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Abstract. To account for the load sequence effect, damage fatigue models with nonlinearity in propagation and accumulation have been devel-
oped. This paper reviews five classical nonlinear fatigue models used to predict the life times of concrete under variable amplitude loadings. 
Experimental results from literature are used to validate the five classical prediction models. It can be found that Hilsdorf and Kesler model 
yields unsafe or conservative predictions, and the other four models are more suitable for predicting life times of concrete. In this paper, the 
author used a new nonlinear damage model based on the nonlinear continuum damage mechanics to predict fatigue life of concrete. The model 
considers fatigue limit, loading parameters, the unseparable characteristics for the damage parameter and the load sequence effect. The validity 
of the nonlinear fatigue damage model is checked against tests from literature.
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damage under variable amplitude loading [14]. Until the end of 
the last century, some researchers began to carry out relevant 
studies on fatigue behavior of concrete. Hilsdorf and Kesler [15] 
studied the fatigue strength of concrete subjected to repeated 
flexural stresses under various loading histories, showing that 
the fatigue behavior can be interpreted by variations of strength 
during a fatigue test due to the relief of shrinkage stresses and 
cumulative microcracking. Based on the continuum damage 
mechanism, Oh [16], Grzybowski and Meyer [17], Vega et al. 
[18] and Hamdy [19] proposed their own prediction models for 
fatigue life of concrete under various loading regimes.

Damage accumulation theory has been used in existing 
models, which can be mainly classified into two categories: 
linear accumulative damage and nonlinear accumulative 
damage. The Palmgren-Miner’s rule as a classical linear model 
is commonly used in the fatigue analysis. A linear damage evo-
lution is assumed and given by Di = Ni/NFi

. The linear damage 
evolution means that the relationship between damage D versus 
N/Nf is the same for all stress level. This does not reflect the 
reality. Consequently, a nonlinear accumulative damage theory 
was suggested. A damage variable representing the evolution 
of damage under the imposed condition must be selected. 
Some experimental research [10, 16, 18, 19] indicates that 
the maximum strain follows the same trend as evolution of 
damage in concrete. Strains were recorded for different stress 
levels and plotted versus normalized number of cycles. Three-
stage damage propagation was observed from the above exper-
imental results. There is a fast increase in maximum strain at 
stage 1, which is followed by the constant increase at stage 2. 
Stage 3 showed continuous increase in maximum strain till 
failure. Grzybowski and Meyer [17] defined the damage index 
as the ratio of dissipated energy to total dissipated energy till 
failure for a specific stress or strain level. Residual strength was 

1.	 Introduction

Much research was carried out to obtain the tensile properties 
of concrete by monotonic tensile loading [1, 2]. However, 
concrete structures are frequently subjected to cyclic loading 
in their service life [3, 4]. The accumulation damage on the 
concrete structure reduces its service life as the repetitions of 
the applied loading increase. It is essential to predict fatigue 
life of concrete in design and calculation of concrete structure 
[5, 6]. The investigations on fatigue performance of concrete 
under cyclic loading can date back to the beginning of 20th 
century. By applying probabilistic procedure, a relationship 
between probability of failure and number of cycles to failure 
at a specific stress level was obtained by cyclic compression 
test on concrete [7]. As specimen under uniaxial tension has 
simple stress distribution, many researchers [8‒11] have 
studied the fatigue behavior of plain concrete subjected to 
cyclic loading in uniaxial tensile loading. The effect of stress 
amplitude during the bending fatigue test was first reported 
by Ople and Hulsbos [12]. They found that as the stress am-
plitude increased, the number of cycles to failure decreased. 
Tepfers [13] concluded that the mechanism of fatigue is the 
same in both compression and tension by carrying out fatigue 
test on concrete specimen in both splitting and compression 
cyclic loading.

