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Abstract

This article aims at constructing a new method for testing the statistical
significance of seasonal fluctuations for non-stationary processes. The
constructed test is based on a method of subsampling and on the spectral theory
of Almost Periodically Correlated (APC) time series. In the article we consider
an equation of a nonstationary process, containing a component which includes
seasonal fluctuations and business cycle fluctuations, both described by an
almost periodic function. We build subsampling test justifying the significance
of frequencies obtained from the Fourier representation of the unconditional
expectation of the process.
The empirical usefulness of the constructed test is examined for selected
macroeconomic data. The article studies survey indicators of economic climate
in industry, retail trade and consumption for European countries.
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1 Introduction
In the majority of macroeconomic indices, apart from fluctuations due to a general
trend or changing economic activity, one can also discern seasonal fluctuations as their
inseparable element. Seasonality is related to fluctuations of a rather regular shape,
constant length and similar amplitude and are primarily due to changing seasons.
An in-depth characteristic of these fluctuations does not play a key role in empirical
macroeconomics. However we deal very frequently with the interaction between the
seasonal fluctuations with the business cycle fluctuations, while the latter being of
extreme importance in empirical investigations. It takes place for the majority of
macroeconomic time series on both quarterly and monthly basis.
In the empirical analysis, seasonal variations are removed by the application of
some ad hoc procedures. The development of dynamic econometrics yields the
vast literature concerning methods of seasonal adjustment. These methods assume
the separation of seasonal fluctuations from the analysed phenomenon, without
major interference with any long-term rising or declining trend or with business
cycle. Known methods of clearing data of seasonal fluctuations include the X-11,
X-11-ARIMA, X-12-ARIMA - developed by the United States Census Bureau,
TRAMO/SEATS, initially proposed and applied by the Bank of Spain, and other
methods. There are, however, numerous contesting opinions in the literature
expressing reservations towards removing seasonal fluctuations from macroeconomic
data. The topic of the effect of the seasonal adjustment has been taken up e.g. in
the monograph by Franses (1996), where a separate chapter is devoted for this issue.
Franses (1996) concentrates on the independence of seasonal variations and business
cycle fluctuations and the possibility of sorting them out. The author emphasizes that
in certain situations the separation of the seasonal fluctuations and the business cycle
fluctuations is far from easy, and at times seemingly impossible due to the interaction
between fluctuations of both nature. Suggestions have been formulated indicating
when such a situation may occur.
At the end of the eighties and beginning of the nineties of XX century a series
of publications addressed the topic of the importance of seasonal fluctuations in
the analysis of macroeconomic time series. Ghysels (1988) argues that seasonal
adjustment of macroeconomic data is not a harmless operation as many researchers
had earlier assumed. What is more, the author indicates that an inadequately
chosen seasonal adjustment method may lead to substantial loss of information.
In subsequent years the importance of seasonal fluctuations, particularly in case
of forecasting, was addressed by Barsky and Miron (1989), Braun and Evans
(1990), Chattarjee and Ravikumar (1992), Canova and Hansen (1995), Miron
(1996), Franses and Ooms (1997), Novales and Fruto (1997), Wells (1997) and
Herwartz (1999). Canova and Hansen (1995) conclude that seasonality constitutes
an integral part of the analysed phenomenon and cannot be disregarded in the
construction of a model. Moreover, seasonally adjusted data may possess certain
characteristics which do not constitute features of the analysed phenomenon but
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result from the properties of the method used for seasonal adjustment of the data.
This issue was addressed by Franses and Ooms (1997), recommending analysis of
data which have not been subject to seasonal adjustment. In turn, studies by
Novales and Fruto (1997), Wells (1997) and Herwartz (1999) show the advantage
of the so-called periodic models (i.e. models assuming the periodicity of the expected
value function and autocovariance function) over non-periodic models in forecasting.
Ghysels, Granger, Sikolos (1996) indicate that seasonal adjustment of data may
lead to the creation of artefact nonlinear structures. Luginbuhl and de Vos (2003)
reiterate that such components as growth, business cycle fluctuations and seasonal
fluctuations should be modelled simultaneously.
Despite of the importance of seasonality effect in empirical modelling, the issue
of its formal statistical identification is not explored in details. In the empirical
literature, if some ad-hoc chosen procedure of seasonal adjustment is applied, usually
the explanation of the existence of those fluctuations has intuitive and anecdotal
origin. Hence, in the presence of such deficiency, development of statistical test
indicating the significance of seasonal fluctuations is necessary. This paper tries
to apply, in the problem stated above, the spectral theory of Almost Periodically
Correlated (APC) stochastic processes in building formal statistical test of the
existence of seasonality fluctuations in observed time series. Starting from the
Fourier representation of the unconditional expectation of the process we build test
statistics, to make formal inference about the significance of frequencies of length
related with seasonal fluctuations. The distribution of the natural test statistics
is approximated by the subsample distribution according to the method described
in Politis, Romano, Wolf (1999). We discuss asymptotic consistency of both test
statistics and subsampling approximations of quantiles, utilized in the procedure as
critical values.

