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Abstract

In recent years, autoregressive conditional duration models (ACD models)
introduced by Engle and Russell in 1998 have become very popular in modelling
of the durations between selected events of the transaction process (trade
durations or price durations) and modelling of financial market microstructure
effects. The aim of the paper is to develop Bayesian inference for the ACD
models. Different specifications of ACD models will be considered and compared
with particular emphasis on the linear ACD model, Box-Cox ACD model,
augmented Box-Cox ACD model and augmented (Hentschel) ACD model. The
analysis will consider models with the Burr distribution and the generalized
Gamma distribution for the innovation term. Bayesian inference will be
presented and practically used in estimation of and prediction within ACD
models describing trade durations. The MCMC methods including Metropolis-
Hastings algorithm are suitably adopted to obtain samples from the posterior
densities of interest. The empirical part of the work includes modelling of trade
durations of selected equities from the Polish stock market.
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1 Introduction
The last thirty years have witnessed dynamic development of financial econometrics
spurred by the use of new time series modelling methods, simulation-based methods,
enhanced computing power and relatively easy access to large databases. Prior to
the mid-1990s, empirical research in financial econometrics drew mainly on daily
data and mostly involved modelling and forecasting of daily rates of return on
financial instruments or their volatility and relied chiefly on ARCH and GARCH
models put forward by R. Engle (1982) and T. Bollerslev (1986). The automation of
stock exchange trading systems has led to the availability of accurate and complete
data sets describing the transaction process. The accessibility of information about
each and every individual transaction and its characteristics means that now tests
based on intraday data have become standard. Therefore, data describing individual
financial events i.e. financial ultra-high frequency data have come to be widely used
in empirical analyses. The concept of ultra-high frequency data (UHF data) was
first used in financial literature by Engle (2000). These are time series developed
from the characteristics of the events of the transaction process with exactly assigned
time of occurrence. In practice, this simply means an analysis of transaction data
otherwise known as tick-by-tick data. These transaction data consist of information
about the transaction’s timing, price, volume, best bid and ask prices and orders.
The availability of such detailed information about the transaction process opens up
many new possibilities and directions to researchers. The accessibility of data on
individual transactions, above all, allows research insights into the so-called market
microstructure (see Madhavan 2000). Analysis of the transaction process offers an
added value in explaining the behaviour of prices, investors and markets (see O’Hara
1995). Theoretical microstructure models attempt to explain the behaviour of the
transaction prices, trading volumes and spreads between the bid and offer prices.
They explain the reasons for volume and volatility grouping at certain times of the
day and the underlying relationship. A review of theoretical market microstructure
models and their wider analysis can be found in the following works: O’Hara (1995),
Madhavan (2000), Vives (2008), De Jong and Rindi (2009).
Testing some hypotheses on market microstructure and empirical analysis of intraday
seasonality patterns in the financial markets are therefore possible only when data
representing individual transactions can be used. This in turn requires new modelling
tools incorporating the specific nature of the processes generating this type of data.
The random distribution of observations on the time axis is a characteristic feature
of ultra-high frequency financial data. One way of the transaction process analysis
involves modelling the time intervals between successive points of this process, i.e.
modelling the process of durations. This approach proved to lend itself to modelling
the dynamics of the transaction process. Moreover, the analysis of time intervals
between successive events of the transaction process can allow for a more detailed
insight into the various types of dependencies prevailing on the market. Transaction
durations play an important role in the market microstructure theory where they are
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used as a proxy variable indicative of the presence of new information on the market.
The importance of the time intervals between transactions in the transaction process
is discussed in works pertaining to the market microstructure theory, e.g. in Glosten
and Milgrom (1985), Diamond and Verrecchia (1987), Easley and O’Hara (1987),
Admati and Pfleiderer (1988).
The primary tool used for econometric modelling of transaction durations, analysis
of the transactional intensity of assets and research into the effects of market
microstructure is currently constituted of Autoregressive Conditional Duration models
(ACD models) introduced by R. Engle and J. Russell in 1998 (cf. Engle and Russell
1998). The dynamic development of financial markets requires reaching out for new
data analysis tools and techniques. There is a strong interest around the world in
financial transaction data and ACD models and their use for modelling financial time
series. In the case of ACD models, inference about the parameters is usually based
on the Maximum Likelihood (ML) method, or on the Quasi-Maximum Likelihood
(QML) method. Because of the not so-well known properties of maximum likelihood
estimators for ACD models with conditional distributions other than the exponential
distribution the Bayesian approach relying on the Monte Carlo methods seems to
provide a valuable, interesting and theoretically consistent estimation method. Hence,
there is a need for broadening the scope of research based on financial data from
individual transactions with the use of Bayesian ACD models. Moreover, this research
can add new merits to the published literature on ACD models.
The main objective of this work is to develop and apply the Bayesian approach
to estimation of and prediction within ACD models, as well as a practical use of
Bayesian ACD models in the analysis of the dynamics of transaction durations of
selected companies listed on the Polish stock exchange. The paper summarizes the
key aspects of a more extensive study from the author’s Ph.D. dissertation. The
remainder of the paper is organized as follows. In Section 2 of the paper we introduce
and discuss the basic definition of the ACD process and present selected extensions of
the basic linear ACD model. Section 3 provides a short discussion about properties
of maximum likelihood estimators for ACD models. Next, in Section 4 we discuss
Bayesian estimation and prediction of ACD processes. Then in Section 5 the approach
presented is used to model transaction durations of selected equities listed in the main
index of Polish stock exchange – the WIG20 index. Section 6 of the paper contains
concluding remarks.

2 ACD models in duration analysis
ACD processes are one of the primary tools used in modelling the time intervals
between events of the transaction process, analysing trading intensity of companies
and examining the effects of financial markets microstructure. This paper illustrates
in particular the potential of the family of ACD processes in explaining the dynamics
of the durations ascertained in the financial market. In literature ACD processes
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already enjoy a well-established position (cf. e.g. Engle and Russell 1998, Lunde
1999, Grammig and Maurer 2000, Bauwens and Giot 2000, 2001, 2003, Dufour and
Engle 2000, Zhang, Russell and Tsay 2001, Hautsch 2002, 2004, 2012, Bauwens, Giot,
Grammig and Veredas 2004, Bauwens and Veredas 2004, Drost and Werker 2004,
Ghysels, Gouriéroux and Jasiak 2004, Fernandes and Grammig 2006, Strickland,
Forbes and Martin 2006). As regards the Bayesian approach, the only known work
on this approach to duration modelling in the financial markets by means of ACD
models is a paper byBrownlees and Vannucci (2013). Thus, the research presented in
this paper constitutes one of the first Bayesian analyses of ACD models.
Let us consider a sequence of moments t1, t2, . . . , tn, . . . in which events of the
transaction process occur. An event of the transaction process shall mean the
conclusion of a transaction, a change in the transaction price or trading volumes
etc. The time interval between successive events of the transaction process that occur
at the moments ti and ti−1 is denoted as xi = ti− ti−1; xi will be called the duration.
Let Ψi (i = 1, 2, . . . ) represent the expected durations conditional on information
available at time ti−1, i.e.:

Ψi = E (xi|=i−1, θ) ,

where =i−1 denotes a set of information available prior to and inclusive moment ti−1
and θ denotes a vector of parameters. Today the most common approach to the
description of transaction, price and volume durations involves the ACD model.
The Autoregressive Conditional Duration model was proposed for modelling of the
dynamics of financial durations by Engle and Russell (1997, 1998). The main
idea behind the ACD model involves a dynamic parameterisation of the conditional
expected duration Ψi:

Ψi = E (xi|=i−1, θ) = E (xi|xi−1, . . . , x1; θ) = Ψi (xi−1, . . . , x1; θ) .