In practice, concrete structure is vulnerable to variable am-
plitude loadings. However, little is known of the fatigue be-
havior of concrete, as it is difficult to obtain the accumulation 
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also used as the damage parameter by some researchers [19, 
20]. Additionally, the number of cycles to failure for different 
stress levels is essential to predict the fatigue life of concrete 
under variable amplitude loadings. The relationships between 
number of cycles to failure and stress level have been obtained 
by regression analysis based on test data [9, 17]. Modified pre-
diction models have been proposed based on dissipated energy 
[21, 22]. The average dissipated energy was found to be a good 
estimator of fatigue life for fiber reinforcement concrete. Equiv-
alent cumulative damage theory was commonly used to predict 
the remaining life at a specific stress with previous loading his-
tories by many researchers [16, 17, 19].

This paper mainly reviews five existing nonlinear models 
which are most often used to predict the fatigue life of concrete 
under variable amplitude loadings. These models are evaluated 
by comparison of predicted results with the test data. Finally, 
a nonlinear damage cumulative model which takes both non-
linear damage evolution and load sequence into account is pro-
posed. It has been validated by comparing the predicted results 
to test data.

2.	 Existing prediction models

For convenience, fatigue damage is expressed with a suitable 
parameter such as D. The damage parameter must satisfy two 
boundary conditions: D = 0 with an initial non-damage state, 
and D = 1 represents the specimen fails completely under cy-
clic loading. In order to study the fatigue behavior of concrete 
under variable amplitude loading, the damage evolution must be 
obtained firstly under constant amplitude loading. At the same 
time, the relationship between fatigue life Nf and a single stress 
level S was necessary to predict the fatigue life of concrete.

Now some models proposed in previous literature are re-
viewed and evaluated by comparing the prediction of fatigue 
life to the experimental data.

2.1. Oh model [16]. Total strain has been selected to describe 
the evolution of damage. A three-stage damage evolution phe-
nomenon was observed and described using a cubic equation 
expressed as:  

	 D = a1x3 + a2x2 + a3x,� (1)

in which D represents the damage, x = n/NF represents the 
cycle ratio at a given stress level, and a1, a2 and a3 can be 
determined by boundary conditions.

It is assumed that damage produced by ni cycles of operation 
at any stress level Si is exactly equivalent to n1 cycles of stress 
level S1, one may write:

	 nie = ni
Si
S1

p
� (2)

in which nie is the number of operation at reference stress level 
S1 to produce damage equivalent to ni actual cycles at stress 
level Si.

The damage ratio is then defined as:

	 Di =  nie
N1

.� (3)

The fatigue failure occurs when the summation of these 
damage ratios equals unity:

	 ∑Di = D1 + D2 + .... + Di = 1.� (4)

The remaining life nir at the stress level Si may be deter-
mined as:

	 nir = (N1 ¡ n1)
S1
Si

p
 ¡ .... ¡ ni ¡ 1

Si ¡ 1
Si

p
� (5)

where, the index p was determined by the experimental data in 
the study, and was equal to 18.21.

2.2. Grzybowski and Meyer model [17]. The damage evolu-
tion of concrete under constant stress level can be formulated 
by the following expressions:

	
D = (1.7 ¡ S)n–	 for n– ∙ 0.6

D = n– 1.6S	 for n– > 0.6
� (6)

in which, n– = n/NF
 is the normalized number of cycles, n is the 

applied number of cycles. Eq. (6) allows for predicting damage 
accumulation for variable amplitude loadings with known or as-
sumed amplitude spectrum. This can be achieved by converting 
the number of cycles ni with a stress level Si to an equivalent 
number of cycles ni* with another stress level Sj, by equating 
the respective accrued damage, i.e.