2 Basic definitions and results
This chapter presents basic concepts and results related to Periodically Correlated
(PC) time series, Almost Periodically Correlated (APC) time series and the
subsampling method. Let us consider a real valued stochastic process {Xt : t ∈ Z}
with the unconditional expectation µ(t) = E(Xt) < ∞ and the autocovariance
function B(t, τ) = cov(Xt, Xt+τ ) < ∞, where τ ∈ Z. According to Gladyshev
(1961) and Gladyshev (1963), the process is periodically correlated (respectively
almost periodically correlated) if its unconditional mean and autocovariance function
is a periodic (respectively almost periodic) function of the variable t for any τ ∈ Z.
The definition of an almost periodic function, relaxing periodic function case, may
be found in the monograph Corduneanu (1989). The expected value function of the
APC time series has the following Fourier representation:

µ(t) ∼
∑
ψ∈Ψ

m(ψ)eiψt, (1)
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where coefficient m(ψ) ∈ C are given as follows:

m(ψ) = lim
n→∞

1
n

n∑
t=1

µ(t)e−iψt. (2)

Corduneanu (1989) proved the most important result for decomposition (1) that the
set Ψ = {ψ ∈ [0, 2π) : |m(ψ)| ̸= 0} is countable. In this article we do not require that
the number of elements in the set Ψ is finite.
If the set Ψ includes at lest one element from among the frequencies defined as:
ΨT := {2kπ/T : k = 1, 2, . . . , T − 1}, then the time series observed T times a
year is characterized by regular seasonal fluctuations. This property is crucial for
the construction of the significance test for seasonal fluctuations. The problem of
identification of the presence of frequencies from the ΨT set in an unknown set Ψ
consist of the identification of non-zero values of the modulo of Fourier coefficients,
namely of |m(ψ)|, for ψ ∈ ΨT , which is due to the following equivalence:

ψ ∈ Ψ ⇔ |m(ψ)| ̸= 0.

We will therefore focus on the problem of estimation of the modulo of Fourier
coefficients, namely of |m(ψ)|.
For a given frequency ψ ∈ [0, 2π), based on a dn-element sample
{Xcn+1, Xcn+2, . . . , Xcn+dn} from the time series {Xt : t ∈ Z}, with {cn}n∈N and
{dn}n∈N being any non-negative sequences of integers where dn → ∞, the natural
estimator m̂cn,dn

n (ψ) (in short m̂c,d
n (ψ)) of the parameter m(ψ) takes the form:

m̂c,d
n (ψ) = 1

dn

cn+dn∑
t=cn+1

Xte
−itψ;

see Lenart (2013). The non-parametric approach to testing the significance of the
parameter |m(ψ)|, consisting in the use of asymptotic distribution of normalized
estimator |m̂n(ψ)| = |m̂0,n

n (ψ)|, seems to be impossible due to the form of this
distribution (see Lenart (2013)). This clearly motivates the use the subsampling
method, where the exact form of the asymptotic distribution does not play such a
crucial role as in the classical case. The idea of subsampling together with the general
theoretical results was presented in Politis, Romano, Wolf (1999). Asymptotic
properties of this method, such as its consistency when applied for estimation of
the modulo of Fourier coefficients |m(ψ)|, were presented by Lenart (2013). An
application of this method to formal statistical inference about the properties of
the business cycle component for industrial production time series was discussed by
Lenart and Pipień (2013). Therefore the presentation of the main assumptions and
the concept of the subsampling method with respect to parameter |m(ψ)| has been
omitted.
Here we present the theoretical results that enable the construction of an
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asymptotically consistent significance test of seasonal fluctuations. The set of
theorems discussed below are generalizations of theorems presented in Lenart (2013).

Theorem 2.1. Let all the assumptions of Theorem 2.1 from Lenart (2013) are met.
Then for any set of frequencies Ψ̃ = {ψ1, ψ2, . . . , ψp} ⊂ [0, 2π), where p ∈ N the
following convergence is obtained:

√
dn





Re[m̂c,d
n (ψ1)]

Im[m̂c,d
n (ψ1)]

Re[m̂c,d
n (ψ2)]

Im[m̂c,d
n (ψ2)]
...

Re[m̂c,d
n (ψp)]

Im[m̂c,d
n (ψp)]


−



Re[m(ψ1)]
Im[m(ψ1)]
Re[m(ψ2)]
Im[m(ψ2)]

...
Re[m(ψp)]
Im[m(ψp)]




d−→ N2p(0,Φ(Ψ̃)), (3)

where the exact formula of the variance-covariance matrix Φ(Ψ̃) may be derived from
Lemma A.3; see proof of Theorem 2.1 in Lenart (2013).

The next theorem is a natural extension of Theorem 2.2 from Lenart (2013). It
provides a basis for the construction of a test related to the structure of the function
that describes the unconditional mean of the observed time series.