In the ACD model, duration xi is expressed as the following product:

xi = Ψi · εi,

where εi follows i.i.d. process defined on positive support with density function fε(εi)
and expected value E(εi) = 1. Different types of ACD models may result either
from different functional forms for the conditional mean function Ψi, or the selection
of different probability distributions for the random variable εi. Obtaining an ACD
process with a certain type of conditional distribution of durations xi (given the entire
past of the process) consists in the introduction of various probability distributions for
the variable εi. As far as the distribution of innovations εi is concerned, ACD models
can only use for εi probability distributions defined on the set of positive real numbers
(cf. Engle and Russell 1998, Lunde 1999, Grammig and Maurer 2000, Bauwens and
Giot 2001, 2003, Hautsch 2002, Bauwens, Giot, Grammig and Veredas 2004, De Luca
and Gallo 2004, Fernandes and Grammig 2006, Luca and Zuccolotto 2006, Allen,
Chan, McAleer and Peiris 2008). The most common and simplest distribution for the
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variable εi is the exponential distribution. In the context of conditional distributions
in the analysis of ACD processes one may also consider e.g.: Weibull distribution,
gamma distributions, generalized gamma distributions and Burr distributions. It is
worth emphasising that the families of generalized gamma distributions and Burr
distributions are disjoint.
The basic ACDmodel specification, due to the conditional mean equation, as proposed
by Engle and Russell (1998), is based on linear parameterisation of the dynamics of
expected duration Ψi:

Ψi = ω +
p∑
j=1

αjxi−j +
q∑
j=1

βjΨi−j , (1)

where ω > 0, αj ≥ 0, βj ≥ 0. It is worth noting that these constraints are
sufficient, although not necessary, for the non-negativity of the duration process.
This is the so-called linear ACD process of p and q order – ACD(p,q), where p
and q determine delay orders of past durations xi and past expected durations Ψi

respectively. The conditional mean of duration in a linear ACD process by definition
equals Ψi = E (xi|=i−1, θ).
The simplest ACD process which we will consider in empirical research is the
ACD(1,1) linear process:

Ψi = ω + α · xi−1 + β ·Ψi−1, (2)

where ω > 0, α ≥ 0, β ≥ 0, α + β < 1 (the condition imposed in order to ensure
existence of the conditional mean of duration). The basic specification of the ACD
process may however be too restrictive to even lend itself to a correct description of
financial duration processes. Numerous empirical studies conducted e.g. by Dufour
and Engle (2000), Zhang, Russell and Tsay (2001) or Fernandes and Grammig (2006)
showed that news impact curves (cf. Engle and Ng 1993), depicting the impact of the
disturbance εi−1 on the expected duration Ψi, are too inelastic to adjust the process of
conditional durations to observed durations. Let us notice that the news impact curve
in the case of the basic ACD process is linear and has an α · Ψi−1 slope parameter.
Moreover innovations are introduced into the equation in a multiplicative impact with
Ψi−1. It is also worth emphasising that it was shown as early as in Engle and Russell’s
work (1998) that standard linear ACD model tends to overpredict after very short or
very long durations. This gave rise to numerous augmented ACD models.
Extensions of the basic functional form of the conditional expected duration are two-
pronged. As regards the first direction, pertinent literature proposes specifications
that allow both additive and multiplicative introduction into the model of a stochastic
component, the so-called delayed innovations. On the other hand, there are
specifications that take into account news impact curves that are non-linear, i.e.
much more flexible.
With respect to specifications underlying the description of the functional form of
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the conditional expected duration , below we present only selected augmented ACD
models which were used in the empirical research described in the subsequent part of
the paper. These include:

1. logarithmic ACD model – LACD(1,1) model, cf. Bauwens and Giot (2000),
Lunde (1999):

ln Ψi = ω + α · ln εi−1 + β · ln Ψi−1 = ω + α · ln xi−1 + (β − α) · ln Ψi−1, (3)

where |β| < 1 (the condition of non-explosiveness and strict stationarity of the
process),

2. Box-Cox ACD model – BCACD(1,1) model cf. Hautsch (2002):

Ψδ1
i = ω + α · εδ2

i−1 + β ·Ψδ1
i−1, (4)

where ω > 0, α > 0, 0 < β < 1 (the condition of non-explosiveness and strict
stationarity of the process), δ1 > 0, δ2 > 0,

3. asymmetric logarithmic ACD model – AsLACD(1,1) model, cf. Fernandes and
Grammig (2006):

ln Ψi = ω + α · [|εi−1 − b|+ c · (εi−1 − b)] + β · ln Ψi−1, (5)

where b > 0 and |β| < 1 (the condition of non-explosiveness and strict
stationarity of the process),

4. augmented Box-Cox ACD model – ABCACD(1,1) model cf. Hautsch (2004,
2012):

Ψδ1
i = ω + α · [|εi−1 − b|+ c · (εi−1 − b)]δ2 + β ·Ψδ1

i−1, (6)
where ω > 0, α > 0, 0 < β < 1 (the condition of non-explosiveness and strict
stationarity of the process), δ1 > 0, δ2 > 0, b > 0, |c| ≤ 1 (this restriction has
to be imposed in order to circumvent complex values whenever δ2 6= 1),

5. augmented ACD model – AACD(1,1) model, cf. Fernandes and Grammig
(2006):

Ψδ1
i = ω + α ·Ψδ1

i−1 · [|εi−1 − b|+ c · (εi−1 − b)]δ2 + β ·Ψδ1
i−1, (7)

where ω > 0, α > 0, 0 < β < 1 (the condition of non-explosiveness of the
process), δ1 > 0, δ2 > 0, b > 0, |c| ≤ 1 (this restriction has to be imposed in
order to circumvent complex values whenever δ2 6= 1).

The above-described functional forms for the conditional duration Ψi do not represent
an exhaustive set of all possible directions of generalizations of the basic ACD process.
They illustrate, however, the specification process of an adequate functional form of
Ψi. The presentation of these generalizations draws primarily on Fernandes and
Grammig (2006) as well as Hautsch (2004, 2012).
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3 Maximum Likelihood method versus Bayesian
approach for ACD models estimation

In the case of ACD models, inference about the parameters is usually based on the
classical approach, i.e. on the Maximum Likelihood (ML) method, or on the Quasi-
Maximum Likelihood (QML) method. In the case of ACD model estimation the
density of the exponential distribution is the simplest choice for the density function
of the error term. It should be emphasised, however, that the results of empirical
modelling of durations between events in the transaction process showed that the
assumption of the exponential distribution for innovations may be, unfortunately, too
restrictive. For this reason, the literature on ACD models offers other probability
distributions for error term, such as the Burr distribution or the generalized gamma
distribution. Maximum likelihood estimators are consistent and asymptotically
efficient provided the right distribution of innovations in the model is chosen.
Otherwise the parameter estimators may not even be consistent. An alternative way
to estimate the parameters in the ACD models involves the use of the Quasi-Maximum
Likelihood method. Engle and Russell (1998) showed that for the ACD (1,1) model
assuming exponential distribution for innovation term consistent and asymptotically
normal estimators of model parameters are obtained by the use of the QML method.
However, a crucial assumption is that the conditional expected duration equation is
correctly specified (cf. e.g. Hautsch 2004, 2012). It should also be noted that the
above properties hold for the basic linear ACD model and need not necessarily hold
true for more general specifications of ACD models. In the case of the QML method
the actual implementation of estimation procedures is admittedly straightforward, but
is achieved at the expense of estimator efficiency. Neither does the QML estimation
method warrant that the resulting parameter estimators will be unbiased in finite
samples. Grammig and Maurer (2000) showed that QML estimators of ACD model
parameters can be biased and inefficient even for samples of over 15,000 observations.
In practice therefore the more efficient ML estimates are preferred.
The situation described above suggests the use of the Bayesian approach relying
on the Monte Carlo methods to estimate ACD models. Given the above problems
surrounding the use of ML and QML methods and furthermore the not so-
well known properties of maximum likelihood estimators for ACD models with
conditional distributions other than the exponential distribution, Bayesian inference
can constitute a comfortable, attractive and theoretically consistent estimation
method, even if it is numerically demanding and time consuming.

4 Bayesian inference for ACD models
We will estimate proposed ACD models in the Bayesian framework; see, e.g. Zellner
(1971), Osiewalski (2001, in Polish), Koop (2003), Geweke (2005), Pajor (2010, in
Polish). Let {xi : i = 0, 1, 2, . . . , T} denote an observed time series of transaction
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durations. The following general ACD model is assumed:

xi = Ψi · εi
Ψi = E (xi|=i−1, θ) = Ψi (xi−1, . . . , x1; θ)

where εi follows a Burr type distribution or a generalized gamma distribution and
Ψi may be one of six specifications of the conditional expected duration: linear ACD
model (2), a type I logarithmic ACD model (3), Box-Cox ACD model (4), logarithmic
asymmetric ACD model (5), augmented Box-Cox ACD model (6) and augmented
ACD model (7). Thus 12 Bayesian ACD models were specified.
Let x = (x1, . . . , xT ) ∈ X ⊂ RT denote the vector of observed transaction durations
(in the empirical part it is a vector of deseasonalised transaction durations) and
xf ∈ Xf ⊂ Rk denotes a vector of forecasted durations. The vector of unknown
parameters in the model Mj will be marked θ(j), where j = 1, . . . , 12. The Bayesian
ACD model Mj , describing the dynamics of durations xi, is uniquely determined by
the density of the joint distribution of the vector of observations (durations), the
vector of forecasted durations and the vector of parameters:

p
(
x, xf , θ(j)|Mj

)
= p

(
xf |x, θ(j);Mj

)
· p
(
x|θ(j);Mj

)
· p
(
θ(j)|Mj

)
,

where p
(
x|θ(j);Mj

)
is the density of the conditional distribution of durations with

fixed parameters, i.e. sampling distribution and p
(
θ(j)|Mj

)
stands for prior density.

The density p
(
xf |x, θ(j);Mj

)
is the so-called sampling predictive distribution.

