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Abstract: The method of moments enables effective magnetostatic modelling of thin lay-
ers, where thickness of the layer should be considered. This paper presents the non-linear
extension for this method of modelling. An initial magnetization curve, necessary for mod-
elling, was reconstructed from saturation hysteresis loops on the basis of the Jiles—Atherton
model. Finally, the set of non-linear equations was stated, and an example of solution for a
square-shaped magnetic thin layer is presented.
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1. Introduction

The method of moments [1, 2] is an important alternative for the finite elements method
in the case of magnetostatic simulations of thin layers. For the thin layers, tetrahedral meshing
leads to the radical increase of the numbers of elements, which creates a calculation problem. It
was indicated previously, that the number of elements of tetrahedral mesh is proportional to the
square of proportion between element’s thickness and its length [3].

In the case of the method of moments, thin layer may be described by 2D uniform mesh
with given thickness and the set of linear equations (for the assumption of a constant value of
permeability of material). This is significant advantage of the method of moments in comparison
to the finite elements method, where for magnetostatic systems, the set of ill posed differential
equations should be solved using the conjugate gradient method [4].

As aresult, the method of moments is filling the gap related to the difficulties with modeling
of functional characteristics of thin layer based sensors, such as fluxgates with cores made of
amorphous alloys [5, 6]. This method is also very useful for other objects with a low length-to-
thickness ratio, such as a mock-up of a ship [7].

However, commonly used simplifications of description of soft magnetic material [8] with
a constant value of magnetic permeability or given by simple mathematical dependences may
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lead to significant errors. These errors are especially significant for smaller values of magnetiz-
ing field H, between initial permeability y; and maximal permeability Umax. To overcome this
problem, the shape of an initial magnetization curve should be considered. On the other hand, in
the case of nonlinear extension, the set of equations typical for the method of moments become
much more sophisticated from a computational point of view. In addition, the initial magnetiza-
tion curve of advanced magnetic materials is rarely presented, which causes additional problems
for effective modeling.

2. Reconstruction of initial magnetization curve

Measurement of an initial magnetization curve is difficult from a technical point of view. For
this reason, the initial magnetization curve and its relative permeability L] versus magnetization
M dependence is not often presented for soft magnetic materials. However, it was previously
proven [9, 10], that the Jiles—Atherton model reconstructs very well the initial magnetization
curve on the basis of a saturation magnetic hysteresis loop.

The Jiles—Atherton model is based on the concept of an anhysteretic magnetization curve [11].
In the case of isotropic materials, the anhysteretic magnetization curve is given by Langevin’s

equation:
H,
M, = M, {coth <e> - (aﬂ 7 (1)
a H,

where: M; is the saturation magnetization, a describes the domain walls density and H, is the
effective magnetization field considering external magnetizing field H, the total magnetization
M and interdomain coupling & according to the Bloch model [12]:

H, = H+aM. ©)

In the Jiles—Atherton model, total magnetization M is given by the following differential
Equation [13]:

dm _ Su (Mah — M) c dMy,

dH ~ (1+c¢) (6k—o(My—M)) " (14¢) dH ’
where: ¢ is the parameter determining the magnetization reversibility, 0 is equal to 1 for in-
creasing of magnetizing field H and —1 for its decreasing and 8y, protects against the unphysical
stages, when incremental susceptibility often becomes negative [14]. This parameter is equal to 0
in two cases: when (M,;, — M) > 0 for decreasing of magnetizing field H and when (M,,, —M) <0
for increasing of magnetizing field H. In other cases &y = 1 and can be neglected.

It should be indicated that accurate solving of differential Equation (3) requires the use of
the 4-th order Runge—Kutta method [15]. Additional drawback of the Jiles—Atherton model is
not an obvious method of determination of its parameters on the basis of the measured hysteresis
loop. It was presented previously, that the effective method of solving such an inverse problem is
application of a differential evolution algorithm [16] preferably for the set of magnetic hysteresis
loops measured for the different values of the amplitude of magnetization field H.

The Jiles—Atherton model of magnetic hysteresis loops (for both isotropic and anisotropic
materials) was implemented previously as an open-source library for MATLAB/OCTAVE. This
library is freely available at: www.github.com/romanszewczyk/jamodel