	 Di = 
ni

Nfi

1.6Si

 = 
nj

Nf j

1.6Sj

 =  Di
*� (7)

where, Di is the damage due to ni cycles with constant stress 
level Si, Di

* is the damage due to ni
* cycles at a constant stress 

level Sj.
Equation (7) can be solved for ni

*, the equivalent number 
of cycles at stress level Sj, producing the same damage as ni 
cycles at stress level Si.

	 ni
* = 

ni

Nfi

Si
Sj Nf j for n– > 0.6 .� (8)

2.3. Vega model [18]. Vega [18] defined a damage parameter 
Di = (εi ¡ ε0)/(εult ¡ ε0) based on the continuum damage me-
chanics. The damage can be expressed as a function of the max-
imum and minimum stresses as the following general formula:

D = α0σmax
2 + α1σmaxσmin + α2(σmax ¡ σmin),� (9)

where D is damage at applied number of cycles ratio n; σrmax 
is the maximum relative stress equal to σmax/ft > 0; σr min is the 
minimum relative stress equal to σmin/ft ¸ 0; σmax is the applied 
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maximum stress; σmin is the applied minimum stress; ft is the 
tensile strength of concrete. The coefficients α0, α1, and α2 are 
evaluated by fitting the experimental damage curves as shown 
in literature [18].

To calculate the accumulated damage under variable ampli-
tude loading, the damage evolution curve under constant stress 
must be given previously. As shown in Fig. 1, the remaining 
life at stress level S2 can be expressed as:

	 nr =  n2
Nf2
£Nf2,� (10)

where, nr is the remaining life of concrete at stress level S2,  
n2/Nf 2

 is the remaining cycle ratio for stress level S2.

2.4. Hamdy model [19]. As in Vega model, the relationship 
between total strain variation and the cycle ratio is selected 
to represent the damage evolution of concrete under repeated 
loading. The damage evolution can be expressed as follows:

	 D =  f (D, σmax, σmin, N)� (11)

where, D is the damage variable; σmax is the maximum stress; 
σmin is the minimum stress; N is the number of cycles at applied 
stress level.

The formulation for the S ¡ Nf curve is obtained by fitting 
test data that related fatigue life to stress level, and it is ex-
pressed as follows:

	 S = a + blog(Nf)� (12)

where, Nf is number of cycles to failure at a given stress level S; 
a and b are empirical coefficients.

The damage evolution curves and S ¡ Nf curve equation 
were stored in the computer program for further use in the 

life prediction process. Fatigue life under variable amplitude 
loading can be expressed as follows:

N =  N
Nf 1

£Nf1 +  1 ¡  N
Nf 2

£Nf2, 2-levels� (13)

N =  N
Nf 1

£Nf1 +  N
Nf 2

£Nf2 +

N +  1 ¡  N
Nf 3

£Nf3, 3-levels
� (14)

where, N/Nf
 is partial life, and Nf 1, Nf 2 and Nf 3 are the fatigue 

life at stress levels of S1, S2 and S3.

2.5. Hilsdorf and Kesler model [15]. According to the Miner 
rule, if concrete is subjected to multi-amplitude loading, it fails 
when M = ∑n

i=1
Ni/NFi

 = 1. At first, the evolution of damage 
should be predicted accurately. Hilsdorf and Kesler [15] as-
sumed that the damage after n1 cycles at a stress level S1 can 
be expressed as

	 d1 =  N1
Nf1

a1

� (15)

where both fatigue life Nf 1 and a1 are functions of stress level 
and failure occurs if d1 = 1. It can be shown that with these 
assumptions, the failure criterion for specimens subjected to 
two-amplitude loading is:

	 N2 = Nf2

∙
1 ¡  N1

Nf1

A
¸
� (16)

where, A = a1/a2
, a1, a2 are coefficients of damage function for 

stress level S1 and S2.

	 A =  a1
a2

� (17)

When A = 1, (16) is identical to the Miner rule. If a proper 
value of exponent A is chosen, this model will probably predict 
the remaining fatigue life of concrete under stress level S2.

2.6. Evaluation of existing models. To evaluate these five 
models in predicting fatigue life of concrete under variable 
amplitude loading, comparison of predicted results with the 
test data is presented in this section. Test data come from other 
literatures [16, 19, 23]. The details of tests are shown in Table 1. 
Two-stage and three-stage increasing and decreasing load were 
performed by Oh [16]. Hamdy [19] carried out bending fa-
tigue test on concrete with two-stage increasing and decreasing 
loading with different pre-assigned value of damage (50% and 

Fig. 1. Calculated damage evolution functions of concrete under 
variable amplitude loading

D
am

ag
e

n/ Nf

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

 S1
 S2

n2/Nf2n1/Nf1



160

Y. Chen, X. Chen, and J. Bu

Bull.  Pol.  Ac.:  Tech.  66(2)  2018

75% of total damage). Data [23] tested on high strength con-
crete under cyclic uniaxial compression load with different fre-
quencis and stress ratios (ratio of minimum stress to maximum 
stress). All test results represent nonlinear behavior of concrete 
regardless of the loading regime.