Estimation of the vector of model parameters involves determining the conditional
distribution for this vector of parameters given the vector of observations x, i.e. a
posterior distribution with a density defined as follows:

p
(
θ(j)|x;Mj

)
=
p
(
x|θ(j);Mj

)
· p
(
θ(j)|Mj

)
p (x|Mj)

,

where p (x|Mj) = pj(x) =
∫

Θ(j)
pj
(
x|θ(j)

)
· p
(
θ(j)|Mj

)
dθ(j) denotes marginal data

density. Bayesian prediction, in turn, involves determining the density of the
conditional distribution of the vector xf given the observed vector x, i.e. (post-
sample) predictive distribution density:

p (xf |x;Mj) =
∫

Θ
p
(
xf |x, θ(j);Mj

)
· p
(
θ(j)|x;Mj

)
dθ(j).

Bayesian inference provides also a tool which allows to compare models, but formal
Bayesian comparison of competing models is not subject of this paper.
It should also be acknowledged that Bayesian inference is carried out conditionally
given the vector x(0) = (x0,Ψ0) – the vector of initial conditions which was hitherto
omitted in the notation.
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The sample density and sample predictive density, respectively, are the products of
appropriate conditional densities of durations:

p
(
x|x(0), θ(j),Mj

)
=

T∏
i=1

f
(
xi|=i−1, x(0); θ(j)

)
,

p
(
xf |x, x(0), θ(j),Mj

)
=

T+k∏
i=T+1

f
(
xi|=i−1, x(0); θ(j)

)
,

where the conditional duration density f
(
xi|=i−1, x(0); θ(j)

)
is expressed by the

following formulas:

1. for an ACD model with a Burr distribution:

f
(
xi|=i−1, x(0); θ(j)

)
= κ

xi
·

 xi
Ψi
·

Γ
(
1 + 1

κ

)
· Γ
(

1
η −

1
κ

)
η1+ 1

κ · Γ
(

1 + 1
η

)
κ

·

·

1 + η ·

 xi
Ψi
·

Γ
(
1 + 1

κ

)
· Γ
(

1
η −

1
κ

)
η1+ 1

κ · Γ
(

1 + 1
η

)
κ−1− 1

η

where κ > η > 0,

2. for an ACD model with a generalized gamma distribution:

f
(
xi|=i−1, x(0); θ(j)

)
= γ

xi · Γ
(
ν
γ

) ·
 xi

Ψi
·

Γ
(

1+ν
γ

)
Γ
(
ν
γ

)
ν

·

· exp

−
 xi

Ψi
·

Γ
(

1+ν
γ

)
Γ
(
ν
γ

)
γ

where γ, ν > 0.

In both above cases Ψi is determined by one of these specifications: (2), (3), (4), (5),
(6) or (7).
For Bayesian models to be fully specified, one must determine prior distributions
of parameters, p

(
θ(j)|Mj

)
. It should be emphasised that a specification of the

prior distribution in Bayesian ACD models cannot adhere to the general rules of
construction of reference priors recommended in Bayesian literature because these
models are too complex to analytically determine the reference priors in the vein
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of Jeffreys and Bernardo. Therefore we assumed prior distributions reflecting
subjectively weak preliminary knowledge about the parameters.
The vector θ(j) of all parameters in Mj was decomposed into two prior independent
random subvectors: ϑ(j) – the subvector of parameters characteristic for a given
specification Ψi, and υ(j) – the subvector of parameters characteristic for εi. The
following joint prior was obtained:

p
(
θ(j)|Mj

)
= p

(
ϑ(j), υ(j)|Mj

)
= p

(
ϑ(j)|Mj

)
p
(
υ(j)|Mj

)
j = 1, . . . , 12.

In ACD models with the Burr distribution (these will be Bayesian models Mj for
j = 1, . . . , 6) the vector of parameters of the distribution of εi is υ(j) = (κ, η), where
κ > η > 0. In models with this distribution it was assumed that:

p
(
υ(j)|Mj

)
= p (κ, η) ∝ fN

(
κ|µκ, σ2

κ

)
·fN

(
η|µη, σ2

η

)
·I(0,∞)(κ) ·I(0,∞)(η) ·I(κ>η)(κ, η),

where j = 1, . . . , 6, µκ = 0, σκ = 5, µη = 0, ση = 5 and fN
(
·|µ0, σ

2
0
)
denotes the

density of a normal distribution with an expected value of µ0 and variance of σ2
0 .

The initial knowledge of the vector of the parameters (κ, η) is reflected in truncated
normal distributions.
In turn, in the ACD models with a generalized gamma distribution (i.e. Bayesian
models Mj for j = 7, . . . , 12) the vector of parameters of εi is υ(j) = (γ, ν), where
γ > 0, ν > 0. Then the prior density is:

p
(
υ(j)|Mj

)
= p(γ, ν) = p(γ)p(ν) ∝ fN (γ|µγ , σ2

γ) · I(0,∞)(γ) · fN (ν|µν , σ2
ν) · I(0,∞)(ν),

where j = 7, . . . , 12, µγ = 0, σγ = 5, µν = 0, σν = 30. The initial knowledge of the
vector of parameters (γ, ν) is embodied in the above appropriate truncated normal
distributions, similarly as in the Burr distribution.
The specification of the prior density p

(
θ(j)|Mj

)
in the model Mj must be

supplemented with prior density of the vector of parameters ϑ(j) characteristic
for a given specification of the conditional expected duration Ψi. Depending on
the specification of conditional expected duration Ψi , the parameters vector ϑ(j)
will be: ϑ(j) = (ω, α, β) in the linear ACD model and logarithmic ACD model,
ϑ(j) = (ω, α, β, δ1, δ2) in the Box-Cox ACD model, ϑ(j) = (ω, α, β, b, c) in the
asymmetric logarithmic ACD model and ϑ(j) = (ω, α, β, δ1, δ2, b, c) in the augmented
Box-Cox ACD model and augmented ACD model. We assume prior independence
of parameters. Then the joint prior density of the vector ϑ(j) is a product of the
prior densities of its coordinates. The exception here is the linear ACD model with
additional restrictions imposed on selected parameters.
We assume that prior distributions for the parameters with values spanning the entire
set of real numbers are normal with zero mean and standard deviation of five. For the
remaining parameters of the models considered we assume normal distributions with
zero mean and standard deviation of five, adequately truncated, due to the restrictions
imposed on the parameters by the individual models. The exception is the parameter
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b in the augmented Box-Cox ACD model and the augmented ACD model for which
the prior distribution is an inverted gamma distribution with density:

p(b) = fIG(b|ν, s) = sν

Γ(ν) ·
(

1
b

)ν+1
· exp

{
−s
b

}
· I(0,∞)(b), ν = 1, s = 0, 3.

The above prior distributions reflect the subjectively weak preliminary knowledge of
the parameters.

5 Empirical study
5.1 Data sets
The empirical study was carried out based on data from the Warsaw Stock Exchange.
The Warsaw Stock Exchange is the stock market with the highest capitalization in
Eastern and Central Europe. Thus, it is noticed as one of the most important and
the best developed market in that region. However, there are limited works focusing
on ACD models and their empirical applications to Polish stock data; see e.g. Doman
(2005), Bień (2006, 2006a, in Polish), Doman (2008), Doman and Doman (2010),
Doman (2011, in Polish). This study can fill that gap to some extent. Moreover it can
also develop the existing knowledge about the Polish stock market microstructure.
The methods presented above were empirically verified on the basis of transaction
data on equities of three companies listed in the Warsaw Stock Exchange’s WIG 20
index: Polish Telecom (TPSA), the media company Agora SA (AGORA) and the
PKOBP SA bank (PKOBP). The present study is based on tick-by-tick quotations
between 23 March 2009 and 19 June 2009. The companies were selected to reveal
differences in liquidity (trading intensity) during the study period. The analysis covers
only transactions carried out in the continuous trading phase, i.e. in the case of the
Warsaw Stock Exchange between 10:00 and 16:10. Transaction data are derived from
the Stooq.pl website. Transaction data sheets contain information on the date and
time of the transaction with the accuracy of one second and the transaction’s closing
price and volume. When several transactions were recorded in the same second, data
were partially aggregated and such transactions were deemed to constitute a single
transaction with the price being a volume-weighted average. It is worth noting that in
the case of the companies surveyed, the share of transactions registered in the same
second is very high and ranges from 37% for AGORA to 50% for PKOBP. Based
on the aggregate transactional data, durations between transactions i.e. transaction
durations were determined. In addition, the time intervals between the close of the
session and the beginning of the next day’s session were removed. In this case, it was
used the most common convention adopted in the foreign literature.
The basic descriptive statistics of transaction durations for the companies surveyed are
shown in Table 1. We are dealing with three companies revealing divergent trading
activity patterns. The majority of the transactions involved PKOBP equities, for
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which the average duration between transactions is approximately 13 seconds. The
company belongs with a group of WSE’s most liquid entities. The fewest transactions
were reported for AGORA, for which the average transaction duration is almost
80 seconds. With an average duration between transactions of approximately 24
seconds, TPSA represents an averagely liquid company. In addition, the medians
of the series are markedly smaller than the average values, which of course means
that duration distributions are characterized by a strong right-sided asymmetry.
Analysis of the descriptive statistics of empirical duration distributions reveals their
strikingly overdispersion. The dispersion indices are generally very high, which may
be indicative of high dynamics of the surveyed series. The values of the variation
coefficients range from 1.6 to 1.8. With its dispersion index ascertained at a high
2.13 the company AGORA is an exception. It is worth noting that the higher the
transaction intensity, the lower the dispersion index. Similar results were reported in
Bień (2006) only for the 2003 Polish data (also cf. Bień 2006a). The dynamics of
transaction durations can be seen in Figure 1 showing graphs for series of the first
10,000 observations. In addition, the graphs clearly indicate clustering of short and
long transaction waiting times. This suggests the presence of a strong autocorrelation
in the tested series. Polish durations are characterized by properties analogous
to data recorded at mature foreign markets, i.e. a strong right-sided asymmetry,
overdispersion or clustering of shorter and longer durations (cf. Hautsch 2004,
Hautsch 2012, Bauwens and Giot 2001 and numerous other works).
The values of Q Ljung and Box statistics in Table 1 allow formally (but in non-
Bayesian approach) to perform test of the null hypothesis such that there is no
autocorrelation of durations respectively from the first to the twentieth order delay.
The critical values of χ2 distribution for the significance level of 0.05 are χ2(5) =
11, 070 and χ2(20) = 31, 410 respectively. Of course, on the basis of the values of
test statistics the null hypothesis whereby there is no autocorrelation of durations is
easily rejected for all three companies. The autocorrelation of transaction durations
is therefore very strong.

