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Abstract

We discuss the empirical importance of long term cyclical effects in
the volatility of financial returns. Following Amado and Teräsvirta (2009),
C̆iz̆ek and Spokoiny (2009) and others, we consider a general conditionally
heteroscedastic process with stationarity property distorted by a deterministic
function that governs the possible time variability of the unconditional variance.
The function proposed in this paper can be interpreted as a finite Fourier
approximation of an Almost Periodic (AP) function as defined by Corduneanu
(1989). The resulting model has a particular form of a GARCH process with
time varying parameters, intensively discussed in the recent literature.
In the empirical analyses we apply a generalisation of the Bayesian AR(1)-
GARCH model for daily returns of S&P500, covering the period of sixty years
of US postwar economy, including the recently observed global financial crisis.
The results of a formal Bayesian model comparison clearly indicate the existence
of significant long term cyclical patterns in volatility with a strongly supported
periodic component corresponding to a 14 year cycle. Our main results are
invariant with respect to the changes of the conditional distribution from Normal
to Student-t and to the changes of the volatility equation from regular GARCH
to the Asymmetric GARCH.
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1 Introduction
Starting from seminal works by Clark (1973), Engle (1982) and Bollerslev (1986)
stochastic processes used to describe observed properties of the volatility of financial
time series have been tailored to identify short term features. In particular, the
resurgence of stochastic volatility (SV) models in the 90’s relied on the assumption
that there exists a stochastic factor independent of the past of the process, which
influences volatility in the short term. The resulting literature concerning GARCH
and SV models, its properties and practical importance is enormous, however
empirical analyses of the dynamic behaviour of the volatility in the long term has
not been fully explored so far.
Recently, some attempts to model long term features of volatility have been made.
Since empirical analyses of long time series of financial returns clearly indicated
that parameters of volatility models may vary over time, it is obvious that models
applied so far may not capture properties of volatility which are important in
the long term. At the beginning of the 90’s the GARCH-type models became
a very popular tool of volatility modelling. But parallelly some problems were
identified with their applications to long time series of financial returns. For
example, Lamoreux and Lastrapes (1990) and Engle and Mustafa (1992) suggested
that parameters of GARCH-type processes are very strongly identified , because
while in econometric applications their estimates are statistically highly significant,
they are not stable over time. Consequently, the constancy of parameters initially
imposed in GARCH-type processes was subject to criticism that prompted new studies
concerning generalisations. In particular Mikosh and Stărică (2004) indicate that
the IGARCH effect is often spuriously supported by data, because in the case of
long time series variability of parameters is natural. Hence the regular GARCH(1,1)
structure is unable to capture nonlinearity and possible complex stochastic properties
of the observed process. Teräsvirta (2009) points out a more formal motivation in
favour of time variability of parameters in a parametric GARCH scheme, suggesting
that constancy of parameters can be a testable restriction and if it is rejected,
the model should be generalised. Several approaches have been proposed imposing
time variability of parameters in volatility models. We see two basic fundamental
approaches applied in this respect, the first one relates to variability governed by
a random process, and the second relies on deterministic framework. Within the
first approach, Hamilton and Susmel (1994) conducted research on the empirical
importance of the assumption that stock returns are characterised by different ARCH
processes at different points in time, with the shifts between processes mediated
by a Markov chain. This straightforward approach opened new topics in financial
econometrics based on the application of Markov switching mechanisms in volatility
modelling. A possible variability of parameters described by a deterministic function
was also subject to analysis. Teräsvirta (2009) modified the smooth transition
GARCH model by imposing a transition function of the form that guarantees
variability of parameters for a process observed in finite time interval. The transition
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function depends on the length of the observed time series. C̆iz̆ek and Spokoiny
(2009) present a review of literature concluding that relaxing time homogeneity of the
process is a promising approach but causes serious problems with proper estimation
methods. For instance, when some or all model parameters will vary over time, a more
subtle treatment of testing structural breaks in financial returns may be obtained; see
Fan and Zhang (1999), Cai, Fan, Li (2000), Fan, Yao, Cai (2003). An approach
to the specification of time varying GARCH models was developed in the field of
nonparametric statistics. Under very general conditions concerning the regularity
of parameters treated as functions of time, nonparametric methods of estimation
were proposed; see Härdle, Herwatz, Spokoiny (2003), Mercurio and Spokoiny (2004),
Spokoiny and Chen (2007) and C̆iz̆ek and Spokoiny (2009).
The main purpose of this paper is to propose a simple generalisation of the GARCH
model which would enable to model long term features of volatility. Our construct
is strictly related to the literature studying the properties of GARCH processes with
time varying parameters and is based on the parametric approach; see Teräsvirta
(2009), Amado and Teräsvirta (2008) and (2012). The variability of unconditional
moments is governed by a class of Almost Periodic (AP) functions, proposed by
Corduneanu (1989) as a generalisation of the class of periodic functions. Since in
our approach the unconditional second moment exhibits almost periodic variability,
the process can be also interpreted as a second order Almost Periodically Correlated
(APC) stochastic process, discussed from the theoretical point of view by Hurd and
Miamee (2007). During the last half century the APC class of processes was broadly
applied in telecommunication (Gardner (1986), Napolitano and Spooner (2001)),
climatology (Bloomfield, Hurd, Lund (1994)) and many other fields. Application of
APC class in business cycle analysis has been also considered. Recently Lenart (2013)
investigated properties of subsampling estimator of frequencies defining time varying
unconditional expectation of APC process. For an exhaustive review of possible
applications see Gardner, Napolitano, Paura (2006).
We make a formal statistical inference, from the Bayesian viewpoint, about the
cyclicality of volatility changes and present evidence in favour of the empirical
importance of such an effect. On the basis of very intuitive explanation of almost
periodicity, we provide an economic interpretation of time variability of unconditional
moments supported by data. The illustration is conducted on the basis of daily returns
of the S&P500 index covering the period from 18 January 1950 till 7 February 2012.

