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Abstract
This paper presents an improved method for the reconstruction of busbar voltage waveforms from signals
acquired by a system of electric field (EF) sensors located in an indoor medium voltage substation. In
the previous work [8], the authors proposed the use of black-box models in the form of artificial neural
networks (ANNs) for this task. In this paper it is shown that a parametric model of the system of EF
sensors can reconstruct voltages with much lower errors, provided that it is accurately identified. The model
identification is done by minimization of a nonlinear goal function, i.e. mean squared error (MSE) of voltage
reconstruction. As a result of examining several optimization techniques, the method based on simulated
annealing extended with a simplex search, is proposed. The performance of the model identified with this
method is at least 8 times better in terms of MSE and at least 12 times better in terms of frequency domain
errors than the best one of concurrent ANNs.
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nealing.

c⃝ 2018 Polish Academy of Sciences. All rights reserved

1. Introduction

Precise measurement of instantaneous voltage is essential for power grid control and for the
settlements of energy. It is also needed for the calculation of active and reactive power, harmonic
impedance measurement [1], etc.

Inductive voltage transformers (IVTs) are commonly used in medium voltage (MV) grids and
high voltage (HV) grids due to their acceptable cost and galvanic insulation between primary
and secondary circuits. However, with the increase of primary voltage their frequency band is
limited [2]. Another group of measurement transducers are those based on capacitive electric
field (EF) sensors or multiple EF sensors. These transducers provide galvanic insulation at a
low cost and limited space requirements. The problems arise because of the presence of stray
fields and unknown or sometimes also a varying geometry of the system of sensors and observed
voltage lines [3]. The EF-based methods differ in respect of the measurement goal, observed
voltage level, fixed/varying or known/unknown geometry. Some transducers and methods are
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dedicated only to voltage detection [4], some other enable the calculation of aggregated voltage
parameters, like e.g. THD factor [5] or RMS voltage [4].

There are very few reported EF-based methods which are able to reconstruct voltage wave-
forms in a wide band. The method presented in [6] is aimed for low voltage monitoring in a smart
meter by means of miniature cylindrical EF transducers installed around phase wires, while the
method proposed in [7] is used to monitor HV overhead lines with 3 planar EF sensors, one per
phase. In [6] unknown capacitances are estimated by switching two configurations of the input
filter. In [7] unknown capacitances are estimated either from line tripping transients or by cal-
culations made with the assumption of symmetrically installed sensors. The method in [8] can
reconstruct indoor MV substation busbar voltages from a fixed geometry system of 5 EF sensors
located under busbars, using an artificial neural network (ANN) which is trained beforehand with
reference sensors. In each of these methods the main problem is the selection of the model and
its identification.

Such an indirect voltage measurement can be decomposed into two stages: conversion and
reconstruction ones [9]. The conversion stage includes the transformation of busbar voltages
uB into the digital form of EF sensor voltages uS, while in the reconstruction stage an inverse
mathematical model is applied with its outputs being estimates ûB of busbar voltages uB (Fig. 1).

Fig. 1. Measurement of busbar voltages decomposed into two stages.

In the case of substation busbar voltage measurement the distances between sensors and
busbars are high enough to provide each sensor with the possibility of simultaneous measurement
of EFs coming from all busbars. This coupling has to be taken into account in modelling. It also
makes an inverse model, used for busbar voltages reconstruction, a nonlinear function of multiple
parameters.

Nonlinear dynamic models can be black-box ones, like ANNs, or parametric ones with a
structure reflecting the structure of the objector selected features of the object (dynamics, non-
linearity, etc.) [10]. The application of a black-box model in the form of an ANN requires the
selection of ANN structure (number of neurons, activation functions, etc.) and its training, usu-
ally done by dedicated optimization methods [8]. The application of a parametric model requires
the selection of the model structure and order, and then determination of its parameter values.
Numerous model structures can be used: Volterra series [11], Viener–Hammerstein models [10],
multi-model (combination of several local models) [12], nonlinear dynamic models (NARX, etc.)
or equivalent circuits. Also, numerous identification methods can be used in the second stage, in-
cluding common optimization techniques [13].