Hilsdorf and Kesler model has the simplest form and is 
convenient for predicting fatigue life of concrete. However, 
the damage variable has not been defined in this model and 
the damage evolution has not been given. It can be seen from 
eq. (16), the remaining cycle ratio N2/Nf 2 is always less than 
unity when a two-stage loading test is performed on specimen. 
However, for some test results the value of N2/Nf 2 is larger than 
unity have been observed. A similar inadequacy occurs when 
the model is applied to the specimen subjected to three- or 
multi- stage loading.

Oh model is developed based on a lot of test data. Cubic 
functions are developed to represent the evolution of damage in 
concrete for different stress levels firstly. A mean value for the 
total fatigue life of concrete under repeated constant stress level 
is selected as the fatigue life. Finally, a mathematical model is 
developed based on the equivalent cumulative damage theory, 
in which an index p is introduced. The representative value of 
index p is obtained by regression analysis for test data by Oh 
and needs further validation. Besides, the authors consider that 
the statistical scatter should be analyzed since the test data show 
larger discreteness.

Hamdy model used splines described the evolution of 
damage under any constant amplitude loading. Similar to Oh 
model, damage evolution with cycle ratio and relation between 
fatigue life versus stress level S » NF are necessary to develop 
the fatigue life model of concrete under various amplitude 
loading. To obtained reliable test result S » NF, a group of 
tests at each stress level have been carried out on concrete. In 
general, a mean value of the groups is used in linear regression 
analysis. Weibull analysis has been performed on the repeated 
tests at each stress level to get the mean value of each group.

Grzybowski & Meyer model defined damage index as the 
ratio between the dissipated energy so far to the total dissipated 
energy till failure. The damage evolution curve was described 
by a piecewise function. A logarithmic expression was devel-
oped to predict the fatigue life of concrete. This model intro-
duced an equivalent number of cycles ni

* at any stress level Sj, 
which produce the same damage as ni cycles at the reference 

stress level Si. It is not convenient for calculating as the damage 
evolution function is piecewise. This model has never been 
validated by test data, it should be further examined.

Three-stage damage evolution was summarized by Vega. 
The damage index is expressed as a function of the maximum 
and minimum stresses. A relationship between total numbers of 
cycle and applied stress level is developed based on test data. 
The damage evolution curves for different stress levels should 
be plotted in the same diagram. Equivalent damage accumula-
tive theory was used in this model, which means that when the 
applied stress converts from a stress level to the other stress 
level the damage remains constant at the shift point.

In summary, the existing models gave a damage evolution 
function and the relationship between total number of cycle to 
failure and applied constant stress level at first. And then pre-
dicted the remaining fatigue life of partially damaged concrete 
at a given stress level based on the equivalent damage accumu-
lative theory. The major differences between those models are 
the damage evolution function with cycle ratio and the S » NF. 
The remaining number of cycle can be expressed by a general 
expression as follow:

	 Nre = kNFn� (18)

in which, Nre, NFn represent the remaining life and the total 
number of cycles to failure at the last block applied stress level, 
respectively. k is a simplified coefficient, which is a function 
of load history and depends on the previous applied load stress 
level, the existing partial damage and some other parameters. 
k is directly related to the evolution of damage and total cycles 
to failure for each given stress level. The evolution of damage 
and S » NF are both semi-empirical, as well as the parameter k.

