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In the present work the results of the investigations on dead zone formation conditions in catalyst
pellet are discussed. A new, simple method of determining the types of kinetic equations for which
such a zone can appear was developed on the basis of simple mathematical transformations. It was
shown that: (i) pellet geometry has no influence on necessary conditions of the origination of dead
zone (ii) only driving-force term (in the sense of Langmuir-Hinshelwood-Hougen-Watson kinetic
approach) decides if a dead zone is formed. A new algorithm which allows fast and precise evaluation
of critical Thiele modulus ®,; (in a catalyst pellet for ® > ®,;, the dead zone appears) was proposed
and tested.
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1. INTRODUCTION

Catalytic reactions are a substantial part of chemical industry. It should be noted that both diffusion of the
reactants into the catalyst pellet and the intrinsic reaction rate affect the overall rate of the process. Typical
examples of the influence are as follows: methane steam reforming, hydrogenation of benzene to cyclo-
hexane (an intermediate in production of nylon), oxidation of sulfur dioxide (sulfuric acid manufacture),
and many other important petrochemical reactions (Jayaraman and Doraiswamy, 1983).

A heterogeneous catalysis is not the only field where the rate of a process is modified by diffusional mass
transfer. Other examples of the mentioned processes, i.e. gasification of charcoal, biochemical reactions
with enzymes or cells immobilized on porous particles, mass transfer in solid-oxide and proton exchange
membrane fuel cells can be easily found in literature (Azimi and Azimi, 2015; Bar-Ziv et al., 2001; Cas-
caval et al., 2012; Palazzi et al., 2001; Zhang et al., 2014).

If internal diffusion is much slower than reaction rate, the concentration of a reactant inside a pellet
decreases rapidly. For sufficiently strong diffusional limitations (when the Thiele modulus is large), the
concentration in the pellet center can even drop down to zero — a zone without reaction (the so called
“dead zone”) appears in a pellet.

Although a steady-state process of reaction and diffusion in porous catalysts was described in the 1930s
(Thiele, 1939), the idea that the mentioned zone could form in catalyst center was first proposed in early
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1950s (Wheeler, 1951), and next studied more extensively by Aris and Temkin (Aris, 1975; Temkin, 1975).
Except for a few articles (Fedotov et al., 1985), the ‘dead zone’ concept was completely disregarded in

the next years. However, the problem has recently become the subject of further investigation (Andreeyv,
2013; York et al., 2011).

If a dead zone occurs, a catalyst pellet cannot be fully utilized inevitably resulting in efficiency of a
catalytic process decrease. To prevent this, a chemical process should be rerun at different operation con-
ditions (e.g. at lower temperature) or the pellet should be designed in a different way (e.g. smaller pellet
radius (Thiele, 1967)).

Moreover if a dead zone occurs, the mathematical description of the process is more complicated. In this
case a model with other boundary conditions must be considered. York et al. (2011) showed that using
improper boundary conditions can cause large errors. The proper “dead zone” model is presented in the
next section.

The task is then to predict whether or not such a zone does occur in a catalyst. Unfortunately, the conditions
of dead zone formation are still not fully formulated. Depending on the type of kinetic equation a dead
zone could appear (e.g. for the power-law type) or not (e.g. for the Michaelis—Menten type). The necessary
conditions of a dead zone formation are present in literature for many types of kinetic equations (Andreeyv,
2013; Fedotov et al., 1985; York et al., 2011). Satisfying them may not be sufficient to the dead zone
formation — diffusional limitations must be sufficiently large i.e. the Thiele modulus should be larger
than the critical Thiele modulus ®.,;; (P..;; is the Thiele modulus value for which concentration in the
pellet centre decreases to zero). Sufficient conditions, more interesting from a practical point of view,
are available only for few simple cases: for the simplest reaction (A—R) given in (Garcia-Ochoa and
Romero, 1988), and for more complex cases (e.g., consecutive parallel reaction) presented by Andreev
(2013). One can conclude that, in many practical cases, the sufficient conditions for dead zone formation
are unavailable.