In the previous work [8], black-box models in the form of ANNs trained in the supervised
mode, using EF sensor voltages as inputs and known busbar voltages as targets, were employed
for the reconstruction of 3-phase busbar voltages. In the same paper an equivalent circuit model,
composed of actual object capacitances and susceptances, was proposed as the reference method.
Parameter values of the equivalent circuit were determined by the direct measurement with an
Agilent E4980A LRC meter. Despite using the precise meter, errors of model parameters’ deter-
mination were high enough to consider the reference method as a poor one with respect to the
considered ANNs.
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In this paper an improved method for the reconstruction of busbar voltages by the parametric
model is proposed and validated. The model is the inversed conversion stage, based on the struc-
ture of the system of busbars and EF sensors. Accurate identification of this model is not a trivial
task, as the goal function (MSE of busbar voltage reconstruction) is nonlinear and a number
of suboptimal solutions hinders its identification, what causes that several classic optimization
methods fail. Therefore, the choice of an optimization method is critical. It is shown that busbar
voltages can be reconstructed by an accurately identified inverse model with significantly lower
errors than those obtained with the ANNs from [8] exhibiting the best performance.

The structure of the paper is as follows. Section 2 describes the object of identification and
the derivation of the model. In Section 3 the general idea of model identification by minimization
of voltage reconstruction errors as well as the analysis leading to the selection of a minimization
method are given. In Section 4 the results of model verification in the time and frequency domains
are shown and compared with the best ANN from [8]. Section 5 concludes the paper.

2. Model design

The object of interest was an indoor 15 kV substation, supplied from a 0.4/15 kV step-up
transformer. The substation was equipped with 3 reference resistive voltage dividers (RVDs) of
declared 1% AC accuracy from 10 Hz to 1.6 MHz for recording object outputs (Fig. 2).

Fig. 2. A schematic of substation.

Five EF sensors, build of small metal plates 6× 8 cm each, were installed in the overhead
compartment of the substation, centrally below busbars, 2 cm above the grounded common plate
placed on the floor of the compartment (Fig. 3).

Fig. 3. A placement of sensors (dimensions in cm, proportions not maintained).

A small, 2 cm, displacement between adjacent sensors did not assure sufficient separation of
signals, however five sensors (instead of three) gives redundant information, which enables to
limit the impact of measurement noise. The system composed of capacitances between sensors,
busbars, the ground plate as well as shielded cables and input impedances was actually the object
of identification. A single measurement channel is shown in Fig. 4.
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Fig. 4. A single measurement channel with EF sensor.

2.1. Physical model derivation

The object geometry is the basis for the creation of its equivalent circuit (Fig. 5), which
includes most significant capacitances, i.e.: busbars-to-sensors capacitances CXi, CYi, CZi, i = 1,
. . . , 5, sensors-to-ground capacitances C and capacitances between adjacent sensors CA. The
cable and ADC parameters are included in sensor capacitance C and parallel susceptance B.

Fig. 5. The equivalent circuit of a system of EF sensors. Capacitances between busbars
and sensors 2 to 4 (grey) are left without descriptions for the clarity. All capacitances

(both black and grey ones) are included in the model.

From the circuit structure, the following linear equations (1) were derived using the Kir-
choff’s current law for each senor node:

CX1u̇X +CY 1u̇Y +CZ1u̇Z =Cu̇1(t)+CA (u̇1 − u̇2)+Bu1 ,

CX2u̇X +CY 2u̇Y +CZ2u̇Z =Cu̇2(t)+CA (u̇2 − u̇1)+CA (u̇2 − u̇3)+Bu2 ,

CX3u̇X +CY 3u̇Y +CZ3u̇Z =Cu̇3(t)+CA (u̇3 − u̇2)+CA (u̇3 − u̇4)+Bu3 , (1)

CX4u̇X +CY 4u̇Y +CZ4u̇Z =Cu̇4(t)+CA (u̇4 − u̇3)+CA (u̇4 − u̇2)+Bu4 ,

CX5u̇X +CY 5u̇Y +CZ5u̇Z =Cu̇5(t)+CA (u̇5 − u̇4)+Bu5 ,

where X , Y , Z are phase indexes, uX , uY , uZ are busbar voltages, u1, . . . , u5 are sensor voltages
and “dot” symbol denotes the first derivative over time.

74



Metrol. Meas. Syst.,Vol. 25 (2018), No. 1, pp. 71–86.