2 A simple nonstationary process obtained from the
GARCH(1,1) model

We start from a general definition of a conditionally heteroscedastic model which
nests many ARCH-type volatility models developed during more than the last three
decades in the field of financial econometrics.
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Definition 1 Discrete, real valued, stochastic process {ξt, t ∈ Z} is called
conditionally heteroscedastic if:

ξt =
√
ht(ω,Ψt−1)zt, zt ∼ iiD(0, 1),

where ht(ω,Ψt−1) describes volatility equation and is defined as a parametric function
of the information set Ψt−1 = (. . . , ξt−2, ξt−1), i.e. the history of the process
{ξt, t ∈ Z}, with parameters ω. For zt, D(0, 1) denotes a distribution with zero mean
and unit variance.

Any conditionally heteroskedastic GARCH-type model, defined in the literature,
starting from the ARCH(p) model proposed by Engle (1982) and the GARCH(p,q),
proposed by Bollerslev (1986), can be obtained by imposing some particular functional
form of ht(ω,Ψt−1).
For further analysis let us consider the discrete and real valued stochastic process
{εt, t ∈ Z} of the form:

εt =
√
g(t, γ)ξt, (1)

where {ξt, t ∈ Z} follows Definition 1, and g(., γ) is a positive real valued function of
time domain Z, parameterised by γ. The form of the process {εt, t ∈ Z} is related to
the general specification considered by Amado and Teräsvirta (2012). The aim of our
study is a proper specification of function g, so that it has an economic interpretation
and is empirically important. For a process {εt, t ∈ Z} in (1), where {ξt, t ∈ Z}
is given by Definition 1 and for a bounded function g(., γ) we have the following
equivalences:

1. For each n ∈ N , E(εnt ) exists and E(εnt ) = g(t, γ)n2 E(ξnt ) if and only if E(ξnt )
exists

2. For each n ∈ N , E(εnt |Ψt−1) exists and:
E(εnt |Ψt−1) = g(t, γ)n2 ht(θ,Ψt−1)

n
2 E(znt ) if and only if E(znt ) exists.

As an example of the process in Definition 1 let us consider the seminal Generalised
Autoregressive Conditional Heteroskedastic (GARCH) process, initially defined by
Bollerslev (1986). Formally Bollerslev (1986) defined the GARCH(p,q) process for
any natural p and q. However, just like in predominant papers, both, theoretically
and empirically driven, we focus our attention on the case with p = 1 and q = 1.
Consequently, let consider the case with ht of the form:

ht = α0 + α1ξ
2
t−1 + β1ht−1, (2)

for α0 > 0, α1 ≥ 0, β1 ≥ 0. When analysing stochastic properties of the process ξt
with ht given by (2), it is crucial to pay attention on the restriction α1 + β1 < 1.
It ensures moment existence up to the second order, its stability over time and,
consequently, covariance stationarity of the process. The GARCH(1,1) process with
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α1 +β1 = 1 is called IGARCH. This case still represents the process stationary in the
strict sense, but covariance stationarity is no longer fulfilled. Bauwens, Lubrano and
Richard (1999) listed the properties of the GARCH(1,1) process. Given restriction
α1 +β1 < 1, process {ξt, t ∈ Z} is covariance stationary with unconditional zero mean
and finite unconditional variance V (ξt) = E(ξ2

t ) = α0

1− α1 − β1
.