3)
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The analyses presented in the paper were carried out for Fe—Ni permalloy. In this case, the
parameters of the Jiles—Atherton quasi-static model were determined on the basis of the magnetic
saturation hysteresis loop by a differential evolution-based algorithm. On the basis of M(H)
dependence given by Equation (3), first initial magnetization curves . (H) and then the U (M)
curve were determined by the numerical interpolation. Results of these calculations are given in
Fig. 1, whereas parameters of the Jiles—Atherton model are presented in Table 1.
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ton model: (a) reconstructed hysteresis loop with the
initial magnetization curve (solid line), results of mea-
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surements (dotted line); (b) reconstructed relative per-
; meability [ versus magnetizing field strength H de-
BO000 v N pendence; (c) reconstructed relative permeability L
/ versus magnetization M dependence
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Table 1. Parameters of Jiles—Atherton model for Fe—Ni permalloy
Parameter | Units Value Description
M A/m 6.14-10° Saturation magnetization of the material
a A/m 1.010 Quantifies domain wall density
a - 2.988-107° | Bloch interdomain coupling
k A/m 0.588 Quantifies average energy required to break the pinning site
c - 4.1073 Magnetization reversibility
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Due to the necessity of application of the Runge—Kutta method for solving ordinary dif-
ferential equations stating the Jiles—Atherton model, such calculations are time consuming. For
this reason, the results of modelling of relative permeability . versus the magnetization M
dependence were stored in the lookup table. Values between known points were determined by
interpolation.

3. The method of moments for thin layers

The generalization of magnetostatic method of moments for thin layers with regular rectan-
gular grids was presented previously [16]. To consider nonlinear dependence of relative perme-
ability U versus magnetization M, equations stated the method of moments should be extended
to the following form:

n n
kxyk + Z Z .urel kx;ky)) - 1) 'dex(ixyiwkmky)] +
iy=11y=0
n n
+ Z Z ,urel kx;k )) ) 'dey(iX7iy>anky)] = .urel<Mx(kX7ky)) 'H)m (4)
iy=1i,=0
kX7k + Z Z I»Lrel kX7k )) )'dny(iXaiy;kkay)}"’_
iy=11iy=0
+ Z Z IJrel kmk ) ) 'dHy_y(iX7iy7kX7ky)] = “rel(My(kmky)) 'Hv» (5)
ix=1iy=0

where: Ui (My(ky,ky)) and e (M, (ky, ky)) are the spline-based interpolation of relative perme-
ability U versus the magnetization M dependence in the initial magnetization curve for mag-
netization in the x direction M, and in the y direction My, of the cell (kx,ky). Moreover, Hy, H,
are the magnetizing fields in x and y directions respectively and dH,., dH,y, dHy,, dH,, are the
demagnetizing fields from a given magnetic moment acting in the direction of a given axis [16]:

_ g AL
Cg= "> (6)
. 1
o= (lx_kx+2> AL ™)
. 1
ry = (zy—ky—&- 2) ‘AL, ®)
1
1\ [ 2ri—(ry—1-AL)?
Cxx = sign <ix_kx+2) / ( s (r} ) 5) -dt, )
o \(rg+(ry—t-AL)?)?

dex(imiyakxaky) = (Mx(ixa iy) _Mx(ix +1, ly)) *CgCxx, (10)
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1 ] 3 t-AL
cyx:sign<ix—kx+2) /( redry ~t-AL) 5> -dt, (11)
o \(+(ry—1-AL)%)?
dHyy (i, by, ke ky) = (My(ix,iy) — My (ix+1,iy)) - cg - Cyx s 12)
1 / 3ry(ry—t-AL)
Cyy = sign (iyky+2> / e < | -dr, (13)
0 (ry —1-AL)? +r2)7
dHXY(iX»iyvkxaky) = (My(ix, iy) _My(ixa iy + 1)) *Cg - Cyx, (14)
1
1 2r2 — (ry—t-AL)?
cyy:sign<iy—ky+2> / y — (e ) — | -dr, (15)
0 ((r,(—t-AL)z—i—r)Z,)7

dHyy (i, iy ks ky) = (My (i, iy) = My (iyiy +1)) - €4 - €y, (16)

where: ¢, is the constant describing the geometry of the mesh and the thickness g of a layer, AL

is the length of a square-shaped cell, whereas quantities 7, and r, describe the distance between

the magnetic moment assigned to the border (i, iy) and the barycenter of a cell (ky, ky).
Equations (4) and (5) can be re-arranged to the following form:

M (ks ky) + (el (M (ks k) = 1) ¢ - Y Y [Mx(ix,iy)- (car(iny iy, ke, kyy AL) —

iy=1i=0
—enlin—1 zy7kx7k),AL))} +

+(,urel( (kmk Cg Z Z[ lml) Cx)(lmlyakmk}yAL)

iy=1iy=0

— iy = Lkiky AL) | = (e (Ma(keo k) = D He, ()

My (ky,ky) + (teet (My (ki ky)) — 1) - g - Z Z[ (ix,iy) - c”(lx,ly,kx,k),AL)

iy=1iy=
— ey iy — 1,iy,kx,ky,AL))} +
+(I~Lrel( (kmk Cg Z Z [ lxﬂy ny(lx>ly kmkwAL)
iy=1iy=
_ny(imiy - 17kX7ky;AL))} = (urel(Mx(kmky)) - I)Hy7 (18)
where: ¢, cxx, Cyy, ¢yx and ¢y, are the geometrical parameters described in [16].