After the integration of (1) over time it can be rewritten in the matrix form:

CBuB(t) = CSuS(t)+B
t∫

0

uS(τ)dτ , (2)

where

uB(t) = [uX (t) uY (t) uZ(t)]
T , uS(t) = [u1(t) u2(t) u3(t) u4(t) u5(t)]

T ,

CB =


CX1 CY 1 CZ1

CX2 CY 2 CZ2

CX3 CY 3 CZ3

CX4 CY 4 CZ4

CX5 CY 5 CZ5

 , Cs =CI+


CA −CA 0 0 0
−CA 2CA −CA 0 0

0 −CA 2CA −CA 0
0 0 −CA 2CA −CA

0 0 0 CA CA

 ,

and I is an identity matrix.
By solving (2) in the least square sense an inverse model of the EF sensors’ system, which

expresses estimates of busbar voltages as a function of EF sensor voltages, was obtained:

ûB(t) =
(
CT

BCB
)−1 CT

B︸ ︷︷ ︸
KB

CSuS(t)+B
t∫

0

uS(τ)dτ

. (3)

After the discretization, the model (3) can be used for the reconstruction of busbar voltages.
The signal processing path of busbar voltage reconstruction is shown in Fig. 6.

Fig. 6. A block diagram of signal reconstruction
in the matrix-vector form.

The pseudoinverse KB of matrix CB can be pre-calculated. Then the calculation of busbar
voltages’ vector uses only 65 floating point math operations (additions and multiplications) per
sampling period. It can be performed even by a low-cost CPU. The group delay introduced by the
model is only half of sample, thus the model can be successfully used in protective automation,
as it presents a real-time behaviour.

3. Model identification

3.1. Acquisition of identification and verification datasets

The ground-referenced EF sensor voltages were recorded using an NI CompactRIO sys-
tem equipped with 24-bit ADCs of ±10.52 V range. The RVD voltages were recorded syn-
chronously with EF sensor voltages using the same data acquisition system but equipped with
24-bit 300 VRMS ADCs. 10 kHz sampling rate was used. After the identification the RVDs are no
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longer needed and can be removed. The procedures of identification and verification of the model
were performed offline, after disassembling the setup and removing the substation equipment.

During the experiment steady-state voltages interleaved with voltage sags, generated by man-
ual tripping of S0 switch (Fig. 2), were recorded. Different patterns of voltage unbalance during
transients were obtained due to the random non-simultaneity of the opening of phase contacts of
the switch.

From the entire record two 8000-sample long (0.8 s) datasets were extracted for the purpose
of model identification: the SS dataset containing steady-state voltages only and the SD dataset
containing a voltage sag. Additionally, two 120 s long datasets were extracted for the purpose
of model verification: the SS dataset containing steady-state voltages only and the SD dataset
containing steady-state voltages interrupted by 3 sags.

Each dataset was composed of recorded sensor voltages (inputs) and busbar voltages (out-
puts). Busbar voltages from the identification and verification datasets are shown in Fig. 7 and
Fig. 8, respectively.

Fig. 7. The object output (RVD voltages) used for model identification. SS dataset (top), SD dataset (bottom).

It should be mentioned that even SS datasets contain small disturbances, not visible in the
scale of Fig. 8, resulting from supplying the object directly from the real power grid.

Fig. 8. The object output (RVD voltages) used for model verification. SS dataset (top), SD dataset (bottom).
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In order to verify methods in noisy conditions additional verification datasets SSN and SDN
were created by adding white Gaussian noise (40 dB SNR) to input signals in SS and SD verifi-
cation datasets, respectively.

3.2. Model identification scheme

The model parameters were identified by minimization of mean squared error (MSE) of bus-
bar voltages’ reconstruction over all phases:

MSE(x) =
1
3 ∑

p∈X ,Y,Z

(
1
N

N

∑
n=1

(ûB(p,n,x)−uB(p,n))2

)
. (4)

where n is a time index, p is a phase (busbar) index, x is a vector of model parameters, uB(p,n) is
an actual p-th busbar voltage waveform (object output) measured by p-th RVD, while ûB(p,n,x)
is a reconstructed p-th busbar voltage waveform (model output).

For each examined identification method, the starting point x0 for the minimization was a
vector composed of directly measured capacitances and susceptance in the following order: [CX1,
. . . , CX5, CY 1, . . . , CY 5, CZ1, . . . , CZ5, CA, C, B]T .

In each iteration of the minimization loop, the model outputs ûB were calculated by filtering
the model inputs uS through the discretized model (3) using the current set x of model parameters.
Then the MSE was calculated and the model parameters were updated accordingly.

3.3. Selection of minimization method

Finding the minimum of the goal function (4) requires the application of a nonlinear opti-
mization method, because the model (3) is a nonlinear function of its parameters. The number
of parameters of the model makes it difficult to assess the number of minima the goal function
can have. Due to the pseudo-inversion of CB matrix discontinuities and/or singularities can be
present in the goal function. Thus the selection of a minimization method was not trivial, as some
methods failed and some others led to a feasible but not sufficiently good solution.