The presence of a very strong autocorrelation of durations may be due to intraday
seasonality patterns of trading activity. Seasonality is one of the most characteristic
properties of financial time series for ultra-high frequency data. Therefore we
estimated the intraday seasonality patterns. With a view to that we used the
Nadaraya-Watson estimator of regression of the duration on the time of the day,
determined separately for each day of the week (cf. Bauwens and Veredas 2004,
Veredas, Rodriguez-Poo and Espasa 2001, Huptas 2009):

φ(t) =

n∑
i=1

xiK

(
t− ti
hn

)
n∑
i=1

K

(
t− ti
hn

) , (8)
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Table 1: Descriptive statistics of transaction durations, autocorrelation coefficients
and the Ljung-Box statistics for the analysed companies

plain durations adjusted (deseasonalised) durations
AGORA TPSA PKOBP AGORA TPSA PKOBP

Number of observations 19627 64616 118480 19627 64616 118480
Mean 79.97 24.34 13.28 0.98 0.99 0.99

Standard deviation (SD) 170.44 43.09 21.23 1.98 1.67 1.48
Dispersion index (=Mean/SD) 2.13 1.77 1.59 2.02 1.69 1.49

Median [s] 20 9 6 0.263 0.396 0.486
Minimum [s] 1 1 1 0.006 0.023 0.042
Maximum [s] 4003 833 653 44.06 30.96 31.90

ACF(1) 0.218 0.216 0.230 0.208 0.198 0.206
Q(5) 2931.74 9352.83 23259.5 2575.94 7596.65 17492.8
Q(20) 6256.26 20744.45 60290.1 5106.05 15600.7 41943.0

ACF(k) – the value of the k-th order autocorrelation coefficient; Q(k) – the value of the Ljung-Box
Q-statistic of k-th order; descriptive statistics in seconds.

where: t – number of seconds from the midnight of every day (or alternatively
from the beginning of the session), xi – durations corresponding to time ti (xi is a
dependent variable), ti – number of seconds from the midnight of every day (or from
the beginning of the session) until the time of a given transaction, K - kernel function,
hn – bandwidth, s-standard deviation of sample ti, n - number of observations. In
the case of the kernel estimators use was made of the quartic kernel with an optimal
bandwidth of h = 2, 78sn−1/5. It is worth noting that the kernel method applied is a
non-Bayesian one. Figure 2 illustrates the intraday seasonality patterns for the three
companies surveyed taking into account the day of the week effect.
Graphs of the estimated function of intraday seasonality have the distinct shape of an
inverted U and show unequivocally that the transaction durations are subject to daily
seasonality. Durations between transactions are much shorter at the beginning and
at the end of a session than at noontime. The busy transaction activity shortly after
the opening of the market reflects response to overnight news (information incoming
from foreign stock exchanges, macroeconomic data etc). With the assimilation of
information incoming from other markets the transaction activity becomes subdued.
Between 12:00 and 14:00 it is significantly lower due to the so-called lunch-break effect.
The intervals between successive transactions are then definitely the longest. Then,
as the close of the session approaches, transaction activity gradually increases, which
is justified by some traders closing or adjusting their positions. It is worth noting
that the intraday seasonality varies depending on the day of the week. It appears
that regardless of the type of company, transaction activity is higher on Tuesdays
and Wednesdays than on any other day of the week.
Analysis of seasonal patterns also indicates that in the case of a liquid company –
PKOBP in our analysis – investors’ trading activity at the end of the session is a little
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Figure 1: Trade durations for the analysed companies – first 10000 observations 
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smaller, which translates into longer durations than at the beginning of the day. On
the other hand, we can note the reverse situation in the case of AGORA company –
traders are more active before the close of the market than just after its opening.
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Figure 2: Intraday seasonality patterns for the days of the week for the analysed
companies

To be able to further analyse the series surveyed on the basis of Bayesian ACD models,
we should eliminate the seasonality effect from the series, which will help reduce or
even eliminate the detected autocorrelation. Guided by pertinent literature on the
subject (e.g. Engle and Russell 1998), after estimating the intraday seasonality factor
we determined the transaction durations devoid of the seasonality effect in accordance
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with the formula
x̂i = xi

φ(ti−1) , (9)

where: xi = ti − ti−1- duration between transactions at time ti and time ti−1,
x̂i-duration devoid of the seasonal effect, φ(ti)-multiplicative factor of intraday
seasonality at time ti. The φ(ti) seasonality factor (determined on the basis of formula
(8)) is construed as the average duration corresponding to each unit of time in which
data was observed (generally, average duration corresponding to each second).
Descriptive statistics of durations after the elimination of the intraday seasonality
effect are shown in Table 1. The elimination of the seasonal factor from the data
resulted in partial reduction in transaction durations autocorrelation. The values
of the Ljung and Box test statistic declined for the companies surveyed by approx.
15% – 25%, but continue to remain very high. The rather high values of low-order
autocorrelation coefficients suggest that the rather strong clustering of short and long
durations will still continue. The null hypothesis of absence of autocorrelation is
still rejected at any reasonable level of significance. Of course, this indicates that
the dynamics of transaction durations are influenced by factors other than a merely
deterministic seasonality effect resulting from the structure of the stock market.

5.2 Main posterior results
This section presents the results of Bayesian inference conducted for series of
transaction durations derived from data on the Polish stock market. We present
the results of the Bayesian estimation of ACD model parameters as defined in section
3 of the paper. We also consider the predictive quality of models. It should be
emphasised here that the question of Bayesian estimation of the ACD class of models
and Bayesian prediction have not so far been considered in the literature.
In order to calculate the ultimate characteristics of the posterior distribution of
parameters and the predictive distribution, in each model the Monte Carlo methods
based on Markov chains (MCMC) are used. It is used the Metropolis and Hastings
algorithm with a symmetric proposal density (see e.g. Hastings 1970, O’Hagan
1994). For a candidate generating distribution we use the multivariate Student’s
t distribution with three degrees of freedom for which the expected value is equal to
previous state of the Markov chain and the covariance matrix is obtained based on
a numerical strategy using the Monte Carlo – Importance Sampling method. The
length of the generated Markov chain and the number of burnt-in states depend on
the speed of convergence of the algorithm within the model framework. For the more
general models e.g. the augmented Box-Cox ACD model and the augmented ACD
model we made 6 000 000 draws, including 1 000 000 burnt-in states. On the other
hand, in simpler, less parameterized models we made 2 200 000 draws, including
200 000 burnt-in states. To assess the convergence of the Metropolis and Hastings
algorithm we used CUMSUM plots (cf. Yu and Mykland 1994). All the empirical
results presented were obtained using author’s own codes implemented in the GAUSS
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13.0 econometric environment.
The object of Bayesian modelling is the dynamics of transaction durations calculated
for three companies listed on the Warsaw Stock Exchange, namely the Polish Telecom
company (TPSA), the media company Agora SA (AGORA) and the PKOBP SA
bank (PKOBP). The initial time series of transaction durations under analysis were
truncated and consist of 10,000 latest observations culled from the original series. The
procedure involving the truncating of data series was performed due to the fact that in
the case of longer time series (let it be remembered that the AGORA sample consisted
of approximately 20,000 observations, PKOBP sample consisted of almost 120,000
observations) modelling would be extremely demanding from the numerical point of
view. Long time series in conjunction with Monte Carlo simulations used in Bayesian
estimation made the estimation process extremely cumbersome and time-consuming.
It seems however that the arbitrary truncation of data series to 10,000 observations
was not highly detrimental to the empirical results. Finally, ACD processes were used
to model the dynamics of transaction durations for the company AGORA from 5 May
2009 to 19 June 2009, the company TPSA from 6 June 2009 to 19 June 2009 and the
company PKOBP from 8 June 2009 to 19 June 2009. The initial observations were
used as the initial conditions x(0).
The course of modelled transaction durations devoid of the seasonality effect for all
companies surveyed is plotted in Figure 3. Although the analysed durations are devoid
of the seasonality effect, all cases reveal a rather considerable variability and areas
of duration clustering, i.e. long periods of waiting times for transactions followed by
periods of shorter durations. In addition, there are outliers.

