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Abstract: In induction heating the design of the inductor implies the solution of coupled
electromagnetic and thermal fields, along with the use of optimal design procedures to
identify the best possible device or process. The benchmark model proposed, a graphite
disk heated by means of induction, is optimized using different optimization algorithms.
The design aim requires to achieve a prescribed and uniform temperature distribution in
the workpiece maximizing the system efficiency.
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1. Introduction

Induction heating is generally used for thermal processes of materials [1–3]. In fact it allows
a good temperature control of the workpiece temperature with a high efficiency [4–6]. In this
field the solution of coupled electromagnetic and thermal problems is mandatory [7–9], as well
as the use of optimization algorithms to identify the best device [10–15].

In the paper, the induction heating benchmark proposed in [12–14] is used to test the perfor-
mances of different multi-objective optimization algorithms. The benchmark model represents
an industrial equipment for the epitaxial processing of a silicon wafer [17]. The device to be
optimized is an inductor with 12 copper turns and a ferrite yoke that heat a graphite disk [16], as
shown in Fig. 1.
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Fig. 1. Geometry and design variables of the induction heating benchmark

The finite-element analysis (FEA) [18] is used to solve the forward problem, whereas the
optimization is performed by means of different optimization algorithms: the Non-dominated
Sorting Genetic Algorithm NSGA-II [19, 20], Self-Adaptive Migration Non-dominated Sorting
Genetic Algorithm SA-MNSGA [21], derived by MNSGA [22], and Biogeography-based Mul-
tiobjective Optimization BiMO [23, 24]. The direct problem solves a time-harmonic magnetic
problem to evaluate the power density in the graphite disk coupled to a steady-state thermal
problem to evaluate the temperature profile [25]. The inverse problem includes 14 design vari-
ables: the vertical positions of the turns, the size of a ferrite yoke used to concentrate the magnetic
field and the supply voltage. The objective functions are the device efficiency and the temperature
uniformity in the workpiece [14] that has to be close to 1150◦C at steady state, both objectives
are maximized.

2. Forward problem

The 2D benchmark model, sketched in Fig. 1, includes a graphite disk (electrical and thermal
properties at 1200◦C: ρg = 7.76 10−6 Ωm, λ = 60 Wm−1K−1) with a radius of 357.5 mm, a
pancake inductor with 12 copper turns and a ferrite ring, magnetic field concentrator, under the
most internal turns (one or two) that are located at the same height. All turns, series connected,
carry a current in the order of hundreds of Ampère at 4,250 Hz. A total power of about 60 kW
is prescribed in the device so that the disk reaches a steady state average temperature of 1150◦C,
as required by the industrial process.

The corresponding inductor current is tuned in each FEA simulation: the FEA solution is
updated with a new value of the inductor current (the source of electromagnetic model) when
nonlinear material properties are taken into account in the model. Thermal and electrical prop-
erties of materials are in Table 1. In Fig. 2, magnetic relative permeability and magnetization
curve of the magnetic concentrator are presented. For the sake of simplicity, the electromagnetic
properties of the graphite disk are considered to be constant. This choice has been done in order
to have a linear forward problem. It is possible to consider non-linear materials e.g. [26, 27],
but this would increase the complexity of the forward problem and its cost, while in this paper
the main scope is to provide a multi-physics problem solvable in shortest runtime on a standard
hardware platform.
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Table 1. Electromagnetic and thermal properties of model materials

Element Electromagnetic properties

Disk Graphite (at 1200◦C) ρg = 7.76 10−6 Ωm µr = 1

Inductor Copper ρc = 1.6 10−8 Ωm µr = 1

Ferrite ring Ferrite –
Nonlinear relative

permeability (Fig. 2)

Thermal properties

Disk Graphite λ = 60 Wm−1K−1

Fig. 2. Relative permeability and magnetization curve of ferrite ring material

The target of the multi-physics design is to evaluate the graphite disk temperature using a
given inductor geometry. The magnetic analysis evaluates the power density in the graphite disk
starting from the inductor geometry and the supply current. The power density is the source for
the thermal problem.

The magnetic problem is solved in time-harmonic conditions by means of a commercial FEA
code using the well-known A-V formulation, on second-order elements. The current distribution
in each turn is taken into account to correctly evaluate the inductor efficiency. In particular, the
magnetic problem is solved in terms of the phasor of the magnetic vector potential, A [18, 28]:

∇2A− jωµρ−1Ȧ =−µ J̇ , (1)

where: A and J are the phasors of the current density and magnetic vector potential, respec-
tively, µ is the material magnetic permeability, ρ is the material electrical resistivity and ω is the
magnetic field pulsation.