Initially, local nonlinear optimization methods were examined in order to check whether they
are able to find a suboptimal but sufficient solution, i.e. a set x of model parameters, for which
the reconstruction errors are lower than for the best ANNs from [8]. The selected methods were:
unconstrained BFGS method [14], constrained interior point method [15] and unconstrained sim-
plex method [16].

The BFGS method failed in the starting point, because it could not decrease the value of
objective function by moving along the calculated search direction. The interior point method
always failed at bounds of the search region defined as [0.1·x0, 10·x0]. Extending the search
region did not help.

The simplex method converged to a feasible local solution and gave twice lower MSE than
the best ANN (LYRC-5-L) from [8]. It shifted model parameters by at most 20% from the starting
point. However, in the frequency domain, it gave the maximum error (7) of magnitude greater by
36 % than LYRC-5-S (the second best ANN from [8]).

Then, the unconstrained global minimization simulated annealing (SA) technique was exam-
ined. The SA, in its pure form [17], converged to a feasible solution, but the performance of the
identified model was not satisfactory [18] (MSE of voltage reconstruction was about 22 times
higher than that obtained with LYRC-5-L). Thus, the global SA minimization was extended by
an additional local search (a so-called hybrid method) repeated every given number of iterations.
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Such an approach complements the random characteristic of SA by the precise location of local
minima [19]. The simplex method was selected as a hybrid method in the global minimization
routine, due to its proper behaviour in the local minimization task. The hybrid method was ex-
ecuted every 50 iterations of global minimization loop and yet once more after satisfying the
termination criteria.

Such a combined minimization method, called SASC (simulated annealing + simplex com-
bined), converged to the best among all solutions in terms of both MSE and frequency domain
errors of voltage reconstruction. Thus, the SASC method was selected for model identification.
In all tested cases this technique led to a feasible solution, keeping the parameter values within
physically acceptable bounds. The results obtained with considered minimization methods are
summarized in Table 1 (TD means time domain, FD – frequency domain and EM – magnitude
error (7) in FD).

Table 1. Verification results obtained with considered methods.

Domain / Dataset TD / SD FD / SS FD / SS

Method / error MSE max(EM) mean(EM) Result comment

BFGS 1.421 8.63 0.1 stuck at starting point

Interior point 0.344 4.32 0.052 ends always on boundary

Simplex 0.0103 1.69 0.0244 feasible

Simulated Annealing 0.431 9.27 0.0461 feasible

SASC-SD 0.0023 0.35 0.0073 feasible (best of all)

LYRC-5-L 0.0202 7.07 0.0919 feasible (best ANN)

LYRC-5-S 0.141 1.24 0.0311 feasible (second best ANN)

3.4. Identification method

The proposed identification method is limited to the identification of EF sensors system in-
stalled in an overhead compartment of an indoor substation. Such a constraint limits variations of
some environmental factors like temperature and humidity, which are not included in the model.
The location of sensors inside the overhead compartment also limits the impact of external elec-
tric fields, as EF sensors are shielded by the grounded substation housing.

Generally, the identification steps are as follows:
1) install the system of EF sensors and reference transducers (e.g. RVDs); prepare data ac-

quisition system, which is able to simultaneously sample recorded voltages;
2) design a circuit model based on the number of sensors and main capacitances present in

the system; derive the inverse model for voltage reconstruction;
3) measure main capacitances in the system in order to determine the starting point x0 for the

identification;
4) record steady-state busbar voltages interrupted by some transients and imbalance regions;

record inputs (EF sensor voltages) and outputs (RVD voltages);
5) prepare identification and verification datasets from the recorded signals;
6) identify the model with the identification dataset and the proposed SASC technique; check

the feasibility of the solution;
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7) verify the performance of the model with the verification dataset;

8) if the performance is not acceptable, repeat the process (try to modify optimization param-
eters, the starting point, revise the model or prepare better datasets);

A diagram of the SASC minimization algorithm is shown in Fig. 9. The meaning of variables
is as follows: xcurr is a solution in current i-th iteration; Fcurr is an MSE value at xcurr; a is
a counter of accepted solutions; T is a scale used for randomization of xcurr and conditional
random acceptance of worse solutions; IH is the number of iterations, after which the hybrid
method is run; IR is the number of accepted solutions, after which reannealing is performed; k is
a parameter used for T update. xbest and Fbest are the best up-to-date solution and MSE value in
this solution, respectively.

Fig. 9. A diagram of the SASC minimization algorithm.