Comparison of predicted results with test data has been 
made and shown in Table 2. To directly evaluate the prediction 
models, both correlation coefficients and standard deviations 
are listed in Table 2. Hisdolf and Kesler model is a simple ex-
ponent function. The correlation coefficient between predicted 
results and test data is 0.72, which demonstrates the model has 
bad prediction efficiency. The standard deviation of Hilsdorf 
model is much larger than the other four models, which fur-
ther demonstrates the prediction results of this model deviate 
far the test data. The correlation coefficients of the other four 
models are close to each other, while the standard deviations 

Table 1 
Details of test from previous researchers

Researcher Concrete type Specimen size Loading type f  

(Hz)
Specimens

Jau (1986) High Strength ϕ4£8 in Compression 3 161

Oh (1991) Normal 100£100£500 mm Four-point flexural 4.17 80

Hamdy (1997) Normal 4£4£48 in Bending 5 36

Hisdorf (1966) Normal 6£6£60 in Bending 7.5 185

Grzybowski and Meyer (1993) Concrete with and without fiber ϕ152£304 mm Compression 1 144
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are different. The standard deviation of Vega model is least 
among the five models, and the correlation coefficient is the 
largest, which both demonstrate the Vega model has the finest 
goodness of fit. Except Hilsdorf and Kesler model, the other 
four models gave their own damage variables and the evolution 
of damage with cycle ratio was expressed by formulations or 
curves. Nonlinear in propagation and accumulation were con-
sidered in the models.

3.	 Nonlinear damage model

For the uniaxial problems, the fatigue damage is defined as 
originally proposed by Chaboche [24], by the following dif-
ferential equation:

	
δD = [1 ¡ (1 ¡ D)β + 1]α(σmax, σmed)

δD = 
∙

σa
M0(1 ¡ bσmed)(1 ¡ D)

β̧
δn

� (19)

where β, M0 and b depend on material, σmax and σmed are 
respectively the maximum and the mean stress of cycle and 
σa = σmax ¡ σmed; the exponent α depends on the loading 
(σmax, σmed) which results in non-separability between damage 
and loading. In this study, only oscillating stress has been con-
sidered, so the Eq. (19) becomes:

	 δD = [1 ¡ (1 ¡ D)β + 1]α
∙

σa
M0(1 ¡ D)

¸β
δn� (20)

The expression of α proposed by Chaboche [24] is:

	 α = 1 ¡  1
H

*
σa ¡ σf
σu ¡ σa

+

� (21)

where symbol h i is defined as hxi = 0 if x < 0 and hxi = x if 
x > 0. σf is the fatigue limit, σu is the ultimate static strength of 
material, and H is parameter to be experimentally determined. 
In quasi-brittle materials like concrete there is not the fatigue 
limit, the expression can be modified as:

	 α = 1 ¡  1
H

σa
σu ¡ σa

� (22)

The exponent α is dependent on damage evolution of con-
crete. Damage is hard to be measures but it can be linked to 
some variable representing the fatigue degradation phenom-
enon. In this study, the exponent α can be determined by the 
experimental data from previous investigations. The main ob-
jective of this section is to build a nonlinear damage model to 
predict fatigue life of concrete.

Integrating the Eq. (20) in a generic instant before failure 
(D < 1, and n < Nf) the damage D can be expressed as a func-
tion of n/NF:

n =  1
1 ¡ α

1
1 + β

∙
σa
M0

¸
[1 ¡ (1 ¡ D)1 + β]

1 ¡ α
� (23)

) D = 1 ¡ 
∙
1 ¡  n

Nf

1/(1 ¡ α) 1̧/(1 + β)

� (24)

Table 2 
Comparison of the predicted fatigue life from these five traditional models to experimental data tested in 1986‒1997

Tested 
by

Load stage Test  
data 
Nf

Predicted Nf

S1 S2 S3
n1
Nf1

n2
Nf2

Oh Hamdy 
Grzybowski  
and Meyer 

Hilsdorf  
and Kesler 

Vega 

Oh  
(1991)

0.75 0.85 0.20 6670 6695 6262 6069 6302 6313

0.85 0.75 0.20 13641 13616 16791 19842 15854 16016

0.65 0.75 0.85 0.10 0.10 38654 37594 37176 36878 37118 37176

0.85 0.75 0.65 0.10 0.10 254895 172509 175205 277669 22280 215050

Hamdy  
(1997)