Theorem 2.2. Let all the assumptions of Theorem 2.2 from Lenart (2013) be met.
Then for any set of frequencies Ψ̃ = {ψ1, ψ2, . . . , ψp} ⊂ [0, 2π), where p ∈ N the
following convergence is obtained:

√
dn


∑
ψ∈Ψ̃

|m̂c,d
n (ψ)|2

 1
2

−

∑
ψ∈Ψ̃

|m(ψ)|2
 1

2
 d−→ J Ψ̃, (4)

where

J Ψ̃ =


L(Z̃), for

∑
ψ∈Ψ̃

|m(ψ)|2 = 0,

N1(0,A0Φ(Ψ̃)AT
0 ), for

∑
ψ∈Ψ̃

|m(ψ)|2 ̸= 0, (5)

A0 = 1√∑
ψ∈Ψ̃

|m(ψ)|2
·

·
[
Re(m(ψ1)) Im(m(ψ1)) Re(m(ψ2)) Im(m(ψ2)) . . . Re(m(ψp)) Im(m(ψp))

]
,

Z̃ =
(∑2p

j=1 B
2
j

)1/2, and the random vector [B1 B2 . . . B2p]T follows 2p-dimensional
Normal distribution with zero mean and covariance matrix Φ(Ψ̃).
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Let us take any p ∈ N and Ψ̃ = {ψ1, ψ2, . . . , ψp} ⊂ [0, 2π). By

LΨ̃
n,b(x) = 1

n− b+ 1
·

·
n−b+1∑
t=1

1

√
b

( ∑
ψ∈Ψ̃

|m̂t−1,b
n (ψ)|2

) 1
2

−
( ∑
ψ∈Ψ̃

|m̂n(ψ)|2
) 1

2
 ≤ x


(6)

let us define a subsample estimator of the cumulative distribution function of the
following quantity:

√
n


∑
ψ∈Ψ̃

|m̂n(ψ)|2
 1

2

−

∑
ψ∈Ψ̃

|m(ψ)|2
 1

2
 ,

and by J Ψ̃(x) the value at point x of the cumulative distribution function of the
asymptotic distribution of this quantity. Let cΨ̃

n,b(1 −α) be a quantile of order (1 −α)
of the LΨ̃

n,b(x) distribution, i.e.

cΨ̃
n,b(1 − α) = inf{x : LΨ̃

n,b(x) ≥ 1 − α}.

The following theorem states the consistency of the subsampling procedure for a more
general setting than in the case considered previously in Theorem 2.3 by Lenart
(2013).

Theorem 2.3. Let us take any Ψ̃ = {ψ1, ψ2, . . . , ψp} ⊂ [0, 2π), where p ∈ N. If
the assumptions of Theorem 2.2 (including the additional conditions) are met and
additionally the distribution J Ψ̃(·) in not degenerate, then

1. LΨ̃
n,b(x) p→ J Ψ̃(x), for any x ∈ R,

2. supx∈R |LΨ̃
n,b(x) − J Ψ̃(x)| p−→ 0,

3. subsample confidence intervals for parametr
(∑

ψ∈Ψ̃ |m(ψ)|2
) 1

2 are consistent,
which means that

P

√
n
(( ∑

ψ∈Ψ̃

|m̂n(ψ)|2
) 1

2 −
( ∑
ψ∈Ψ̃

|m(ψ)|2
) 1

2
)

≤ cΨ̃
n,b(1 − α)

 −→ 1−α, (7)

where b = b(n) → ∞ and b/n → 0.
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3 The significance test of seasonal fluctuations in
the APC time series

Let Ψ be a true set of frequencies in the Fourier representation for the unconditional
mean of the process {Xt : t ∈ Z}. If the set Ψ contains at least one element from
the set ΨT = {2kπ/T : k = 1, 2, . . . , T − 1}, where T is the number of observations
during a year then time series {Xt : t ∈ Z} is subject to seasonal fluctuations. Let us
then state the following problem of testing the significance of seasonal fluctuations in
the following way:

H0 : Ψ ∩ ΨT = ∅
H1 : Ψ ∩ ΨT ̸= ∅,

(8)

together with the natural test statistic

Πn(ΨT ) =
√
n

 ∑
ψ∈ΨT

|m̂n(ψ)|2
1/2

.

Hypothesis H0 is interpreted as a case when the series is not subject to seasonal
fluctuations, while alternative hypothesis H1 indicates theirs existence.
The distribution of the test statistics will be approximated by the subsample
distribution, with the application of Theorem 2.3 and the results presented in
Politis, Romano, Wolf (1999). We will use identical notation as in Lenart (2013)
and Lenart and Pipień (2013).
Additionally, to compare our results we make use of the quantile

gΨT
n,b (1 − α) = inf{x : GΨT

n,b (x) ≥ 1 − α},

where subsampling distribution GΨT
n,b (x) has the following form

GΨT
n,b (x) = 1

n− b+ 1

n−b+1∑
t=1

1

√
b

 ∑
ψ∈ΨT

|m̂t−1,b
n (ψ)|2

 1
2

≤ x

 . (9)

The test based on the gΨT
n,b (1 − α) quantile and the test statistic Πn(ΨT ) is also

asymptotically consistent. In order to prove this, it is enough to apply the
same arguments as in the proof of Theorems 2.6.1 and 4.2.1 in the monograph
Politis, Romano, Wolf (1999).