In this article, a new, simple method of specifying the necessary conditions for the dead zone formation
in a catalysts pellet of the various geometries is presented. The impact of the pellet geometry and adsorp-
tion/temperature was examined. Also, in present paper a new, precise algorithm enabling evaluations of
the critical Thiele modulus was proposed and tested.

2. CONDITIONS OF DEAD ZONE FORMATION

2.1. Mathematical background

The dimensionless mass-balance equation of the steady-state process of diffusion with a chemical reaction
in a catalyst pellet has a form:

1d /[, dc 2
- .~ )| =®*-R 1
x% dx <x dx) (c) M
RIZ) ) R(Cs) . . . . . N . .
where ® = D is the Thiele modulus, R(c) is a dimenssionless kinetic function and s a geometry

parameter (& =0 slab pellet, @ = 1 cylindrical pellet, & = 2 spherical pellet). If the external mass transfer
limitations can be neglected, boundary conditions could be written as follows:

a) dead zone is not formed (® < P,;)

(1) =1 2)
dc
i 3)
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b) dead zone is formed (D > ®,;)

c(1)=1 “4)
c(x0) =0 3)
dc
a x=x0 -0 (6)

where x0 is a dead zone-end coordinate.
If the Thiele modulus & is equal to P, then x0 is equal to 0, and both models become the same.

If ®.,;; — o, for some kinetic functions, the dead zone does not form.

d
Multiplying both sides of Eq. (1) by 2 - x>* - d—c leads to:
b

dc d d d
2.xa.d;‘.61x<xa.C>:2.¢2.x2(x.R(c).C (7)

Equation (7) can be easily transformed to:

d [ , dc\* , dc
- L =2.®%° . x** . R(c) - — 8
dx [(x dx> ] * (c) dx ®
and then:
de\?
d[(xa~> ] =2-®% ¥**.R(c)-dc )
dx
The integration of Eq. (9) within the limits from x0 to x and from O to c, respectively, gives:
dc\> )
<x°’ . c) = 2-CI>2-/x2a R(c)dc (10)
dx
0
and then:
c
/xm -R(c)dc
dc 0
Z =2\ 2 _ 11
dx x2o (in

The separation of variables in Eq. (11) and integration from x0 to 1 and from O to 1, respectively, yields:

1

V3-(1-x0)= [ de (12)
| [P REe)de
0
()

where x(c) is the concentration profile in the implicit form.

For x0 = 0 and ® = ®,,;, Eq. (12) becomes:

1

\6' q)crit = / - de (13)
| [ea(oPe RGe)de
0
[xerir (€)]2*
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where x.(c) is a critical concentration profile in the implicit form. Calculating the critical Thiele modulus
from Eq. (13) is not simple. For a = 1, 2, the implicit critical concentration profile should be known. There
will also appear difficulties in the analytical determination of the integrals. The analysis of Eq. (13) leads
to the following conclusion: if any of the integrals in Eq. (13) is divergent, the dead zone does not appear
and &, — oo. Therefore, the convergence of both integrals in Eq. (13) can be regarded as a necessary
condition for dead zone formation. A more detailed description of this problem for slab geometry was
presented elsewhere (Krdl and Szukiewicz, 2013).

2.2. Necessary conditions of dead zone formation

The convergence of both integrals in Eq. (13) could be examined by a comparison test (Leja, 1976). To
utilize this test, let us define:

I :/[xcr,-t(c)]za~R(c)dc (14)
0
1 d
L= / = (15)
0 / eeri (€)]2% - R(c)de
0
[xcr,v,(c)]w
Lip :/R(c)dc (16)
0
1
by = / (17)

The integrals I, I are convergent if and only if the integrals /;,, I, are convergent, respectively. The
convergence of the integrals /1, and I, defines the necessary conditions of dead zone formation. Thus,
examining the convergence of the integrals /; and I, is therefore to examine the convergence of integrals
I, and b,. Interestingly, the integrals 1, and I, are identical with those studied for catalyst pellets of
slab geometry (Kré6l and Szukiewicz, 2013). It follows then that the necessary conditions of dead zone
formation for all shapes of pellets are the same. The necessary conditions for the most popular kinetic
functions may be received. The data are collected in Table 1(kinetic equations are presented in dimension-
less form).