In each iteration of the main loop the function genNewX() generates a new SA solution xnew
by randomizing xcurr with a scale T . The function acceptNewX( ) always accepts better solutions
and conditionally accepts also worse ones. The probability of acceptance depends on a current T .
Every IH iterations a hybrid method in the form of simplex( ) function is executed. The simplex
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search starts at xcurr and returns xnew. When MSE in xnew is better than in xbest then xbest and
Fbest are updated to xnew and Fnew, respectively.

By most of time T decreases with each iteration according to the rule T (i+1) = T (i) ·0.95k.
The exception is for the reanneal( ) function, which can indirectly (by decreasing k) cause an
increase of T . This prevents the algorithm from getting stuck in a local minimum. Reannealing
is executed every IR accepted solutions.

4. Performance verification

The performance of the model (3) identified with the proposed SASC technique is proven
by the comparison of voltage waveform reconstruction errors with errors obtained with ANN
models presented in [8]. Both physical model and compared ANNs were identified/trained on
the same datasets to enable the direct comparison of these two approaches. The main difference
between compared models (physical model and ANNs) is such that the physical model has a
structure reflecting the real object structure and its parameters have a physical interpretation,
while ANN is a black-box model, whose structure and parameters have no physical meaning.
Maximum errors (MAXE) and root–mean–squared errors (RMSE):

RMSEp =

√
1
N

N

∑
n=1

(ûB(p,n)−uB(p,n))2, (5)

MAXEp = max
n

|ûB(p,n)−uB(p,n)| , (6)

were adopted as performance measures of the busbar voltage reconstruction quality. They were
calculated separately for each phase. Additionally an aggregated performance index in the form
of MSE (4), was calculated for each test case.

The following models capable of busbar voltage reconstruction were selected for the com-
parison:

1. Non-opt. – model (3) using parameters obtained with the direct measurement;
2. SASC-SS – model (3) identified with the SASC technique on the SS dataset;
3. SASC-SD – model (3) identified with the SASC technique on the SD dataset;
4. LYRC-5-L – the best layer-recurrent ANN trained on the SD dataset from [8].
Each of compared methods was verified using noiseless (SS, SD) and noisy (SSN, SDN)

verification datasets. The values of errors (5), (6) and a performance index of busbar voltage
reconstruction obtained for each of compared methods are shown in Table 2.

4.1. MSE comparison results

From Table 2 it can be seen that the performance of physical models SASC-SS and SASC-SD
is significantly better than that of LYRC-5-L network and the non-optimized model.

In noiseless conditions, the aggregated performance index (MSE) value of the SASC-SD
physical model is more than 8 times better than the best-performance LYRC-5-L network for the
SD verification dataset and 33 times better for the SS verification dataset. In noisy conditions the
superiority of SASC-SD over LYRC-5-L is even higher (20 and 40 times, respectively).
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Table 2. Comparison of busbar voltage waveform reconstruction methods (DT stands for dataset).

Ident
Noiseless input signals Noisy input signals

Method
DT Ver. RMSE [%] MAXE [%] Perf. Ind. Ver. RMSE [%] MAXE [%] Perf. Ind.

DT X Y Z X Y Z MSE DT X Y Z X Y Z MSE

Non- –
SS 5.29 3.51 4.90 13.7 46.7 38.0 0.862 SSN 5.35 3.58 4.96 13.9 46.9 38.1 0.865

opt. SD 3.86 2.52 3.52 42.7 36.8 16.7 0.438 SDN 3.92 2.57 3.58 43.0 36.9 16.5 0.439