The thermal problem is solved in steady-state condition, assuming the power density in the
disk computed by means of the magnetic problem as the source term. The thermal domain is the
graphite disk. Along the domain profile a boundary condition of heat exchange along is imposed.
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From these assumptions, it results that the solutions of magnetic and thermal problem are weakly
coupled by means of the source term of the thermal equation [29]:

−∇ · (λ∇T ) = ρ−1ω2∥Ȧ∥2 , (2)

where λ is the thermal conductivity of the material. Along the disk surface at r = 0, and

−λ
∂T
∂n

= h(T −T0)+ ε kB(T 4 −T 4
0 ), (3)

elsewhere, where h is the convective exchange coefficient (h= 10 Wm−2K−1), ε is the emissivity
coefficient (ε = 0.6) and kB is the Stefan–Boltzmann constant. The external temperature, T0,
is equal to 850◦C. These parameters of the thermal model have been tuned in order to fulfill
experimental results of a real device as in [17].

A typical second-order mesh to solve the magnetic problem has about 80 000 elements.
A zoom of a typical mesh is shown in Fig. 3.

Fig. 3. Mesh detail of ferrite yoke and two turns (left), mesh detail of the disk (right)

Because the thermal domain is the graphite disk only, the disk is the only part of the domain
which is meshed for the thermal problem. The temperature has been evaluated on points regularly
spaced along the upper line of the disk. A magnetic field map and a temperature field map are
shown in Fig. 4.

Fig. 4. Magnetic field [T] map (left), temperature [◦C] field map (right)
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3. Inverse problem

A 14-dimensional vector x of geometric design variables has been defined for the problem;
the list of considered design variables with corresponding variation ranges is in Table 2.

Table 2. Design variable ranges

Parameter name Min Max Unit

h1,. . . , h10 0 60 mm

h f 10 25 mm

l f 1 40 mm

V rms 50 600 V

In particular, the design variables are the vertical positions of the inductor turns, the size
of the magnetic yoke and the supplied voltage. The design problem is characterized by two
conflicting objectives: the maximization of the electrical efficiency, η , defined as the ratio of
active power transferred to the disk to the one transferred to the entire device, and maximization
of the temperature uniformity along the surface of the graphite disk at thermal steady state. The
electrical efficiency, η , is, then, computed from the power density as follows:

η =

∫
Vg

ρ−1
g ω2∥Ȧ∥2 dV∫

Vg

ρ−1
g ω2∥Ȧ∥2 dV +

∫
Vc

ρ−1
c ω2∥Ȧ∥2 dV

, (4)

where: Vg and Vc are the volume of graphite disk and copper turns, respectively.
In practice, the inverse problem has been implemented as the simultaneously minimization

of the following two objective functions:

f1(x) = 1−η(x), (5)

f2(x) =

[
1−

(
N j(|Tj(x,γ)−Tgoal|< tol)

)
Nmax

]
, (6)

where: Nmax is the number of sampling points, Tgoal = 1150◦C is the temperature which should
be reached in the disk, and tol = 0.005 i.e. 0.5% is the admitted tolerance.

This way, f1 is the complementary value of the electrical efficiency and f2 measures the
temperature in-homogeneity in percentage.

In the optimization problem both functions (5) and (6) have to be minimized with respect to
design variables shown in Fig. 1 and Table 1: the objective (5) refers to the magnetic domain,
while (6) refers to the thermal domain; so, a multi-physics and multi-objective inverse problem
is originated. The direct and inverse problems are coupled in order to improve the geometry
design of the device in Fig. 1. The multi-physics problem includes the solution in two steps of
a magnetic problem and a thermal problem. The magnetic problem step evaluates the efficiency
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of the device and the power density, that is the source term of the thermal problem which in turn
computes the temperature on the disk surface, related to the second objective function. Electrical
efficiency and thermal in-homogeneity are the inputs of the optimization algorithm that generates
a new set of design variables vectors.

4. Optimization algorithms

In this paper, the comparison between different algorithms is explored. In particular, a new
application of a re-inspired algorithm i.e. biogeography-inspired optimization algorithm (BBO),
which was recently extended to the solution of multi-objective inverse problems [22–23], is pre-
sented.

On the other hand, in the class of evolutionary algorithms, the recently proposed SA-MNSGA
method, which showed good performance when solving optimization problems in electromag-
netics, is applied. The main principles behind the two algorithms are now summarized.