The analysis of the results presented in Table 1 reveals that both thermal and adsorption terms in the
kinetic equations have no influence on the necessary condition of dead zone formation. The conditions
valid for isothermal power-law and Langmuir-Hinshelwood kinetics agree with the previous results pub-
lished in literature (Fedotov et al.,1985; Garcia-Ochoa, 1988; York et al., 2011). It should be noted
that our investigations have extended the conditions for the two-reagent reaction reported by Andreev
(Andreev, 2013). The method discussed here is much simpler and more precise than that available in
literature.
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Table 1. Necessary conditions of dead zone formation for any pellet geometry

The dimensionless kinetic rate law Necessary condition
Power law model R(c) =" —l<n<l1
1+k)-
Monod model R(c) = (];:_)C dead zone does not occur
c
14+k)-c"
Moser model R(c) = a+h-c —l<n<l1
k+c"
1+ky)-
Michaelis-Menten model R(c) = (;—_:l)c dead zone does not occur
m+c
Langmuir-Hinshelwood model R(c) = Ch el —-l<n<l1
(14+k-c)m
B-(1-c)
R(c) =c,ex —_—
Power law model (c) = cn p(y 1+B-(1-¢) l<n<i
for non-isothermal reaction B —AH-D-¢g _ E,
1, 0 1T R, T,
Power law model R(c) = (c-1)"exp <},_ B-(1—c) )
for non-isothermal reaction 1+p-(1-c) —l<n<l1
under elevated pressure t=14+B-(1-c)

* dead zone occurs by
vanishing of concen-
tration of compound
AW<1and —1 <

VAA + vgB — v C n<l

Power law model R(c) = -en * dead zone occurs by
for reaction with rate . A "B . Van}shln,cgf (l))f (l:loncen—
dependent on concentration R(c)=c4 - (1=W-(1—cqa)) tration of both com-
f two components Dy vy C pounds W = 1 and

0 p W:DiA.iA.CAJ —l<n+m<l1
B VB OBy e dead zone occurs by
vanishing of concen-
tration of compound B
W>1land -1 <m<

1

2.3. Sufficient conditions of dead zone formation — method of ®.,;; evaluation
As noted above, the values of the critical Thiele modulus are only available for the simplest case (isother-
mal power-law type kinetic, non-isothermal zero order power-law type kinetic (York et al., 2011)), so it
is purposeful to develop some efficient methods to calculate it for more complex cases. The following

algorithm of calculations is proposed:

d
The multiplication of Eq. (1) by 2- d—c and its integration from O to 1 and from O to 1, respectively, gives us:
X

1 1
de\ 2 1 d
(G) | voe () =20t [
x=1 0 0
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and next:

q)crit =

(19)
2. [R(c)dc
0

The calculations should be performed according to the following scheme (an example included):

d
1. Assume a form of function d—c = f(x) (f(x) could be an arbitrary function).
X

2. Compute parameters of function f by nonlinear optimization. Use a sum of absolute differences be-
tween the left hand and the right hand side of Eq. (1) for at least 101 points from x =0tox =1 as
an objective function. Calculations must be repeated until the objective function reaches a minimum
value.

For each optimization step:

a) Calculate the critical Thiele modulus ®.,;; from Eq. (19)

b) Calculate a value of the objective function — use the estimated value of ®,;,

3. Calculate a real value of the critical Thiele modulus ®,,;; by introducing the function f(x) with optimal
values of parameters to Eq. (19).

4. Substitute the function f(x) with the optimal values of parameters and the calculated critical Thiele
modulus ®.,;; to Eq. (1) and calculate the differences between the values of left and right hand side
of Eq. (1). If the accuracy is not satisfactory, another type of function f(x) (see point 1) should be
assumed.