SASC- SS
SS 0.21 0.15 0.19 0.64 0.53 0.57 0.001 SSN 0.30 0.26 0.29 1.41 1.20 1.38 0.003

SS SD 0.48 0.24 0.29 16.3 15.1 12.9 0.005 SDN 0.50 0.28 0.33 16.3 15.0 12.9 0.006

SASC- SD
SS 0.17 0.17 0.19 0.40 0.40 0.42 0.001 SSN 0.28 0.30 0.31 1.29 1.51 1.38 0.003

SD SD 0.24 0.24 0.24 14.0 13.8 28.0 0.002 SDN 0.28 0.29 0.30 14.1 13.9 27.8 0.003

LYRC- SD
SS 0.91 0.77 1.29 3.87 2.88 5.13 0.043 SSN 1.98 1.24 2.18 10.2 6.24 10.7 0.138

5-L SD 0.73 0.61 0.76 37.0 40.4 45.3 0.020 SDN 1.45 0.89 1.51 43.0 43.5 47.9 0.070

LYRC- SS
SS 0.25 0.17 0.20 1.24 0.69 0.95 0.005 SSN 3.44 1.52 2.25 16.6 8.15 11.2 0.26

5-S SD 2.32 1.95 1.18 75.2 39.2 43.7 0.14 SDN 3.60 2.89 2.23 81.0 40.3 44.0 0.35

4.2. Dynamic reconstruction errors

The reconstruction errors of the best SASC-SD model and the best LYRC-5-L ANN from
[8] were compared also in dynamic states. Figure 10 shows a superiority of the SASC-SD model
over LYRC-5-L ANN. The reconstruction errors obtained in dynamic states with the SASC-SD
model are far smaller than those obtained with LYRC-5-L ANN. Moreover, during steady states,
the errors of SASC-SD model are close to zero, what is not the case with LYRC-5-L. This feature
is desired in energy metering applications, where the integration of even low values over long
time can lead to significant errors.

Fig. 10. Comparison of reconstruction errors obtained with SASC-SD model (left) and LYRC-5-L network (right), both
identified/trained using SD dataset and tested with SD dataset. The upper plots present actual (continuous) and recon-

structed (dashed) busbar voltages, the lower plots present reconstruction errors.
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4.3. Frequency domain errors

The reconstruction errors of LYRC-5-L ANN and SASC-SD model were also analysed in the
frequency domain. Only the SS dataset was used for the verification in order to limit the share
of inter-harmonic components resulting from transients, which are present in the SD datasets.
Both reconstructed ûB(p,n) and known uB(p,n) bus voltages were divided into 20 ms long (200
samples) segments and transformed using DFT to raw spectra ÛB(p,h) and UB(p,h), respectively
(h denotes the harmonic order). The magnitude and phase angle errors were calculated for both
compared methods for each raw spectrum as follows:

EM(p,h) =

∣∣∣∣ÛB(p,h)
∣∣−|UB(p,h)|

∣∣
|UB(p,1)|

, (7)

EA(p,h) = ∠
(
ÛB(p,h)

)
−∠(UB(p,h)) , (8)

where ∠(z) denotes an argument of a complex number z.
The results of frequency domain analysis of LYRC-5-L ANN and SASC-SD model are shown

in Fig. 11. In the case of amplitude reconstruction errors, also bounds (minimum and maximum
errors) from all spectra are shown.

Fig. 11. Errors of magnitude (left) and angle (right) reconstruction in the frequency domain. Thin lines denote error
limits, i.e. minimum and maximum errors (SASC-SD solid red, LYRC-5-L dashed grey).

From Fig. 11 it can be seen that SASC-SD exhibits a better performance than LYRC-5-
L ANN in terms of both maximum and mean reconstruction errors in the frequency domain
(respectively 20 and 12 times lower errors than those of LYRC-5-L). The variance of ampli-
tude reconstruction errors for any frequency is significantly higher for LYRC-5-L ANN than
for SASC-SD model. Phase reconstruction errors are also lower for SASC-SD model than for
LYRC-5-L ANN (Fig. 11).

4.4. Discussion on identified parameter values versus measured ones

The deviations of optimized parameters obtained with the model identification and those
obtained with the direct measurement are summarized in Table 3.

82



Metrol. Meas. Syst.,Vol. 25 (2018), No. 1, pp. 71–86.

Table 3. Model parameter values obtained with identification compared with the directly measured values.

Parameter
Ident. Meas.

Unit
Ident./

Parameter
Ident. Meas.

Unit
Ident./

value value meas. value value meas.

CX1 16.2 3.0 fF 5.40 CY 5 55.6 59.7 fF 0.93

CX2 15.6 8.4 fF 1.86 CZ1 61.5 62.0 fF 0.99

CX3 30.4 21.3 fF 1.43 CZ2 36.8 43.5 fF 0.85

CX4 37.5 35.0 fF 1.07 CZ3 30.0 31.2 fF 0.96

CX5 57.0 54.0 fF 1.06 CZ4 27.7 22.6 fF 1.23

CY 1 59.6 57.4 fF 1.04 CZ5 9.6 12.2 fF 0.79

CY 2 50.2 61.0 fF 0.82 B 904.1 900.0 nS 1.00

CY 3 69.6 66.7 fF 1.04 C 725.0 603.0 pF 1.20

CY 4 59.5 65.9 fF 0.90 CA 287.9 630.0 fF 0.46

Some optimized parameters differ slightly from the measured ones (by a few percent), but
some differ much. If we assume that optimized parameters are correct then we can conclude that
the measurements were not so precise as it could be inferred from the specifications of the LRC
meter.