Solving of the set of equations stated by (17) and (18) with respect to magnetization is not an
easy task. The best way is the minimisation of target function Faree (M) given as:



www.czasopisma.pan.pl P N www.journals.pan.pl

S I‘\.-
32 R. Szewczyk Arch. Elect. Eng.
M,
M,
Ftarget . =
M,
ary, a2, ...,y [.L(Ml)fl 1,0,...,0 M]
a1, any, ..., axy [.L(Mz)fl 0,1,...,0 M,
= | mul , + —
Anl, Qn2, - -+ Apn :LL(Mn)fl ana"'al M,
n(Mp)—1 Hext
u(Msy) —1 Hext
—mul . ) . ) (19)
,u(Mn) -1 Hexl

where aj; is the geometrical parameter calculated from re-arrangement of Equations (17) and
(18). Function mul (D, E) multiplies each row of matrix D by corresponding value in the column
of matrix E. It should be indicated that in the case of OCTAVE, mul (D, E) may be realized by
the D. x E command. However, in the case of MATLAB, the command bsxfun(@times, D, E)
should be used.

Due to the fact, that minimization of function Fge; should be carried out for values of mag-
netization M; € (—Mj, M), the solution of such set of nonlinear equations requires a constrained
minimization algorithm. Because such algorithms are poorly implemented in OCTAVE, a simple
gradient algorithm was developed. Moreover, the starting point for optimization were the results
of solving of the set of linear equations (calculated for the constant value of relative permeability
el ), subjected to the saturation at the level of M.

4. Results of modelling

Modelling was started with the case of a linear model and a constant value of relative per-
meability f of the material equal to 160 000. Spatial 2D distribution of the permeability of
square-shaped thin film element is presented in Fig. 2. The length of the element edge was
10 mm, whereas its thickness was 1 m. Magnetizing field strength H, in the x axis direction was
65 000 A/m. Results of solving the linear equations for magnetization M in the x and y directions
are presented in Figs. 3a and 3b, respectively, as flux density B is equal to M + uoH. It can be
seen that the results are obviously unphysical, as value of magnetization M, significantly exceeds
saturation magnetization M;.

Distribution of magnetization M achieved from the linear model (considering the saturation
magnetization M) was used as an initial point for a nonlinear solver. In this case, the relative
permeability ) versus the magnetization M dependence for permalloy presented in Fig. 1c was
used for simulation.
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Fig. 2. Spatial 2D distribution of relative permeability p of
square-shaped thin film element
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Fig. 3. The results of magnetostatic modelling of a square-shaped thin film element with thickness equal

to 1 um: a) flux density B in the x-axis (linear model, y = 160 000); b) flux density B in the y-axis

(linear model, 1 = 160 000); ¢) flux density B in the x-axis (non linear model ] (M) characteristic of the
permalloy), d) flux density B in the y-axis (non linear model ) (M) characteristic of the permalloy)
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The set of nonlinear equations (stated by the Equations (17) and (18)) was solved by a simple
gradient algorithm. Figs. 3c and 3d presents flux density B in x and y direction considering the
nonlinear (M) curve of permalloy and achieved values of magnetization M.

Fig. 4 presents the values of flux density B in the cross-section of the square-shaped thin
film element along its symmetry line in the x direction. Results are presented for both linear and
nonlinear models. Saturation of the nonlinear characteristics can be clearly observed.

1.4 T T T T T

12}

B (T)

0 2 4 3} 8 10 12 14

Fig. 4. Flux density B in the cross-section of the square-shaped

thin film element along its symmetry line in the x direction: for

linear model with p = 160 000 (black line), for i) (M) charac-
teristic of permalloy (red line)

5. Conclusions

The presented results indicate, that magnetostatic characteristics of thin layers may be simu-
lated using the method of moments. In this method, the nonlinear characteristics of soft magnetic
materials may be considered, using the u (M) characteristics.

It should be stressed, that an initial magnetization curve and initial pt(M) characteristic is
rarely presented due to the difficulties connected with the measuring process. To overcome this
problem, the Jiles—Atherton model may be used. With this model, the initial magnetization curve
may be reconstructed on the base of measurements of a saturation magnetic hysteresis loop.
However, experimental measurements of the initial magnetic hysteresis loops of very soft mag-
netic materials (like permalloys) should be carried out in the future, for efficient validation of the
accuracy of different models of this curve.

The presented results of the modelling confirm that the method of moments enables model-
ing of nonlinear behavior of thin magnetic layers under a magnetizing field in saturation range.
This fact is very important for modelling characteristics of fluxgate sensors based on thin layer
magnetic cores. However, a simple gradient algorithm for solving the set of nonlinear equations
is time consuming and should be improved during the further works.
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