Table 2: Descriptive statistics of deseasonalized transaction durations for the analysed
datasets

AGORA TPSA PKOBP
Number of observations 10000 10000 10000
Mean 1.029 0.927 1.230
Standard deviation (SD) 2.097 1.449 1.791
Dispersion index ( =Mean/SD) 2.038 1.563 1.456
Median 0.267 0.420 0.564
Skewness 5.258 4.093 3.510
Minimum 0.006 0.023 0.043
Maximum 44.065 22.281 24.439

The basic descriptive characteristics of the examined deseasonalized time series
are shown in Table 2. Analysis of the descriptive statistics of empirical duration
distributions reveals their overdispersion despite the fact that transaction durations
have been purged of their seasonality patterns. The dispersion indices (variation
coefficients) are generally very high, ranging between 1.45 and 1.56. AGORA is an
exception – its dispersion index climbed to the high mark of 2.04. High skewness
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values indicate that duration distributions are characterized by a strong right-sided
asymmetry. The very high values of skewness, overdispersion and modal values on
the far side of zero indicate that the empirical distributions in these cases are very far
from exponential distribution. These assumptions are undoubtedly corroborated by
nonparametric density and hazard functions graphs for transaction durations of the
companies surveyed which are presented in Figure 4.
In order to model transaction durations of AGORA, TPSA and PKOBP we used

twelve Bayesian ACD models defined and presented in section 3: Burr-ACD, Burr-
LACD, Burr-BCACD, Burr-As-LACD, Burr-ABCACD, Burr-AACD, GGam-ACD,
GGam-LACD, GGam-BCACD, GGam-As-LACD, GGam-ABCACD and GGam-
AACD. In the class of {M1,. . . ,M12} models, we consider six models with the Burr
distribution for the random term and the six models with the generalized gamma
distribution for innovations.

5.2.1 Bayesian estimation results

The Bayesian estimation was carried out for all twelve considered models. Bayesian
estimation results for TPSA, AGORA and PKOBP are presented in Tables 3, 4
and 5 respectively. These set out the posterior means and standard deviations of
the posterior marginal distributions of the parameters of the ACD models under
consideration. The characteristics presented show that in the construction of the
posterior marginal distributions an essential role was played by the information
contained in the observed data and not by the prior distributions initially accepted.
As a matter of fact, posterior distributions are characterised by a different location
and a markedly smaller dispersion than prior distributions. Figure 5 presents the
marginal prior distributions (bold solid lines) and posterior ones (bars) of the GGam-
BCACD model parameters fitting the TPSA data.

The marginal posterior distributions for the parameters of the conditional Burr
distribution and conditional generalized gamma distribution clearly indicate that data
rejects the conditional exponential distribution of transaction durations (in the case
of the conditional Burr distribution this corresponds to the assumption κ = 1, η → 0,
and in the case of the conditional generalized gamma distribution to the assumption
γ = 1, ν = 1) for all three companies. It is worth noting that the results also exclude
conditional Weibull distributions (in the case of the conditional Burr distribution this
corresponds to the assumption η → 0, and in the case of the conditional generalized
gamma distribution to the assumption γ = ν).
In the case of TPSA, posterior distributions of the parameters κ and η are located far
from κ = 1 and η = 0, respectively, with the distributions being heavily concentrated.
The posterior means of the parameter κ oscillate around 1.26, and a standard
deviation around 0.02, and for the parameter η posterior means oscillate around
0.6 with a standard deviations hovering around 0.03. On the other hand, in the case
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Figure 3: Trade durations devoid of the seasonality effect for the analysed companies
– first 5000 observations
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of models with the conditional generalized gamma distribution, the characteristics
clearly indicate that the posterior distributions of the parameters γ are located on the
far left of the value γ = 1 and reveal a small dispersion. The posterior distributions of
the parameters ν, however, are on the far right of the value ν = 1 and that despite the
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Figure 4: Nonparametric density functions and nonparametric hazard functions for
trade durations devoid of the seasonality effect for the analysed companies
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relatively high level of standard deviations equalling 1, with the posterior means equal
to about 5.2 (for the GGam-LACD model, the mean and the standard deviation reach
even 7.85 and 1.95) the values ν = 1 are practically improbable. This is confirmed
by the histograms of marginal posterior distributions of the parameters γ and ν in
the GGam-BCACD model presented in Figure 5. In the case of AGORA we observe
that the characteristics of the central tendency of the parameter κ are lower and,
at the same time, the posterior means of the parameter η are higher in comparison
to the models for TPSA. Hence, the value of the dispersion index of the conditional
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Table 3: Posterior means and standard deviations (in parentheses) of parameters in
all ACD models for TPSA company

M1 Burr- M2 Burr - M3 Burr - M4 Burr - M5 Burr - M6 Burr -
ACD LACD BCACD As-LACD ABCACD AACD

ω 0.0260
(0.0036)

0.0852
(0.0066)

0.0086
(0.0066)

0.0499
(0.0514)

0.0142
(0.0089)

0.0448
(0.0055)

α 0.1474
(0.0113)

0.1167
(0.0076)

0.0432
(0.0099)

- 0.0971
(0.0275)

0.0373
(0.0111)

0.0211
(0.0123)

β 0.8381
(0.0119)

0.9754
(0.0046)

0.9543
(0.0057)

0.9622
(0.0051)

0.9497
(0.0058)

0.9361
(0.0115)

δ1 - - 0.1762
(0.0461)

- 0.2202
(0.0644)

0.1056
(0.0644)

δ2 - - 0.6090
(0.0592)

- 0.5912
(0.0540)

0.5477
(0.0525)

b - - - 0.8799
(0.3593)

0.1783
(0.0253)

0.1809
(0.0233)

c - - - - 1.9389
(0.2580)

0.7119
(0.2329)

0.5952
(0.2502)

κ 1.2492
(0.0199)

1.2908
(0.0211)

1.2646
(0.0204)

1.2633
(0.0204)

1.2621
(0.0203)

1.2633
(0.0202)

η 0.5951
(0.0334)

0.6836
(0.0358)

0.6161
(0.0341)

0.6139
(0.0338)

0.6097
(0.0339)

0.6125
(0.0338)

M7 GGam- M8 GGam - M9 GGam - M10 GGam - M11 GGam - M12 GGam -
ACD LACD BCACD As-LACD ABCACD AACD

ω 0.0299
(0.0040)

0.0692
(0.0051)

0.0077
(0.0064)

0.0566
(0.0614)

0.0117
(0.0083)

0.0504
(0.0061)

α 0.1288
(0.0100)

0.1097
(0.0076)

0.0512
(0.0100)

- 0.0912
(0.0302)

0.0460
(0.0111)

0.0195
(0.0115)

β 0.8417
(0.0124)

0.9668
(0.0054)

0.9462
(0.0065)

0.9555
(0.0061)

0.9412
(0.0067)

0.9306
(0.0118)

δ1 - - 0.2267
(0.0536)

- 0.2975
(0.0707)

0.1064
(0.0602)

δ2 - - 0.5971
(0.0639)

- 0.5882
(0.0581)

0.5284
(0.0535)

b - - - 0.9981
(0.4764)

0.1737
(0.0246)

0.1813
(0.0222)

c - - - - 1.8690
(0.2631)

0.6994
(0.2433)

0.6872
(0.2389)

γ 0.1542
(0.0232)

0.0942
(0.0229)

0.1385
(0.0228)

0.1418
(0.0229)

0.1407
(0.0237)

0.1401
(0.0235)

ν 4.6792
(0.7503)

7.8460
(1.9533)

5.2716
(0.9172)

5.1357
(0.8537)

5.2066
(0.9624)

