in Figs. 6–8. They are calculated only for α = 0.5 in
planes which are parallel to the πxy Cartesian plane,
namely z = bz/5, z = bz/2, and z = 4/5bz, respec-
tively.

Next, distributions of L(x), in particular of α =
{0.1, 0.3, 0.5, 0.7, 0.9} and along particular lines are
calculated. For fixed y = 2.5, z = 1.25, and x ∈ (0; 5)
the results are presented in Fig. 9. For fixed x = 2.5,
y = 2.5, and z ∈ (0; 2.5) the results are presented in
Fig. 10.
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Fig. 6. Level L(x) in the cross-section for z = bz/5.

Fig. 7. Level L(x) in the cross-section for z = bz/2.

Fig. 8. Level L(x) in the cross-section for z = 4/5bz.
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Fig. 9. Cross-sections of L(x) for fixed y = 2.5 and z = 1.25; for α = [0.1, 0.3, 0.5, 0.7, 0.9] the set
of Lm = [78.4665, 77.9663, 77.2491, 76.0666, 73.2667].

Fig. 10. Cross-sections of L(x) for fixed x = 2.5 and y = 2.5; for α = [0.1, 0.3, 0.5, 0.7, 0.9] the set
of Lm = [97.9261, 97.6395, 97.2225, 96.6212, 95.1277].

6. Conclusions

The exact solution of the 3D acoustic problem with
arbitrary but uniform impedances imposed on separate
walls by the Fourier method was achieved. Small errors
were introduced to the solution through approximate
solutions of eigenvalue equations. The theoretical con-
siderations were verified by numerical simulations. One
rigid wall (the floor) and the same impedance rest walls
were assumed.

The acoustic field was presented by the distribution
of the sound pressure level and its mean value. Calcula-
tions were performed for all values of the absorption co-
efficient α(x), namely, α(x) = {0.1, step 0.1, 0.9} and
for annular frequency f = 250 Hz. The results are pre-
sented in some cross-sections of the room. Based on
theoretical considerations and numerical simulations
some conclusions can be drawn.

1. It is possible to obtain the solution of the acous-
tic boundary problem with impedance boundary
conditions by Fourier method. In the 3D space,
this problem is described by the combination of
three 1D Sturm-Liouville appropriate boundary
problems in separate directions. This way the pa-
per partially fills the gap of the practical acoustic
boundary problem.

2. A certain restriction appears, namely, the
impedance condition must be uniform along the
surface of particular walls coinciding with appro-
priate coordinate axes. However, there are no lim-
its to the impedance values on opposite walls.

3. Although the Fourier method belongs to the exact
group of methods, due to the lack of exact solu-
tions of eigenvalues equations, it loses this feature.
However, the error introduced by the graphical so-
lution of these equations seems to be small.
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4. Quantitative results of the Fourier method can be
a point of reference to the results of numerical
methods.
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