4 Model equation
Here we present a one-dimensional model equation that describes the dynamics of a
selected macroeconomic variable and constitutes the basis for further considerations.
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Let us assume that the examined variable is the time series {Yt : t ∈ Z} with a
representation:

(1 −B)dYt = ηt, (10)

for non-negative real number d, BkYt = Yt−k for any natural number k, while
{ηt : t ∈ Z} is an APC time series. Let us recall that depending on the values of
parameter d and properties of the time series {ηt : t ∈ Z}, the time series {Yt : t ∈ Z}
may constitute I(0) case, a process with long memory or I(1), I(2) etc. cases.
The application of the test presented in the previous chapter, to identify the form
of the expectation for the time series {Yt : t ∈ Z}, is not possible automatically.
It is necessary to make certain assumptions about the bounding of the respective
unconditional moment and convergence of the α mixing, but in the case when no
information about parameter d is given those assumptions do not hold for the time
series {Yt : t ∈ Z}. However, the periodic structure resulting from the seasonality may
be characterized by the parameters of the time series {ηt : t ∈ Z} only. Therefore,
subsequently we will be considering the problem of identifying the structure of the
expected value function for the time series {ηt : t ∈ Z}, making a rather general
assumption that it is an APC class time series. Such an assumption allows to interpret
respective parameters of the structure of the expected value function for the time
series {ηt : t ∈ Z} as responsible for the seasonal fluctuations and the business
cycle fluctuations contained in the observed time series; see the model equation in
Lenart and Pipień (2013).
The problem of identification of the periodic structure of the unconditional
expectation for the time series {ηt : t ∈ Z}, in case when the value of the parameter d
is unknown, is difficult, since the time series {ηt : t ∈ Z} is not observed in this case.
In order to identify the structure of the expected value function for the time series
{ηt : t ∈ Z} we shall use a well-known differencing operator, as it does not change
(non zero) elements of the set Ψ, i.e. the set of frequencies in the representation of
the expected value function for the time series. Below, we present a theoretical result
formulating this issue in a precise manner. It will allow later on to obtain a method
for the identification of significant frequencies in the Fourier representation for the
expected value function of the time series {ηt : t ∈ Z}. The proofs can be found in
the Appendix.

Theorem 4.1. Let the Assumption 1.1 from Lenart (2013) be met for the APC time
series {ηt : t ∈ Z}. Then for any ϵ > 0

Ψη ∩ (0, 2π) = Ψη̃ ∩ (0, 2π),

where Ψη̃ (respectively Ψη) are frequencies in the Fourier representation of the
expected value function for the time series {(1 − B)ϵηt : t ∈ Z} (respectively the
time series {ηt : t ∈ Z}). Additionally for the time series {(1 − B)ϵηt : t ∈ Z} the
Assumption 1.1. from Lenart (2013) is met.
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The above theorem leads to the conclusion that the identification of the structure
of the expected value function of the time series {ηt : t ∈ Z} requires the identification
of the structure of the expected value function for the time series of the following form:

(1 −B)d1Yt = (1 −B)ϵηt, (11)

where parameter d1 has been selected so that ϵ = d1 − d ≥ 0. The assumption that
ϵ ≥ 0 ensures that the time series {(1 −B)ϵηt : t ∈ Z} is also APC. Therefore, in the
empirical analysis of data the procedure requires the appropriate choice of parameter
d1.
Below, one more theorem has been included, to be used later on in Chapter 5. It
shows that an APC time series observed T times a year following the application of
an annual aggregation filter does not include frequencies interpreted as the seasonal
fluctuations.

Theorem 4.2. Let Assumption 1.1 from Lenart (2013) be met for the time series
{Xt : t ∈ Z}. Then, for the time series {Yt = L̃(B)Xt : t ∈ Z} we have

ΨY = ΨX \ {2kπ/T : k = 1, 2, . . . , T − 1},

where L̃T (B) = 1 + B + B2 + . . . + BT denotes the filter of annual aggregation.
Furthermore, the time series {Yt = L̃T (B)Xt : t ∈ Z} is also APC and meets the
assumpion 1.1 from Lenart (2013).