5.2209
(0.9552)

distribution is higher (compared to TPSA) while distribution’s modal value is still
located in the proximity of zero. This is not surprising, given that the dispersion index
for the AGORA data series exceeded 2. On the other hand, in the case of models
with the conditional generalized gamma distribution, the posterior distributions of
the parameters γ are now located slightly to the left of γ = 0.1. The posterior means
of the parameters γ are approximately 0.05-0.09 (except for the linear ACD model).
The posterior distributions of the parameters ν in most models tend to be centrally
located around 5-5.2, with standard deviations of 1-1.15. Lower values of the posterior
means of the parameter γ compared to the TPSA models with unchanged posterior
means of the parameter ν allow for greater dispersion of the conditional distributions.
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Table 4: Posterior means and standard deviations (in parentheses) of parameters in
all ACD models for AGORA company

M1 Burr- M2 Burr - M3 Burr - M4 Burr - M5 Burr - M6 Burr -
ACD LACD BCACD As-LACD ABCACD AACD

ω 0.0552
(0.0054)

0.3590
(0.0283)

0.0115
(0.0099)

0.4329
(0.0315)

0.0142
(0.0116)

0.0949
(0.0090)

α 0.3628
(0.0168)

0.2503
(0.0099)

0.0968
(0.0162)

- 0.5704
(0.0628)

0.1054
(0.0166)

0.0472
(0.0248)

β 0.6347
(0.0167)

0.9241
(0.0078)

0.9108
(0.0083)

0.8863
(0.0092)

0.8998
(0.0086)

0.8666
(0.0217)

δ1 - - 0.0649
(0.0132)

- 0.1435
(0.0235)

0.0627
(0.0339)

δ2 - - 0.2158
(0.0237)

- 0.3001
(0.0193)

0.2994
(0.0234)

b - - - 0.7589
(0.0781)

0.0741
(0.0066)

0.0739
(0.0064)

c - - - - 1.0730
(0.0117)

0.9812
(0.0231)

0.9675
(0.0371)

κ 0.9356
(0.0134)

1.0571
(0.0173)

1.0253
(0.0167)

1.0114
(0.0166)

1.0196
(0.0162)

1.0231
(0.0166)

η 0.4678
(0.0225)

0.7735
(0.0371)

0.6841
(0.0356)

0.6739
(0.0356)

0.6645
(0.0335)

0.6760
(0.0344)

M7 GGam- M8 GGam - M9 GGam - M10 GGam - M11 GGam - M12 GGam -
ACD LACD BCACD As-LACD ABCACD AACD

ω 0.0683
(0.0066)

0.2429
(0.0128)

0.0133
(0.0119)

0.3670
(0.0341)

0.0190
(0.0146)

0.1175
(0.0095)

α 0.3778
(0.0198)

0.2326
(0.0095)

0.1164
(0.0100)

- 0.4743
(0.0520)

0.1196
(0.0185)

0.0427
(0.0230)

β 0.6141
(0.0189)

0.9002
(0.0091)

0.8874
(0.0096)

0.8644
(0.0104)

0.8761
(0.0092)

0.8449
(0.0213)

δ1 - - 0.0848
(0.0171)

- 0.1844
(0.0310)

0.0639
(0.0352)

δ2 - - 0.2073
(0.0258)

- 0.2911
(0.0203)

0.2941
(0.0221)

b - - - 0.8514
(0.0920)

0.0866
(0.0069)

0.0889
(0.0065)

c - - - - 1.0776
(0.0123)

0.9841
(0.0211)

0.9781
(0.0297)

γ 0.1562
(0.0175)

0.0543
(0.0153)

0.0869
(0.0171)

0.0865
(0.0176)

0.0908
(0.0171)

0.0873
(0.0170)

ν 2.7732
(0.3154)

8.6511
(2.7272)

5.2181
(1.1372)

5.1822
(1.1644)

4.9882
(1.0316)

5.1963
(1.1458)

As regards PKOBP, descriptive characteristics of posterior marginal distributions
of the parameters κ and η are slightly bigger than those obtained for TPSA.
Marked differences compared to the previous companies were ascertained for posterior
marginal distributions of the parameters of the conditional generalized gamma
distribution. The posterior distributions of the parameters γ are now located in the
very close vicinity of zero. The posterior means of the parameters γ range from 0.022
to 0.045. The posterior distributions of the parameters ν, however, are located on the
far to the right of the ν = 1 and reveal overdispersion. The posterior means of the
parameters ν range from 19.8 for the GGam-ACD model to 37.8 for the GGam-LACD
model. Posterior standard deviations range from 9.86 in the GGam-ACD model to
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Table 5: Posterior means and standard deviations (in parentheses) of parameters in
all ACD models for PKOBP company

M1 Burr- M2 Burr - M3 Burr - M4 Burr - M5 Burr - M6 Burr -
ACD LACD BCACD As-LACD ABCACD AACD

ω 0.0424
(0.0055)

0.0850
(0.0068)

0.0091
(0.0068)

0.1049
(0.0283)

0.0154
(0.0093)

0.0440
(0.0055)

α 0.1267
(0.0093)

0.1024
(0.0065)

0.0362
(0.0102)

- 0.0999
(0.0166)

0.0366
(0.0126)

0.0514
(0.0285)

β 0.8533
(0.0104)

0.9748
(0.0044)

0.9619
(0.0051)

0.9629
(0.0051)

0.9557
(0.0054)

0.9159
(0.0235)

δ1 - - 0.1193
(0.0375)

- 0.1712
(0.0615)

0.2187
(0.1186)

δ2 - - 0.4332
(0.0555)

- 0.4094
(0.0553)

0.3860
(0.0570)

b - - - 1.0314
(0.2048)

0.2112
(0.0218)

0.2020
(0.0145)

c - - - - 1.5268
(0.1089)

0.7122
(0.1844)

0.5625
(0.2003)

κ 1.2991
(0.0219)

1.3550
(0.0233)

1.3243
(0.0228)

1.3247
(0.0232)

1.3196
(0.0229)

1.3208
(0.0227)

η 0.6665
(0.0373)

0.7724
(0.0398)

0.7053
(0.0387)

0.7061
(0.0392)

0.6932
(0.0383)

0.6958
(0.0385)

M7 GGam- M8 GGam - M9 GGam - M10 GGam - M11 GGam - M12 GGam -
ACD LACD BCACD As-LACD ABCACD AACD

ω 0.0511
(0.0060)

0.0679
(0.0051)

0.0093
(0.0076)

0.0836
(0.0236)

0.0157
(0.0103)

0.0525
(0.0065)

α 0.1061
(0.0078)

0.0935
(0.0063)

0.0468
(0.0115)

- 0.0983
(0.0180)

0.0493
(0.0149)

0.0453
(0.0257)

β 0.8556
(0.0105)

0.9651
(0.0052)

0.9516
(0.0061)

0.9546
(0.0056)

0.9446
(0.0066)

0.9107
(0.0224)

δ1 - - 0.1626
(0.0480)

- 0.2650
(0.0833)

0.2223
(0.1199)

δ2 - - 0.4052
(0.0614)

- 0.4175
(0.0552)

0.3791
(0.0561)

b - - - 0.9688
(0.1855)

0.2276
(0.0366)

0.2191
(0.0239)

c - - - - 1.4626
(0.0990)

0.7845
(0.1982)

0.7217
(0.1928)

γ 0.0453
(0.0198)

0.0225
(0.0085)

0.0339
(0.0146)

0.0354
(0.0143)

0.0373
(0.0189)

0.0346
(0.0164)

ν 19.8357
(9.8651)

37.2879
(13.9249)

26.2235
(12.2436)

2 4.3536
(9.8601)

25.5310
(13.4491)

26.7087
(13.0379)

13.92 in GGam-LACD model. In the best GGam-BCACD model, the posterior mean
and standard deviation stand at 26.22 and 12.24 respectively. The very high posterior
standard deviations of the parameters ν leave a lot of doubt about the values of these
parameters, and thus the shape of the conditional density function. It should also
be emphasised that the marginal posterior distributions p(ν|x, x(0),Mi) reveal right-
sided asymmetry and in the case of the GGam-BCACD model the modal value of
the distribution equals approximately 18. Little does it change the fact that in the
case of PKOBP the most probable values of the parameter ν are much higher than
they are for TPSA and AGORA. In addition, the conditional distributions parameters
are always on a similar level regardless of the specification of the conditional duration