0.8 0.85 0.04 1802 1790 2402 2112 2123 2120

0.85 0.8 0.11 39002 38511 34244 34003 30620 30202

0.8 0.85 0.34 12195 12191 12270 12430 12475 12462

0.85 0.8 0.56 23464 23107 24016 17013 14706 15103

Jau  
(1986)

0.7 0.9 0.27 97020 97019 95852 95827 95859 96852

0.7 0.9 0.69 253000 253005 250044 250025 250073 250045

0.8 0.9 0.15 880 880 540 533 547 542

0.9 0.7 0.50 149900 149749 142406 291874 74365 139834

0.9 0.8 0.42 1820 1763 3143 6683 1877 3133

0.8 0.9 0.09 3454 4060 2104 2089 2054 2204

0.8 0.9 0.31 6420 7994 6544 6491 6454 6510
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For two-stage loading, the specimen is firstly loaded at 
a stress amplitude of σa1 for n1 cycles and then at a stress am-
plitude of σa2 for n2 cycles up to failure. Use the continuum 
damage mechanism, the partial damage caused by n1 cycles 
at σa1 should be the damage caused by N2 cycles at σa2. The 
equivalence damage can be expressed as:

1 ¡ 

∙
1 ¡  n1

Nf1

1
1 ¡ α1

¸ 1
1 + β

 = 1 ¡ 

∙
1 ¡  N2

Nf2

1
1 ¡ α1

¸ 1
1 + β

� (25)

)  N2
Nf2

 =  n1
Nf1

(1 ¡ α2)/(1 ¡ α1)
� (26)

The remaining life n2 at stress σa2 can be expressed as:

	 n2
Nf2

 = 
∙

1 ¡  n1
Nf1

(1 ¡ α2)/(1 ¡ α1)
¸

.� (27)

In the above damage evolution model, the expression for α 
is a monotonically decreasing function of stress, and take the 
load sequence into account. In fact, it obviously can be seen 
that in two-stage decreasing load, i.e. σa1 > σa2, from Eq. (22), 
it can be obtained that:

	 1 ¡ α2
1 ¡ α1

 < 1� (28)

	 n2
Nf2

  = 
∙

1 ¡  n1
Nf1

(1 ¡ α2)/(1 ¡ α1)
¸
 < 1 ¡  n1

Nf1
.� (29)

Therefore, n1
Nf1

 +  n2
Nf2

 < 1.

This model considered the load interaction effect. It is il-
lustrated that in the case of decreasing loading the accumu-
lated damage is less than unity while in the case of increasing 
loading the damage accumulation value is more than unity when 
it failures. This is correspondent with experimental results from 
Oh [16] and Vega [18].

In the case of multilevel loading, it is easy to get the con-
tinuum damage function through sequential accumulation cal-
culation by introduce an auxiliary variable V:

Di = 1 ¡ 

∙
1 ¡  Ni + ni

Nfi

1
1 ¡ αi

¸ 1
1 + β

 = 1 ¡ [1 ¡ Vi]
1

1 + β � (30)

in which

	
Vi =  Ni + ni

Nfi

1/(1 ¡ αi)

 = 

Vi = 
∙
1 ¡ (1 ¡ Di ¡ 1)

1 + β 1̧ ¡ αi
 +  ni

Nfi

1/(1 ¡ αi)

.
� (31)

In the case of multilevel condition the exponent α is equal 
to 1 and Eq.(22) becomes:

	 δD = [1 ¡ (1 ¡ D)β + 1]
∙

σa
M0(1 ¡ D)

¸β
δn� (32)

Integrating it and bringing in an auxiliary variable W, the 
damage expression becomes:

	 Di = 1 ¡ [1 ¡ Wi ]
1/(1 + β)

� (33)

where

	 Wi  = 
∙
1 ¡ (1 ¡ Di ¡ 1)

1 + β
¸
e(ni/Ni)(1 + β)� (34)

and

	 Ni  = (M0/σai)
β� (35)