To test our algorithm, the critical Thiele modulus values for an exemplary kinetic equation (Eq. (20)) and
for all pellet geometries were calculated.

For example, for kinetic equation:

6-c"
Rie) = 1+5-¢ (20)
a proposed form of the function f is a polynomial:
10 _
f) =Y A;-x! 1)
i=1

Selected n-parameter values satisfy the necessary condition of dead zone formation (see Table 1): n = 0.1,
0.2,0.25,0.3, 0.4, 0.5, 0.6, 0.66, 0.7, 0.75.

Calculations were performed using CAS-type program (Maple®). The results are presented in Fig. 1. The
critical Thiele modulus value ®,;; increases as exponent n increases. Moreover, the calculated values of
&, are the largest for a spherical pellet and the smallest for a slab pellet, respectively.

The accuracy of the algorithm was tested by a comparison of the results obtained with those using the
numerical method presented by Szukiewicz (2016), cf. Figs. 2—4.

For all three geometries of a pellet, the values of ®.,; are in good agreement. Most of the pairs of cal-
culated points coincide in practice, and the relative differences between them are smaller than 2.5% (slab
pellet), 3.2% (cylindrical pellet), and 3.6% (spherical pellet). For this reason they can be treated as negli-
gible. The presented results prove that the algorithm proposed here is sufficiently precise. Its application
is simple, especially using CAS-type programs.
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Fig. 1. Comparison of the critical Thiele modulus values for
different pellet geometries and different values of exponent n
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Fig. 2. Comparison of the critical Thiele modulus values for slab pellet ob-
tained from the presented algorithm and by using inverse shooting method

1 = cylindrical pellet - inverse shooting method 1

- + cylindrical pellet - algorithm

25

0.5 T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

n

Fig. 3. Comparison of the critical Thiele modulus values for cylindrical pellet
obtained from the presented algorithm and by using inverse shooting method
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Fig. 4. Comparison of the critical Thiele modulus values for
spherical pellet obtained from the presented algorithm and by
using inverse shooting method

3. CONCLUSIONS

* A method of checking if a dead zone can be formed (necessary conditions) for an arbitrary kinetic
equation presented here is simpler than the methods presented so far in literature. Its application re-
quires only elementary mathematical knowledge.

* The necessary conditions of dead zone formation for any shape of pellets are the same.

* A method of calculation of the critical value of the Thiele modulus (sufficient condition) is simple, but
somewhat tedious (iterative calculations may be needed). However, its precision fully compensates for
this inconvenience.

» Using CAS-type programs makes the task presented in the article much easier.

This work was supported by grant no. 2015/17/B/ST8/03369 of the National Science Centre, Poland.
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parameters in Eq. (21)

SYMBOLS

concentration in a pellet, mol/m?
dimensionless concentration in a pellet
effective diffusion coefficient, m?/s
activation energy of reaction, J/mol

N . dc
approximation function for dependence of T on x

X
integrals defined respectively by Eq. (14), (15), (16) and (17)
dimensionless adsorption constant

exponents in kinetic function
gas constant, J/(mol K)
pellet radius, m
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R(C) kinetic function

R(c) dimensionless kinetic function

T temperature in pellet, K

t=T/T; dimensionless temperature in pellet

X dimensionless position in pellet

x0 dimensionless position of dead zone beginning in pellet

w dimensionless modulus (Table 1)

Greek symbols

a geometry factor (0 — flat pellet, 1 — cylindrical pellet, 2 — spherical pellet)
B Prater number (Table 1)

Y Arrhenius number (Table 1)

AH enthalpy of reaction, J/mol

A effective thermal conductivity coefficient of catalyst, W/(m K)
P Thiele modulus

% stoichiometric coefficient

Subscripts

A, B, C relevant specie

crit value defined for critical diffusional limitations

s value at the outer surface of pellet
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