259 R. Huptas
CEJEME 6: 237-273 (2014)



Roman Huptas

Figure 5: Marginal posteriors (bars) and priors (solid lines) of parameters of the
GGam-BCACD model for TPSA company
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equation. Furthermore, in such configurations of conditional distributions parameters
estimates, the data favour non-monotonic conditional hazard functions of durations.
The results clearly indicate that the effect of constant conditional duration in
the considered ACD models corresponding to the assumption α = 0, β = 0 is
strongly rejected by the modelled series. The posterior marginal distributions of the
parameters α or β are located far from zero. Above observations also indicate that
durations are not generated by a Poisson process. In order to describe the dynamics
of the analysed transaction durations the properties of probability distributions alone
used in the models as conditional distributions do not suffice.
In the case of TPSA posterior marginal distributions of the parameters β are alike
in all models. This parameter serves to measure the dependence of the expected
duration at time ti on Ψi−1. The expected transaction duration is characterized by a
relatively strong persistence. The posterior means of the parameters β range in fact
from 0.93 to 0.96, except for the linear ACD models whose posterior means stand
at about 0.84. Note, however, that in the case of the linear ACD model it is the
sum of the parameters α + β that is responsible for the persistence of the process.
Posterior marginal distributions p(β|x, x(0),Mi) reveal a very small dispersion. This
is evidenced by posterior standard deviations of 0.01. Although the persistence of
transaction durations is high for TPSA, the coefficients β do not border on 1. From
the point of view of market microstructure, this may indicate that the market is
dominated by well-informed investors. Liquidity investors’ share of the market is
small or these investors are not able to properly grasp the changing market conditions
or are simply risk-averse and while away times of uncertainty associated with new
information. Hence this weaker persistence. Should the coefficient β be very close
to 1, it would mean that in the market uninformed traders mimic the moves of well-
informed players, and hence we would see strong dependences in transaction intensity.
Posterior marginal distributions of the parameters α are located close to zero and also
seem to be centred on the posterior means, as evidenced by the low posterior standard
deviations.
Analysis of the estimation results for AGORA company suggests that the expected
trade duration reveals less persistence than does TPSA’s. At the same time it
reacts more strongly to new observations or new random disturbances. The posterior
marginal distributions of the parameters β remain markedly on the right side of
zero, and are heavily concentrated around the posterior means, as evidenced by the
relatively small posterior standard deviations. The posterior means of the parameters
β for AGORA range from 0.84 in the GGam-AACD to 0.92 in the Burr-LACD model
(except for the linear ACD models). On the other hand, for all the specification
considered, the posterior marginal distributions of the parameters α are located
farther away from 0 than they are in the case of TPSA and reveal very a small
dispersion measured in terms of standard deviations. The smaller persistence of
expected duration may be due to the small share of liquidity traders in the transaction
process or to their strong risk aversion. A stronger reaction to new observations is
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probably due to the presence of more individual investors on the market.
On the other hand, PKOBP’s expected transaction duration reveals a much stronger
persistence than in the case of AGORA and remains at a level similar to that for
TPSA. At the same time, we see a weaker response to new random disturbances.
The posterior marginal distributions of the parameters β are located near zero,
and the posterior means range between 0.94 and 0.96. The distributions are highly
concentrated around the posterior means, as evidenced by very low posterior standard
deviations. The somewhat stronger duration persistence in the case of TPSA suggests
that the market is dominated by well-informed players, but the number of liquidity
traders is also growing. The latter are trying to emulate the decision of well-informed
investors, but to confirm these suppositions deeper studies are required in order to
take into account the volatility and volume. The posterior marginal distributions
of the parameters α are located in the vicinity of zero and also seem to be centred
around the posterior means, as evidenced by their low posterior standard deviations.
We will now proceed to analyse the parameters of the Box and Cox transformation
in the GGam-BCACD models. The posterior distributions of the parameters δ1 are
located on the far right of zero and to the left of 1 for each of three companies.
The posterior mean for the parameter δ1 for TPSA stands at about 0.22 and the
posterior standard deviation is at about 0.05. The posterior mean for this parameter
for AGORA equals 0.08 with posterior standard deviation not exceeding 0.02. In
the case PKOBP the posterior mean of the parameter δ1 is at the level of 0.16
and the standard deviation equals 0.048. Both the location and dispersion of the
posterior marginal distributions p(δ1|x, x(0),M9) unambiguously indicate that the
data reject linear and logarithmic specifications. The dispersion of distributions
p(δ1|x, x(0),M9) measured in terms of posterior standard deviations indicates that
the δ1 = 0 and δ1 = 1 values have practically no prior probability. It should also be
admitted that the distributions edge closer toward zero, suggesting that logarithmic
specifications could be more probable than linear model transformations. The results
therefore corroborate legitimacy of the use of the Box and Cox transformation in the
specifications considered.
Analysing, in turn, the characteristics of the posterior distributions of the parameter
δ2 of Box and Cox transformation in GGam-BCACD models we should note the
location of the marginal distributions between δ2 = 0 and δ2 = 1?. Both the
location and dispersion of the posterior distributions of the parameter δ2 clearly
indicate that the data for the companies surveyed favour concave news impact curves.
Figure 6 displays the empirical news impact curves for selected ACD models with
the conditional generalized gamma distribution for TPSA company, which represent
conditional duration Ψi depending on the observed disturbance εi−1 at the time ti−1.
In addition, plotting curves we established that the conditional duration Ψi−1 at the
time ti−1 equals 1 (see Fernandes and Grammig 2006), and substituted the posterior
means for the parameters. It is very interesting that Ψi in each case reacts to new
shock εi−1 in a similar manner. The news impact curves of the nonlinear models are
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concave. The concavity of the curves allows reducing the problem of overprediction
after very short and very long durations ascertained in the case of the simplest linear
model. In the case of concave shocks impact curves, the difference in duration of
reaction to disturbances is stronger in the case of small disturbances than in large
ones. It seems, therefore, that the concavity of the news impact curves is one of
the most important properties that should be taken into account in the analysis of
transaction durations for companies on the Polish stock market.
The concavity of functions of response to the random shocks is also confirmed by
the characteristics of posterior distribution of parameters in the ABCACD and As-
LACD models. For GGam-ABCACD models, posterior marginal distributions of the
δ2 parameter are located on the far side of the δ2 = 1. As far as the GGam-As-LACD
models (and Burr-As-LACD models) are concerned, the posterior distributions of the
α and c parameters tend to the left of zero, which ensures concavity of the news
impact curves.

Figure 6: The estimated news impact curves for selected ACD models with the
conditional generalized gamma distribution for TPSA company
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Figure 7: Marginal posteriors (bars) and priors (solid lines) of b and c parameters of
the GGam-ABCACD model for TPSA company
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Let us look at the characteristics of the posterior distributions of the parameters b
and c in the GGam-ABCACD models. The marginal posterior distributions of the
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parameters b and c in the GGam-ABCACD models are displayed in Figure 7. In the
case of TPSA the posterior mean of the distribution p(b|x, x(0),M11) is approximately
0.17 and the standard deviation at about 0.025 is relatively small. The parameter
b is therefore statistically significant. The posterior distribution p(c|x, x(0),M11), in
turn, is located around 0.7 and heavily dispersed. A similar situation is revealed for
PKOBP. The posterior marginal distribution p(b|x, x(0),M11) of the GGam-ABCACD
model is located centrally at around 0.227, a value that is the farthest from zero of all
three companies surveyed. The posterior distribution p(c|x, x(0),M11) has posterior
mean of 0.78 and reveals a large dispersion measured in terms of a standard deviation
of about 0.2. Thus the large posterior standard deviations of the parameters c leave
a lot of uncertainty about the values of the rotation parameters. On the other
hand, an analysis of the marginal posterior distributions of the parameters b and
c in the GGam-ABCACD model for AGORA can bring us to the conclusion that
the parameter b is statistically significant, the same as in the case of TPSA, but the
marginal posterior distribution p(b|x, x(0),M11) this time edges much closer to zero.
The posterior mean stands at 0.08 and the standard deviation of about 0.01 is very low.
In turn, the posterior distribution p(c|x, x(0),M11) is now highly concentrated around
the posterior mean of about 0.98 due to the small standard deviation of 0.02. In
addition, it is worth noting that the marginal posterior distributions of the parameter
c reveal a strong left-sided asymmetry and mode values in very close proximity of
the marginal value of c = 1. The empirical results also lead to the conclusion that
in the case of the ABCACD model, which combines power transformation with the
asymmetry of response to small and large shocks, the power transformation can play
the dominant role in explaining the nature of duration dynamics and causes a problem
with unambiguous identification of the rotation parameter by data. Allowing an
asymmetric response to a disturbance does not have to increase the explanatory power
of the model.
An important issue for the use of Monte Carlo methods based on Markov chains
involves analysis of the convergence speed of the simulated chains. Figure 8 shows the
performance of the CUMSUM statistics after rejection of burnt-in states in the case
of the GGam-BCACD model for TPSA. In the case of TPSA, the values of CUMSUM
statistics were calculated after a prior rejection of 200 000 burnt-in states and relied
on 2 million Gibbs’ states. A very fast convergence of the cumulative sums for the
parameters of the equation defining the expected duration is manifest. CUMSUM
statistics range between (-0.05, 0.05) already after about 60,000 Gibbs’ states. In
the case of the parameters γ and ν we see a slower convergence in the chain. This
may result from a strong posterior correlation between these parameters. Assuming
a relative error of ε = 0.05, convergence of CUMSUM statistics can be noted after
about 160 000 Gibbs’ states. Similar results were reported for the GGam-BCACD
model for AGORA. In the case of PKOBP convergence of the chains was significantly
slower than for the less liquid companies – TPSA and AGORA. To achieve satisfactory
estimation results the values of CUMSUM statistics were calculated based on 4 million
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Gibbs’ draws generated after the rejection of as many as 500 000 burnt-in states i.e.
twice more than in previous empirical illustrations. The γ and ν parameters revealed
the slowest convergence of chains. This results of course from a strong posterior
correlation between these parameters, but it can be gathered that also the high
degree of uncertainty as to the value of the parameter ν is partly to blame. Assuming
ε = 0.05, the convergence of CUMSUM statistics was determined after about 1.2
million Gibbs’ draws. Assuming, in turn, a relative error ε = 0.1 the convergence of
CUMSUM statistics was reported earlier – after about 500 000 Gibbs’ states. There
was a faster convergence of the cumulative sums for the parameters of the equation
defining the expected duration, although the CUMSUM statistics ranged between (-
0.05, 0.05) only after about 400 000 Gibbs’ states. It is also worth mentioning that in
the case of all three companies, simpler models i.e. those that were less parameterized
revealed faster convergence. Augmented models i.e. the ABCACD and AACD models
revealed slower convergence and required more burnt-in states.