The differences are a result of inability to perform measurement ideally separated from ex-
ternal sources of errors. The application of a precise LRC meter is not sufficient in the case
of an object with a complex geometry or an object with distributed parameters, like an indoor
substation. In such experiments there exist stray capacitances, which affect final measurement
results. They cannot be easily eliminated, because it would require preparation of very complex
shields, drilling additional holes for measurement leads, etc. It is worth mentioning that during
measurements of busbar-to-sensor capacitances the differences between results obtained with
fully opened overhead compartment doors and those obtained with doors ajar (to enable putting
measurement leads inside the compartment) reached 55%. It is noticeable that the greatest dif-
ferences between values in x0 and respective values in the identification result are observed for
the lowest capacitances in the system, which are most difficult to measure.

Due to nonlinearity of the physical model (3) a simple description of its sensitivity to the
parameter values by partial derivatives of the goal function (4) at the optimum is not sufficient.
Therefore, its sensitivity was evaluated by observing how does a single parameter change influ-
ences the MSE. The parameters were disturbed one-at-a-time by a small deviation, i.e. ±1%,
±0.5%, ±0.1% or ±0.05.

The influence of adeviation of model parameters’ values from the optimum on the MSE
is shown in Fig. 12. The model is extremely sensitive to variations of some parameters and
almost insensitive to variations of others. This explains why an identified parameter value can
substantially differ from the measured one. When the model is insensitive to a change of a given
parameter, then the goal function is almost flat in the direction related to this parameter, so it is
hard to determine the exact minimum of the goal function in this direction.

This is a case of e.g. the capacitance CA value, which after optimization is less than half of
the measured value. Its change from the optimized value almost does not affect the MSE value.

The parameter, that influences MSE most is the capacitance CY 3, which is located in the
geometric centre of the system of sensors and busbars. Its deviation by only 1% from the optimum
increases MSE about 10 times. It can be concluded that sensor-to-busbar capacitances, for which
the air gap between a busbar and a sensor is shortest, affect the model most.
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Fig. 12. The model sensitivity shown as an MSE change resulting from deviation
of a single parameter value from the optimum.

5. Conclusion

In the paper an improved method for the reconstruction of busbar voltages of an indoor MV
substation is presented and validated. The inverse model of conversion performed by EF sensors
located in the overhead compartment of the substation is used for the reconstruction. The key to
obtain a high reconstruction accuracy is precise identification of the model by a combination of
the simulated annealing global optimization and simplex methods. Such a combination, called
SASC is proposed after examining several nonlinear optimization techniques. The performance
of the reconstruction method is verified by the analysis of busbar voltage reconstruction errors
both in time and frequency domains. The best reconstruction accuracy is obtained for the SASC-
SD model identified with the SD dataset, containing both steady-state voltages and transients
(wideband excitation).

Unlike the methods presented in [3] and [4], aimed at RMS or THD measurement, the method
can reconstruct voltage waveforms up to 5 kHz. It outperforms the best-performance LYRC-5-L
ANN from [8] by at least 8.7 times in terms of MSE, despite the adverse arrangement of EF
sensors. It gives RMS reconstruction errors lower than 0.2% of the fundamental harmonic in
noiseless steady-state conditions. It is also a much better result than the one obtained in [3],
however the method from [3] bases on auto-calibration, while identification of SASC-SD model
requires the use of RVDs for model identification. It is also better than the method [6], which
average RMS voltage measurement error is between 0.24% and 2.6%, depending on load type
and wire.

Apart from a good voltage reconstruction quality the identification of the physical model with
the proposed SASC technique is a dozen times faster than the training of LYRC-5-L ANN. The
identified model is stable, what cannot be guaranteed in the case of LYRC ANNs due to feedback.
The model is approximately 3 times faster than LYRC-5-L ANN on the same hardware, thus a
cheaper CPU can be used for the real-time busbar voltage reconstruction.
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The proposed voltage reconstruction method introduces almost no delay (half a sample), thus
it is well suited for using in protective automation. It can be used – among others – for the mea-
surement of harmonic impedance of the grid [20], for the tracking of varying grid impedance [21]
or in power quality conditioners [22]. The SASC minimization technique itself can be used also
in other areas, like e.g. optimal control system design as an alternative to e.g. genetic algorithms
[23].

The application of the method is limited to indoor substations, which offer good screening
from external electric fields and work in almost stable environmental conditions. Extending the
method to outdoor substations would require the design of more complex models taking into
account such factors as temperature, humidity, external fields, etc.

References

[1] Borkowski, D. (2015). A new method for noninvasive measurement of grid harmonic impedance with
data selection. Int. Trans. Electr. Energ. Systems. 25(12), 3772–3791.