5 Empirical analysis
We present the usefulness of the proposed method of estimation the seasonality effect
on the basis of survey indices of economic climate for European countries. The dataset
was taken from EUROSTAT and contains time series of survey indices of economic
condition in industry, housing, retail trade and consumption. The data consist of at
least 180 and not more than 310 observations taken for EU-27 and UE-18 regions,
as well as, selected European countries. The length of the series attributed with the
region or country is not the same and is determined by accessibility of survey indices.
Tables 1, 2, 3 and 4 present the results of subsampling inference about frequencies
interpreted as seasonal fluctuations, namely about elements of the set ΨT = {2kπ/12 :
k = 1, 2, . . . , 11}, in case of industry, housing, retail trade and consumption
respectively. In tables we put test statistics Πn(ΨT ) in both cases, where d = 1 and
d = 2 in formula (10). Also in both cases of the order of integration of the observed
proce4ss we put critical values cn,b and gn,b provided the level of significance α = 0.05.
The majority of inspected time series of survey indicators provide clear data evidence
against hypothesis H0 in (8) and consequently, not surprisingly, indicate the existence
of seasonal fluctuations. The test statistics Πn(ΨT ) is greater than critical values,
making clear formal verification of stylised fact that survey indicators are mainly
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subject to seasonal fluctuations. In case of industry we see slightly weaker evidence
about seasonality for Czech Republic, Denmark and Luxembourg, as the test statistics
lies between cn,b and gn,b critical values; see Table 1. According to Table 2, the
indicator of economic condition in housing is also subject to seasonal fluctuations
in almost all series. The value of the test statistics Πn(ΨT ) indicates the lack of
seasonal fluctuations for Italy and Portugal only. There is also some uncertainty in
case of Bulgaria. The survey indicator concerning retail trade seems to be the most
irregular as compared to the other indices. The results of subsampling inference for
this indicator was presented in Table 3. We see the strong data evidence in favour
of seasonal fluctuations in case of EU-27, EU-16, Belgium, Denmark, Poland and
Slovakia. There is no data evidence to reject hypothesis H0 in (8) only in case of
Bulgaria, but the results leaves great uncertainty about seasonal effect in case of
German, Italy, Romania and UK.
The survey indicator of economic condition in consumption is generally subject to
seasonal changes. The test statistics Πn(ΨT ) calculated for this indicator is presented
in Table 4. We report rejection of hypothesis H0 in all cases, except Hungary,
assuming I(2) process (d = 2), for the series, the test statistics does not exceed
both critical values cn,b and gn,b.
In the next step observed series were subject to seasonal adjustment. We applied two
seasonal filters of the following form:

(1 −B12)Yt = (1 −B)(1 +B +B2 + . . .+B11)Yt = L̃12(B)(1 −B)Yt (12)

and

(1−B12)(1−B)Yt = (1−B)(1+B+B2+. . .+B11)(1−B)Yt = L̃12(B)(1−B)2Yt. (13)

Seasonal differencig 1−B12 operator is commonly used in adjustment of the short term
fluctuations; see Brockwell and Davis (2002), Makridakis, Wheelwright, Hyndman
(1998). According to Theorem 4.1 and 4.2 unconditional means of filtered series (12)
and (13), where the process Yt follows (10), do not contain frequencies attributed
with seasonal fluctuations.
According to the results presented in Tables 5, 6, 7 and 8, filtering operators (12) and
(13) definitely wipes out the seasonal effect in all survey indicators. Since the test
statistics Πn(ΨT ) does not cross both critical values cn,b and gn,b, there is no data
evidence to reject hypothesis H0.

6 Conclusions
The issue of seasonal fluctuations in macroeconomic data is important from the point
of view of making inference about fluctuations of economic activity and has been
brought up many times in the literature of the subject. The present article focused
on the issue of constructing the significance test for seasonality effect. The construct
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was carried out under general assumptions with respect to the modelled time series.
It was assumed that observed series may incorporate a stochastic trend, seasonal
fluctuations and business cycle fluctuations. No assumptions about the independence
or additiveness among these components were made, which makes the argument more
general. The approach was applied for survey indicators of economic situation in
industry, construction, retail trade and consumption for selected European areas and
countries. The results clearly indicate the existence of seasonal fluctuations in the
majority of these indicators. However, one may identify the series, where there is no
evidence in favour of seasonal effects.
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Appendix
Proof of Theorem 4.1
Let us notice that:

E((1 −B)ϵηt) = E

( ∞∑
k=0

(−1)k
(
ϵ

k

)
ηt−k

)

=
∞∑
k=0

(−1)k
(
ϵ

k

)
µη(t− k) =

∑
ψ∈Ψη

∞∑
k=0

(−1)k
(
ϵ

k

)
mη(ψ)eiψ(t−k)

=
∑
ψ∈Ψη

mη(ψ)(1 − e−iψ)ϵeiψt,

(14)

which means that Ψη ∩ (0, 2π) = Ψη̃ ∩ (0, 2π) (considering that |(1 − e−iψ)ϵ| ̸= 0 for
ψ ∈ (0, 2π)). Condition 1.1 from Lenart (2013) for the time series {(1−B)ϵηt : t ∈ Z}
is obtained immediately applying equality (14).

�

Proof of Theorem 4.2
Applying the same steps as in the proof of theorem 4.1 we obtain:

E(L̃T (B)Xt) =
∑
ψ∈ΨX

mX(ψ)L̃T (1 − e−iψ)eiψt =
∑
ψ∈ΨX

mY (ψ)eiψt, (15)

where mY (ψ) = mX(ψ)L̃T (1 − e−iψ). Then, using the equation |LT (1 − e−iψ)| = 0
which is true for any ψ ∈ ΨT we obtain mY (ψ) = 0, for ψ ∈ ΨT . Hence

ΨY = ΨX \ {2kπ/T : k = 1, 2, . . . , T − 1}.