5.2.2 Bayesian prediction

We will now present the forecasting properties of Bayesian ACD models. In the
light of the results obtained predictive distributions of durations were determined
solely on the basis of the GGam-BCACD models. We forewent the construction of
predictive distributions based on the Bayesian technique of knowledge combination.
Instead of presenting forecasts of waiting times between successive transactions i.e.
xT+k we decided to designate and present forecasts (predictive distributions) of
times of occurrence of subsequent k transactions (which are rather intuitive in these
analyses). Let it be remembered again that pursuant to the literature on the subject,
we applied modelling using ACD specifications to transaction durations purged
of intraday seasonality patterns. We therefore predicted the times of occurrence
of subsequent k transactions taking into account the seasonality component, i.e.
forecasts defined by the formula ỹT+k =

∑k
i=1 x̃T+i =

∑k
i=1 xT+i · φ(txT+i), where

k = 1, 2, 3, 4, 5, 10, 20, 100 (forecast horizons), and xT+i stands for the forecast
of trade duration between transaction T+i-1 and transaction T+i , ignoring the
seasonality effect resulting from the time of day, and φ(txT+i) is the value of the
function describing the seasonal component at time txT+i . Table 6 presents quantiles
of predictive distributions. Figure 9 shows histograms of marginal predictive
distributions for the trade durations ỹT+k (k = 1, 2, 3, 4, 5, 10, 20, 100) using TPSA
company as an example. In the graphs, realised durations ỹT+k are marked as
black triangles. The histograms of marginal predictive distributions for durations for
AGORA and PKOBP companies look the same, hence they are not included in the
diagrams.
In general, we observe a very wide dispersion of predictive distributions of transaction
durations. Their dispersion measured in terms of their inter-quartile range increases
with the forecast horizon, which is due to the nature of the forecast and the
consequent accumulation of prediction errors. Marginal predictive distributions are
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Figure 8: The CUMSUM statistics after rejection of burnt-in states for parameters
in the GGam-BCACD model for TPSA company
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generalized gamma type distributions wherein an increase in the forecast horizon
sees an inclination towards normal distribution.
In the case of TPSA actual durations yT+k range between the median and the
0.75-quantile of the predictive distribution for the yT+1, the 0.25-quantile and the
median for yT+2 and yT+3, between the 0.1- and 0.25-quantiles for yT+4 and yT+5.
In the case of "long-term" forecasts, the observed times stand, in turn, between
the 0.75- and 0.9-quantiles for yT+10, slightly below the 0.75-quantile for yT+20
and above the 0.9-quantile for yT+100. Assuming a point forecast at the median
value, the relative posterior errors would be very high and would thus suggest an
inconsistency between the forecasts and reality. Similar conclusions can be drawn
for AGORA and PKOBP. It should be emphasised, however, that the significant
dispersion and heavy right-sided tails of the predictive distributions cause the point
forecasts at the level of the median to be obviously burdened with ex ante errors,
which implies serious uncertainty about durations’ future values (the outlying bars
in the histograms, although not to be seen in the diagram, are located at the very
end of the horizontal axis). Due to the strong asymmetry of predictive distributions,
in the case of short-term forecasts we would report a much better accuracy if we
considered the point forecasts at their modal value.
TPSA’s posterior analysis shows that the observed values of the cumulative
transaction duration occupy areas of high predictive density, even for long forecast
horizons. It can therefore be concluded that in that sense short-term and long-term
forecasts based on the GGam-BCACD model are accurate. AGORA’s and PKOBP’s
situation is different, though. As far as "long-term" forecasts for k = 4, 5, 10, 20, 100
horizons are concerned, in the case PKOBP the probabilities of realisation above the
observed values stand at 0.016, 0.003, 0.003, 0.013 and 0.004 respectively, and in the
case of AGORA at below 0.06. Thus the posterior analyses show that the observed
values of the cumulative transaction duration for long horizons are not located
in areas of high predictive density and in that sense "long-term" forecasts are not
accurate. Predictive distributions are, however, characterized by very fat right tails
and overdispersion. Therefore, forecasting the precise occurrence of k consecutive
transactions on the basis of the process’s past seems to be an extremely challenging
task.

6 Concluding remarks
The main aim of this paper was to develop and apply the Bayesian approach to
the estimation and testing of predictive capabilities of autoregressive conditional
duration (ACD) models, as well as to practically use Bayesian ACD models to
analyse transaction duration dynamics of selected companies listed on the Polish
stock exchange. It is worth mentioning again that the Bayesian methodology was not
used thus far as an alternative method for the estimation of and prediction within
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Table 6: Quantiles of predictive distributions of the cumulative trade durations taking
into account the seasonality component for TPSA company

Quantiles ỹT +1 ỹT +2 ỹT +3 ỹT +4 ỹT +5 ỹT +10 ỹT +20 ỹT +100

0.1 1 4 7 11 15 39 98 913
0.25 2 6 11 17 23 55 135 1164
0.5 5 12 19 27 36 83 197 1538
0.75 10 21 33 45 58 128 295 2057
0.9 20 37 55 73 91 193 431 2713

Real values 9 10 11 12 21 166 287 3727

Figure 9: Histograms of marginal predictive distributions of the cumulative trade
durations taking into account the seasonality component for TPSA company
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competing models in relation to the whole class of the ACD models discussed in the
paper. In the context of foreign and Polish literature this application of the proposed
approach therefore constitutes a new outlook on the issue of ACD models estimation.
The results of the Bayesian inference for ACD models carried out on the basis
of time series of transaction durations on the Polish stock exchange proved to be
similar for all the companies surveyed. The empirical results allow us to conclude
that the conditional distributions of transaction durations are far from being either
an exponential distribution or a Weibull distribution. In addition, the generalized
gamma distribution can be more flexible in modelling the conditional distribution of
transaction durations than the Burr distribution. The results obtained clearly indicate
that the effect of constant conditional duration in the models is strongly rejected by all
the series under consideration. The posterior means and posterior standard deviations
of the parameters α and β in the specifications under consideration are indicative of
a significant deviation from this effect. Properties of probability distributions alone
used in the models as conditional distributions do not suffice, therefore, to describe
the dynamics of the analysed transaction durations. These observations also show
that transaction durations are not distributed by the Poisson process. Analysis of
the estimation results of ACD models for each of the companies indicate that in the
light of the data the Box-Cox ACD model with the conditional generalized gamma
distribution seems to be the most appropriate model for determining transaction
durations but formal comparison of considered models is required. It occurred that the
model’s ability to ensure a concave news impact curve is crucial for the modelling of
transaction durations on the Polish market. One can say that from the viewpoint of a
model’s parameter estimation, the dynamics of expected duration for companies with
less liquidity are not significantly different from the dynamics ascertained for liquid
companies. The nature of the dynamics is similar for all companies. It is also worth
noting that what was essential in the construction of marginal posterior distributions
was the information embedded the observed data, and not the initially adopted
prior distributions themselves. Posterior distributions are characterized by a different
location and a markedly smaller dispersion than prior distributions. The results of
empirical research required the use of numerical methods. Monte Carlo methods
based on Markov chains proved to be an effective tool for the approximation of the
characteristics of posterior and predictive distributions. Due to the high variability
of transaction durations, forecasts are subject to considerable ex ante uncertainty.
Marginal predictive distributions are in fact highly dispersed as evidenced by the fat
tails revealed by these distributions.
The main finding arising from the empirical research is that ACD models provide
an adequate description tool for the dynamics of transaction durations and can be
used for modelling. It should be noted, however, that a formal Bayesian comparison
of ACD models’ explanatory power (based on Bayes factors) is required in order to
confirm the markedly higher adequacy of nonlinear ACD models than that of the
simplest variant from this class – the linear ACD model. This challenge will be faced
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in the future research. On the basis of the results one can also state that the Bayesian
estimation and prediction methods provide a universal and convenient inference tool.
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