4.	 Verification of the nonlinear model

The nonlinear damage model considers the mean stress, the 
unseparable characteristic for the damage, and the effect of load 
sequence in concrete subjected to variable amplitude loading 
and some significant loading parameters. Table 3 gives the com-
parison of predicted fatigue life by the nonlinear damage model 
with test data. It can be seen that the prediction is safe and 
more conservative than the experimental results. The correlation 
coefficient is 0.94 and the standard deviation is 29749, and it 
can be found that the goodness of fit is a little worse than the 
above four models while the fitting degree is sufficient and is 
better than Hilsdorf model. In the case of three-stage loading 
condition, the predicted results have more error than that in two-
stage loading, which indicates that the load interaction effect 
is not evaluated exactly and needs further study. The experi-

Table 3 
Comparison of results predicted by the nonlinear damage model to 

experimental data

Tested by Test data Nf Predicted results Nf

Oh (1991)

6670 6290
13641 16134
38654 35658

254895 183507

Hamdy (1997)

1802 2120
39002 31054
12195 12465
23464 15100

Jau (1986)

97020 95859
253000 250075

880 623
149900 60370

1820 3368
3454 2104
6420 6527
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mental data tested on high strength concrete by Jau [23] took 
the loading frequency into consideration, but it is neglected in 
this nonlinear damage model. Compared to the other empirical 
damage models, this model introduced a parameter α which 
results in unseparable between damage and loading history. The 
parameter α is a function of static strength, the maximum and 
the mean stress. In some extent, the nonlinear damage model 
shows a good agreement with the experimental results.

5.	 Conclusions

This paper reviewed five existing methods to predict the fatigue 
life of concrete under variable amplitude loading and then gave 
a new nonlinear damage model based on the continuum damage 
mechanism. The main conclusions can be drawn as follows.

The nonlinearity both in propagation and accumulation of 
damage in concrete are taken into consideration in the classical 
prediction models. The evolution of damage under constant 
stress level and relation between fatigue life and the applied 
stress level are necessary to predict the fatigue life of concrete 
under variable amplitude loading. The equivalent damage ac-
cumulative theory is generally used in those models. Except for 
the Hisdorf model, the predicted results from other four models 
show good agreement with test data.

A new nonlinear damage model is used to predict the fa-
tigue life of concrete under sequential loading. In the nonlinear 
model, parameter α is introduced, which is a function of ulti-
mate strength, maximum and mean stress. It considers the load 
sequence effect and nonlinear damage mechanism in concrete 
subjected to variable amplitude loading. The predicted results 
show good agreement with test data.

Acknowledgements. The research is based upon work support by 
the National Key Research and Development Program of China 
(Grant No. 2016YFC0401907), the Natural Science Foundation 
of Jiangsu Province (Grant No. BK20150820), the China Post-
doctoral Science Foundation (Grant No. 2015M571656), founda-
tion of Jinling Institute of Technology (Grant No. jit-n-201303) 
and National Natural Science Foundations of China (Grant Nos. 
51579153, 51679150).

References
	 [1]	 M.S. Daghash, E.M. Soliman, U.F. Kandil, and M.M.R. Taha, 

“Improving impact resistance of polymer concrete using CNTs”, 
International Journal of Concrete Structures and Materials, 
1‒15, (2016).

	 [2]	 J. Lee and M.M. Lopez, “An experimental study on fracture 
energy of plain concrete”, International Journal of Concrete 
Structures and Materials, 8(2), 129‒139, (2014).

	 [3]	 X.D. Chen, S.X. Wu, and J.K. Zhou, “Compressive strength of 
concrete cores with different lengths”, ASCE Journal of Mate-
rials in Civil Engineering, 26(7): 04014027, (2014).

	 [4]	 W. Li, Z. Jiang, Z. Yang et al., “Interactive effect of mechanical 
fatigue load and the fatigue effect of freeze-thaw on combined 
damage of concrete”, Journal of Materials in Civil Engineering, 
(2005).