Condition 1.1. from Lenart (2013) for the time series {Yt : t ∈ Z} is obtained
immediately.

�
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Table 1: Test statistics Πn(ΨT ), where ΨT = {2kπ/12 : k = 1, 2, . . . , 11} together
with subsampling approximations of the critical values. The case of survey indicator
of economic climate in industry

Lp. Country or Πn(ΨT ) for
gn,b(0.95) cn,b(0.95) Πn(ΨT ) for

gn,b(0.95) cn,b(0.95)
region (1 − B)Yt (1 − B)2Yt

1 EU-27 18.59(1***)(2***) 11.17 4.13 20.34(1***)(2***) 13.21 5.5
2 EU-16 19.98(1***)(2***) 12.04 4.47 21.15(1***)(2***) 13.94 5.92
3 Belgium 23.03(1***)(2***) 15.57 6.85 30.53(1***)(2***) 22.07 10.5
4 Bulgaria 16.05(1***)(2***) 14.95 8.21 24.71(2***) 24.83 14.42
5 Czech-Republic 36.71(2***) 37.27 21.31 49.65(2***) 58.1 36.78
6 Denmark 21.39(2***) 23.48 15.39 30.4(2***) 30.97 19.44
7 Germany 21.46(1***)(2***) 12.55 4.43 22.66(1***)(2***) 14.57 5.98
8 Greece 27.86(1***)(2***) 18.99 8.44 34.68(1***)(2***) 28.86 15.71
9 Spain 25.64(1***)(2***) 18.5 8.57 29.69(1***)(2***) 24.07 12.54

10 France 27.4(1***)(2***) 17.34 6.97 30.46(1***)(2***) 22.36 10.81
11 Italy 24.22(1***)(2***) 15.93 6.76 29.67(1***)(2***) 23.53 12.28
12 Latvia 16.57(1***)(2***) 16.31 9.39 21.03(2***) 23.64 14.84
13 Luxembourg 20.18(2***) 24.38 16.74 21.92 35.19 26.88
14 Netherlands 29.57(1***)(2***) 16.15 4.96 35.06(1***)(2***) 19.02 5.72
15 Austria 30.55(1***)(2***) 18.6 7.04 39.1(1***)(2***) 25.62 10.8
16 Portugal 18.77(1***)(2***) 15.61 8.29 24.92(1***)(2***) 21.33 11.71
17 Slovakia 56.96(1***)(2***) 55.05 31.04 69.63(2***) 71.79 42.36
18 Finland 45.49(1***)(2***) 31.21 12.1 58.25(1***)(2***) 51.32 26.79
19 UK 33.68(1***)(2***) 26.59 13.84 55.26(1***)(2***) 43.99 23.04
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Table 2: Test statistics Πn(ΨT ), where ΨT = {2kπ/12 : k = 1, 2, . . . , 11} together
with subsampling approximations of the critical values. The case of survey indicator
of economic climate in housing

Lp. Country or Πn(ΨT ) for
gn,b(0.95) cn,b(0.95) Πn(ΨT ) for

gn,b(0.95) cn,b(0.95)
region (1 − B)Yt (1 − B)2Yt

1 EU-27 40.35(1***)(2***) 20.65 5.38 29.75(1***)(2***) 21.74 10.46
2 EU-16 42.97(1***)(2***) 22.45 6.18 31.36(1***)(2***) 23.01 11.12
3 Belgium 27.72(1***)(2***) 18.41 7.92 26.63(1***)(2***) 23.24 13.14
4 Bulgaria 30.34(2***) 34.12 21.37 37.03(2***) 51.57 35.98
5 Denmark 103.45(1***)(2***) 73. 33.83 119.92(1***)(2***) 102.59 57.12
6 Germany 80.25(1***)(2***) 39.33 8.95 57.11(1***)(2***) 34.43 12.78
7 Greece 42.87(1***)(2***) 42.73 26.5 51.97(2***) 60.52 40.81
8 Spain 57.97(1***)(2***) 56.72 33.62 83.31(2***) 91.88 58.62
9 France 36.91(1***)(2***) 22.72 8.75 47.04(1***)(2***) 33.25 15.41

10 Italy 33. 55.54 43.05 55.72 93.69 72.55
11 Latvia 68.13(1***)(2***) 49.07 20.43 74.49(1***)(2***) 69.22 37.82
12 Lithuania 58.83(1***)(2***) 52.48 27.13 58.27(2***) 74.36 49.17
13 Luxembourg 65.29(1***)(2***) 50.41 25.69 64.59(2***) 73.74 49.25
14 Netherlands 43.87(1***)(2***) 30.03 13.42 35.59(1***)(2***) 25.65 12.16
15 Portugal 16.54 28.33 21.75 19.24 48.01 40.33
16 Finland 88.79(1***)(2***) 65.57 31.95 108.84(1***)(2***) 94.62 53.34
17 Sweden 53.28(1***)(2***) 46.04 24.56 36.62 57.63 42.84
18 UK 24.13(1***)(2***) 23.97 14.84 22.4 38. 29.51