[2] Locci, N., Muscas, C., Sulis, S. (2009). Experimental comparison of MV voltage transducers for
power quality applications. IEEE Instrumentation and Measurement Technology Conference, 2009.
I2MTC ’09. 92–97.

[3] Bobowski, J.S., Ferdous, M.S., Johnson T. (2015) Calibrated singlecontact voltage sensor for high-
voltage monitoring applications. IEEE Trans. Instrum. and Meas., 64(4).

[4] Tsang, K., Chan, W. (2011). Dual capacitive sensors for non-contact{AC}voltage measurement. Sen-
sors and Actuators A: Physical, 167(2), Solid-State Sensors, Actuators and Microsystems Workshop,
261–266.

[5] Chen, K.L., Xu, W. (2016). Voltage distortion measurement using a contactless sensor. 2016 IEEE
Power and Energy Society General Meeting (PESGM).

[6] Brunelli, D., Villani, C., Balsamo, D., Benini, L. (2016). Non-invasive voltage measurement in a
three-phase autonomous meter. Microsystem Technologies, 1–12.

[7] Wu, L., Wouters, P., van Heesch, E., Steennis, E. (J 2011). On-site voltage measurement with capaci-
tive sensors on high voltage systems. PowerTech 2011 IEEE Trondheim, 1–6.

[8] Borkowski, D., Wetula, A., Bien, A. (2015). Contactless measurement of substation busbars voltages
and waveforms reconstruction using electric field sensors and artificial neural network. IEEE Trans.
Smart Grid. 6(3), 1560–1569.

[9] Morawski, R. (1991). Unified approach to measurement signal reconstruction. Measurement. 9(3),
140–144.

[10] Jakubiec, J., Makowski, P., Roj, J. (2009). Error model application in neural reconstruction of nonlin-
ear sensor input signal. IEEE Trans. Instrum. Meas., 58(3), 649–656.

[11] Faifer, M., Ottoboni, R., Prioli, M., Toscani, S. (2016 ). Simplified modelling and identification of
nonlinear systems under quasi-sinusoidal conditions. IEEE Trans. Instrum. Meas., 65(6).

[12] Adeniran, A.A., Ferik, S.E. (2016) Modeling and identification of nonlinear systems: A review of the
multimodel approach – part 1. IEEE Trans. Systems, Man, and Cybernetics: Systems, PP(99).

[13] Nelles, O. (2001). Nonlinear System Identification: From Classical Approaches to Neural Networks
and Fuzzy Models. Berlin: Springer-Verlag.

[14] Li, D.H., Fukushima, M. (1999). On the global convergence of BFGS method for nonconvex uncon-
strained optimization problems. SIAM Journal on Optimization, 11(4), 1154–1164.

[15] Wright, H.M., (September 2004). The interior-point revolution in optimization: History, recent devel-
opments, and lasting consequences. Bulletin of the American Mathematical Society, 42(1), 39–56.

85



D. Borkowski: AN IMPROVED METHOD OF BUSBAR VOLTAGE RECONSTRUCTION . . .

[16] Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E. (1998). Convergence properties of the nelder-
mead simplex method in low dimensions. SIAM Journal of Optimization, 9(1), 112–147.

[17] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983). Optimization by simulated annealing. SCIENCE,
220(4598), 671–680.

[18] Ingber, L. (1993). Simulated annealing: Practice versus theory. Mathematical and Computer Mod-
elling. 18(11) 29–57.

[19] Neto, A.S., Junior, J.L., Soeiro, F.J.C.P., Neto, L.B., Santana, C.C., Lobato, F.S., Valder, Junior, S.
(2010). Application of simulated annealing and hybrid methods in the solution of inverse heat and
mass transfer problems. Simulated Annealing, Theory with Applications.

[20] Borkowski, D., Wetula, A., Kowalski, J. (2015). Uncertainty estimation in noninvasive measurement
of harmonic impedance – laboratory studies. 2015 International School on Nonsinusoidal Currents
and Compensation (ISNCC).

[21] Borkowski, D., Barczentewicz, S. (2014). Power grid impedance tracking with uncertainty estimation
using two stage weighted least squares. Metrol. Meas. Syst., 21(1), 99–110.

[22] Hartman, M., Hashad, M., Mindykowski, J., Hanzelka, Z., Klempka, R. (2005). A new concept of
the electrical distributed system for power quality improvement. CPE’05 Conference Proceedings,
Gdańsk.

[23] Borkowski, D., Wetula, A., Bien, A. (2012). Design, optimization, and deployment of a waterworks
pumping station control system, ISA Transactions. 51(4), 539–549.

86