	 [5]	 X.D. Chen, S.X. Wu, and J.K. Zhou et al., “Effect of testing 
method and strain rate on stress-strain behavior of concrete”, 
ASCE Journal of Materials in Civil Engineering 25(11), 
1752‒1761, (2013).

	 [6]	 X.D. Chen, S.X. Wu, and J.K. Zhou, “Quantification of dynamic 
tensile behavior of cement-based materials” Construction and 
Building Materials, 51, 15‒23, (2014).

	 [7]	 R. Lenschow, “Long term random loading of concrete structure”, 
Materials and Structures, 17, 1‒27, (1980).

	 [8]	 A. D. Morris and G. G. Garrett, “A comparative study of the 
static and fatigue behavior of plain and steel fiber reinforced 
mortar in compression and direct tension”, International Journal 
of Cement Composites and Lightweight Concrete, 3(81), 73‒91, 
(1981).

	 [9]	 M. Saito and S. Imai, “Direct tensile fatigue of concrete by the 
use of friction grips”, ACI Journal Proceedings, 80(5), 431‒438, 
(1983).

	[10]	 H.A.W. Cornelissen, “Constant-amplitude tests on plain con-
crete in uniaxial tension and tension-compression. Technical 
Report”, Stevin Laboratory, Delft University of Technology, 
Delft (1984).

	[11]	 B. Mu, K. Subramaniam, and S. Shah, “Failure mechanism of 
concrete under fatigue compressive load”, ASCE Journal of Ma-
terials in Civil Engineering, 16(6), 566–572, (2004).

	[12]	 F.S. Ople, and C.L. Hulsbos, “Probable fatigue life of plain 
concrete with stress gradient”, ACI Journal Proceedings, 63(1), 
59‒80, (1966).

	[13]	 R. Tepfers, “Tensile fatigue strength of plain concrete”, ACI 
Journal Proceedings, 76(8), 913‒934, (1979).

	[14]	 J. Kuźniewski, Ł. Skotnicki, and A. Szydło, “Fatigue dura-
bility of asphalt-cement mixtures”, Bull. Pol. Ac.: Tech. 63(1), 
107‒111, (2015).

	[15]	 H. K. Hilsdorf and C. E. Kesler, “Fatigue strength of concrete 
under varying flexural stresses” ACI Journal Proceedings, 
63(10), 1059‒1076, (1996).

	[16]	 B. H. Oh, “Cumulative damage theory of concrete under vari-
able- amplitude fatigue loadings”, ACI Materials Journal, 88(1), 
41‒48, (1991).

	[17]	 M. Grzybowski, and C. Meyer, “Damage accumulation in con-
crete with and without fiber reinforcement”, ACI Materials 
Journal, 90(6), 594‒604, (1993).

	[18]	 I. M. Vega et al., “A non-linear fatigue damage model for con-
crete in tension”, International Journal of Damage Mechanics 
4, 362‒379, (1995).

	[19]	 Hamdy, U.M.A. “A damage-based life prediction model of con-
crete under variable amplitude fatigue loading. Ph.D. thesis, 
University of Iowa, (1997).

	[20]	 S. Erpolat et al., “A study of adhesively bonded joints subjected 
to constant and variable amplitude fatigue”, International 
Journal of Fatigue, 26(11), 1189–1196, (2004).

	[21]	 E. Aramoon, “Flexural fatigue behavior of fiber-reinforced con-
crete based on dissipated energy modeling”, Ph.D. Thesis, Uni-
versity of Maryland College Park, (2014).

	[22]	 H. Li and B. Yu, “Fatigue performance and prediction model 
of multilayer deck pavement with different tack coat materials. 
ASCE Journal of Materials in Civil Engineering, 26(5), 872–877, 
(2014).

	[23]	 C.W. Jau, “Fatigue of high strength concrete”, Ph.D. thesis, Cor-
nell University, (1986).

	[24]	 J.L. Chaboche, “Continuum damage mechanics-a tool to describe 
phenomena before crack initiation”, Nuclear Engineering and 
Design 64, 233‒47, (1981).