Table 3: Test statistics Πn(ΨT ), where ΨT = {2kπ/12 : k = 1, 2, . . . , 11} together
with subsampling approximations of the critical values. The case of survey indicator
of economic climate in retail trade

Lp. Country or Πn(ΨT ) for
gn,b(0.95) cn,b(0.95) Πn(ΨT ) for

gn,b(0.95) cn,b(0.95)
region (1 − B)Yt (1 − B)2Yt

1 EU-27 18.07(1***)(2***) 15.58 8.68 22.55(1***)(2***) 22.42 13.79
2 EU-16 20.04(1***)(2***) 15.29 7.55 25.23(1***)(2***) 21.1 11.34
3 Belgium 60.39(1***)(2***) 43.57 20.71 69.53(1***)(2***) 58.08 31.72
4 Bulgaria 10.47 23.34 18.95 13.84 38.2 32.38
5 Denmark 31.51(1***)(2***) 27.15 14.34 41.28(2***) 44.66 27.85
6 Germany 18.86(2***) 23.62 16.48 26.76 41.72 31.57
7 Italy 37.3(2***) 43.5 29.16 58.02(2***) 71.11 48.77
8 Poland 28.13(1***)(2***) 21.3 9.38 28.06(2***) 30.64 18.72
9 Romania 21.56(2***) 23.22 14.02 31.62(2***) 37.57 24.04

10 Slovakia 40.51(1***)(2***) 38.76 21.64 51.45(2***) 59.56 37.76
11 UK 25.57(2***) 30.54 20.86 33.83 49.6 36.77
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Table 4: Test statistics Πn(ΨT ), where ΨT = {2kπ/12 : k = 1, 2, . . . , 11} together
with subsampling approximations of the critical values. The case of survey indicator
of economic climate in consumption

Lp. Country or Πn(ΨT ) for
gn,b(0.95) cn,b(0.95) Πn(ΨT ) for

gn,b(0.95) cn,b(0.95)
region (1 − B)Yt (1 − B)2Yt

1 EU-27 15.43(1***)(2***) 9.9 4.06 20.37(1***)(2***) 12.09 4.36
2 EU-16 15.52(1***)(2***) 9.99 4.12 19.85(1***)(2***) 11.72 4.19
3 Belgium 23.61(1***)(2***) 17.82 8.88 34.54(1***)(2***) 26.18 13.08
4 Denmark 18.67(1***)(2***) 16.02 8.95 30.35(1***)(2***) 24.82 13.31
5 Germany 15.22(1***)(2***) 12.81 7.04 19.65(1***)(2***) 19.04 11.59
6 Estonia 17.75(2***) 18.56 11.15 30.5(2***) 33.73 20.97
7 Greece 18.7(1***)(2***) 15.93 8.85 29.62(1***)(2***) 25.26 14.02
8 France 20.74(1***)(2***) 19.28 11.43 26.31(1***)(2***) 23.52 13.54
9 Italy 27.27(1***)(2***) 20.88 10.56 38.08(1***)(2***) 28.03 13.59

10 Hungary 18.67(2***) 22.7 14.84 25.99 40.4 29.43
11 Netherlands 24.79(1***)(2***) 19.01 9.63 34.43(1***)(2***) 27.71 14.65
12 UK 18.64(2***) 18.68 11.62 26.01(2***) 29.24 19.38

Table 5: Test statistics Πn(ΨT ), where ΨT = {2kπ/12 : k = 1, 2, . . . , 11} together
with subsampling approximations of the critical values. The case of seasonality
adjusted survey indicator of economic climate in industry

Lp. Country or Πn(ΨT ) for
gn,b(0.95) cn,b(0.95) Πn(ΨT ) for

gn,b(0.95) cn,b(0.95)
region (1 − B12)Yt (1 − B)(1 − B12)Yt

1 UE27 5.49 16.42 14.32 1.85 5.27 4.56
2 UE16 4.87 18.25 16.4 1.4 5.68 5.14
3 Belgium 4. 20.35 18.83 1.94 8.36 7.62
4 Bulgaria 4.93 18.03 15.93 3.91 14.18 12.51
5 Czech-Republic 12.32 32.36 26.99 7.38 23.02 19.8
6 Denmark 8.25 24.62 21.48 4.36 13.49 11.82
7 Germany 5.78 21.26 19.05 1.66 7.25 6.61
8 Greece 3.65 17.82 16.43 2.89 11.14 10.04
9 Spain 3.91 18.55 17.02 2.26 9.54 8.66