Each solution considered in a biogeography-inspired optimization algorithm is treated as
a habitat (design vector) composed of suitability index variables (SIV, design variables), and
each habitat exhibits a quality given by the habitat suitability index (HSI, objective function)
[30]. Remarkably, in contrast to GA-based algorithms, the original population is not discarded
after each generation, but it is progressively modified by means of two stochastic operators, i.e.
migration and mutation: migration improves the HSI of poor habitats by sharing features from
good habitats; in turn, mutation modifies some randomly selected SIV of a few habitats in view
of a better exploration of the ecosystem (design space) [31, 32]. In practice, at each generation
BBO exploits the HSI of each habitat based on its migration rate, while the emigration rate is set
to be complementary to immigration. This way, the HSI of each habitat is improved.

In particular, at each iteration, habitats are sorted from the best ones to the worst ones accord-
ing to the relevant value of the generalized fitness value. For each SIV of each habitat a random
event r j, such that 0 < r j < sup(I,E) with I maximum immigration rate and E maximum emi-
gration rate, is generated. Then value ri is compared with the corresponding immigration rate λi
of the considered habitat. If r j > λi then immigration occurs: the SIV considered in the current
ecosystem migrates to the next ecosystem, keeping the same location (Fig. 5).

In contrast, if r j < λi emigration occurs: the current SIV in the considered habitat (say the
ith habitat) goes extinct and the SIV of another habitat (say the kth habitat) takes the same SIV
position in the ith habitat of the next ecosystem. The kth habitat is selected depending on the
emigration rate and the SIV.

In the paper, the multiobjective version of the algorithm, already presented by the authors in
[33, 34], is applied. It is based on the definition of the generalized fitness, which takes into ac-
count simultaneously two or more objective functions by exploiting the concept of non-dominated
ranking of solutions in the objective space and crowding distance.

The Self-Adaptive MNSGA, SA-MNSGA, algorithm is a generalized version of the Mig-
ration-NSGA, MNSGA, algorithm [21]. Migration strategy applied to the NSGA-II introduces
the periodic insertion periodic of a ‘migrated’ population, with a new genetic heritage, in order
to modify the genetic heritage of the current population (see Fig. 6).



Vol. 67 (2018) New solutions to a multi-objective benchmark problem of induction heating 145

Fig. 5. Schemes of immigration and emigration events

Fig. 6. Flow chart of autiomatic MNSGA algorithm
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The first version of MNSGA foresees the periodic migration of a population with a given
number of individuals. In the Self-Adaptive MNSGA the occurrence of migration events are
based on front mobility. In practice, when the front moves substantially, each migration event
introduces a new population with a small number of individuals and the occurrence frequency is
low. In contrast, if the front is stable, migration events are more frequent and involve more indi-
viduals, up to the size of the initial population (e.g. Np = 20). Migration handling is performed
using the strategy described in [21, 22].

5. Results

The three optimization methods are run considering 20 individuals for the population size
and 100 generations as stopping criterion. The mutation index for BiMO is set to 0.08, for the
NSGA and SA-MNSGA mum = 2. The results are shown in Fig. 7.

Fig. 7. Optimization results: the starting points and the arrival points
for the three optimization algorithms applied are shown

The NSGA is able to find a good approximation of the Pareto front. Also the SA-MNSGA
is able to find a good approximation of the front. Both the methods are not able to discover the
approximation of the front in the range of about 40–90 for f2, while the BiMO covered better
this part of the front. Two end-point solutions A and B are described in Table 3 and Fig. 8.

Both the two end-points solutions show values of coil heights close to the maximum values.
The dimensions of the ferrite yoke of the two solutions are very similar. Moreover, the supplied
voltage is almost the same.
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Table 3. Design variables and objective function values for the two end-points of the approximated
Pareto front identified in Fig. 6

End-point h1 h2 h3 h4 h5 h6 h7 h8

A 59.8 58.4 60.0 60.0 60.0 59.1 58.3 55.5

B 59.4 57.8 45.2 60.0 60.0 56.2 57.1 45.0

h9 h10 h11 hf lf V f 1 f 2

A 56.5 59.0 58.3 20.1 3.26 235 0.0495 100

B 49.7 59.0 58.0 23.4 2.92 232 0.0511 21

(a) (b)

Fig. 8. Temperature distribution [◦C] for the two end-points A (a) and B (b) of the front obtained by NSGA,
shown in Fig. 7

6. Conclusions

The three optimization methods applied showed the capability to approximate very well the
Pareto front. Each method has its own characteristic which were shown by means of this inverse
problem. Hence, this optimization problem, which is multiphysics and multiobjective, is suitable
for testing optimization algorithms.
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