10 France 4.72 23.4 21.6 2.32 9.25 8.36
11 Italy 5.09 18.19 16.25 2.53 9.25 8.29
12 Latvia 11.03 20.18 15.51 6.51 18.63 15.86
13 Luxembourg 8.92 36.33 32.92 5.32 19.87 17.84
14 Netherlands 5.79 13.32 11.12 2.97 5.79 4.66
15 Austria 3.25 17.06 15.82 2.34 8.21 7.32
16 Portugal 6.37 15.88 13.37 5.09 11.27 9.27
17 Slovakia 14.54 43.6 37.38 11.14 43.53 38.75
18 Finland 7.68 28.28 25.02 6.23 20.19 17.53
19 UK 8.85 22.49 19.12 4.53 15.34 13.61
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Table 6: Test statistics Πn(ΨT ), where ΨT = {2kπ/12 : k = 1, 2, . . . , 11} together
with subsampling approximations of the critical values. The case of seasonality
adjusted survey indicator of economic climate in housing

Lp. Country or Πn(ΨT ) for
gn,b(0.95) cn,b(0.95) Πn(ΨT ) for

gn,b(0.95) cn,b(0.95)
region (1 − B12)Yt (1 − B)(1 − B12)Yt

1 UE27 3.38 14.05 12.77 2.14 8.33 7.51
2 UE16 3.81 15.61 14.16 2.5 8.9 7.94
3 Belgium 4.61 12.48 10.72 3.25 8.93 7.69
4 Bulgaria 5.27 28.25 26.01 4.96 21.52 19.4
5 Denmark 10.48 27.35 23.35 8.44 27.67 24.45
6 Germany 6.74 18.11 15.54 2.73 9.74 8.7
7 Greece 7.24 39.38 36.62 6.67 29.75 27.2
8 Spain 8.97 39.88 36.27 13.85 46.52 40.93
9 France 6.54 21.68 19.19 4.21 10.47 8.87

10 Italy 4. 36.03 34.51 6.14 40.95 38.61
11 Latvia 7.88 33.18 29.82 3.62 20.35 18.8
12 Lithuania 8.47 42.98 39.27 4.61 33.65 31.63
13 Luxembourg 7.95 38.99 35.96 3.13 27.56 26.37
14 Netherlands 2.99 19.81 18.67 4.21 11.57 9.96
15 Portugal 10.99 22.97 18.55 7.62 23.06 19.98
16 Finland 9.35 49.57 46. 6.09 35.9 33.58
17 Sweden 7.24 52.73 49.78 10.41 31.51 27.26
18 UK 4.1 36.74 35.17 4.92 19.34 17.46

Table 7: Test statistics Πn(ΨT ), where ΨT = {2kπ/12 : k = 1, 2, . . . , 11} together
with subsampling approximations of the critical values. The case of seasonality
adjusted survey indicator of economic climate in retail trade

Lp. Country or Πn(ΨT ) for
gn,b(0.95) cn,b(0.95) Πn(ΨT ) for

gn,b(0.95) cn,b(0.95)
region (1 − B12)Yt (1 − B)(1 − B12)Yt

1 EU-27 3.62 15.06 13.65 3.51 10.18 8.81
2 EU-16 3.31 13.13 11.84 3.88 11.31 9.79
3 Belgium 5.38 17.19 15.14 5.32 19.83 17.79
4 Bulgaria 7.91 24.4 21.03 6.52 20.83 18.05
5 Denmark 10.12 23.88 19.72 6.4 20.89 18.25
6 Germany 3.32 16.11 14.85 2.71 16.05 15.02
7 Italy 9.06 37.15 33.64 8.01 43.38 40.28
8 Poland 4.71 10.61 8.58 6.13 10.93 8.29
9 Romania 9.43 29.01 24.93 10.6 22.06 17.45

10 Slovakia 7.27 33.06 29.95 7.46 29.7 26.49
11 UK 10.17 33.37 29.49 8. 19.14 16.08

101 Ł. Lenart, M. Pipień
CEJEME 5: 85-102 (2013)



Łukasz Lenart, Mateusz Pipień

Table 8: Test statistics Πn(ΨT ), where ΨT = {2kπ/12 : k = 1, 2, . . . , 11} together
with subsampling approximations of the critical values. The case of seasonality
adjusted survey indicator of economic climate in consumption

Lp. Country or Πn(ΨT ) for
gn,b(0.95) cn,b(0.95) Πn(ΨT ) for

gn,b(0.95) cn,b(0.95)
region (1 − B12)Yt (1 − B)(1 − B12)Yt

1 EU-27 3.36 11.61 10.33 1.26 6.1 5.62
2 EU-16 3.41 12.52 11.22 1.64 6.22 5.59
3 Belgium 4.27 17.23 15.6 3.78 11.69 10.25
4 Denmark 3.64 11.29 9.91 3.15 11.17 9.97
5 Germany 3.42 15.59 14.29 1.97 8.04 7.29
6 Estonia 10.65 19.89 15.38 5.91 15.77 13.27
7 Greece 9.38 17.59 14.02 8.13 13.88 10.77
8 France 3.8 17.04 15.59 3.22 11.78 10.55
9 Italy 3.04 15.02 13.86 2.4 10.27 9.36

10 Hungary 4.86 37.25 35.18 4.18 18.06 16.27
11 Netherlands 5.2 18.2 16.22 4.39 11.98 10.3
12 UK 3.78 14.99 13.55 3.19 12.87 11.65
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