Now let consider the process {εt, t ∈ Z} defined by (1), generated by the GARCH(1,1)
process {ξt, t ∈ Z}. Automatically we obtain the following properties:

1. E(εt|Ψt−1) = 0

2. V (εt|Ψt−1) = g(t, γ)ht

3. E(εt) = 0

4. V (εt) = E(ε2
t ) = g(t, γ) α0

1− α1 − β1
, if additionally α1 + β1 < 1

It is clear that process {εt, t ∈ Z} is nonstationary in the strict sense and
also covariance nonstationary. Function g(., γ) assures variability of unconditional
variance. Also variability over time of conditional variance of yt is decomposed
into GARCH(1,1) effect and deterministic component, that changes dispersion of the
conditional distribution according to the form of function g.
Another interesting feature of {εt, t ∈ Z} can be observed if we rewrite the equation
for conditional variance in the GARCH-type form. If the process {εt, t ∈ Z} is defined
by equation (1) and {ξt, t ∈ Z} in (1) is GARCH(1,1), we have:

E(ε2
t |Ψt−1) = g(t, γ)ht = α0,t + α1,tξ

2
t−1 + β1,tht−1, (3)

where α0,t = g(t, γ)α0, α1,t = g(t, γ)α1 and β1,t = g(t, γ)β1. Hence, the process
{εt, t ∈ Z} can be also interpreted as a GARCH(1,1) model with time varying
parameters.
Equation 3 involves very similar idea to the construct proposed by Baillie and Morana
(2009). In our approach we focus on a simpler GARCH-type process and do not
generalise equation for ht to the fractionally integrated GARCH, considered in Baillie
and Morana (2009). But we allow time variability of each parameter in equation for
conditional variance of the process {εt, t ∈ Z}.
Just like for the GARCH(1,1) process, one may consider properties of the process
{εt, t ∈ Z}, when different functional forms of ht are assumed. In particular,
in the empirical part of the paper we confront a simple GARCH(1,1) model
with Asymmetric-GARCH specification, proposed by Glosten, Jagannathan, Runkle
(1993), with ht of the following form:

ht = α0 + α+
1 ξ

2
t−1I(ξt−1 ≥ 0) + α−1 ξ

2
t−1I(ξt−1 < 0) + β1ht−1,

with α0 > 0, α+
1 ≥ 0, α−1 ≥ 0, β1 ≥ 0. We will denote this specification by GJR(1,1).

Analogously to the case with GARCH(1,1), the conditional second moment of εt is
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given by the form:

E(ε2
t |Ψt−1) = α0,t + α+

1,tξ
2
t−1I(ξt−1 ≥ 0) + α−1,tξ

2
t−1I(ξt−1 < 0) + β1,tht−1 (4)

where α0,t = g(t, γ)α0, α+
1,t = g(t, γ)α+

1 , α
−
1,t = g(t, γ)α−1 and β1,t = g(t, γ)β1. This

leads us to the Asymmetric-GARCH model with time varying parameters.
Explicit formulae of conditional and unconditional moments in case of GARCH(p,q),
for p > 1 and q > 1 and also in case of GJR model can be found in Bollerslev (1986),
Chiangli (1997) and Chiangli and Teräsvirta (1999).

3 A model for periodic volatility
The main purpose of the paper is such a definition of function g in (1) that would
enable to test the variability of parameters in (3) but would also provide an economic
interpretation of such an effect. The vast literature concerning time-varying GARCH
models does not seem to explore this aspect in detail, focusing only on the statistical
properties of estimation methods, given very general assumptions about the variability
of parameters.
Some attempts to interpret time heterogeneity of processes describing volatility
have been made. One of them was adopted by Hamilton (1989). In this seminal
paper formal statistical representation of the old idea that expansion and contraction
constitute two distinct economic phases was considered. Hamilton proposed to model
real output growth by two autoregressions, depending on whether the economy
is expanding or contracting. Possible changes between those autoregressions were
subordinated to a Markov chain. The main contribution of Hamilton (1989) consisted
of a very intuitive economic interpretation of a purely random construct as a factor
governing changes between states of different intensity of economic activity. This idea
was easily instilled in modelling financial time series, where Markov switching ARCH
and GARCH models were specifically developed for volatility modelling; see Hamilton
and Susmel (1994), Susmel (2000), Haas, Mittnik, Paolella (2004), Li and Lin (2004).
Changes in conditional volatility according to Markov chain were considered jointly
with changes in the conditional mean; see for example Berkes, Gombay, Horváth,
Kokoszka (2004). Recently, Markov switching Stochastic Volatility models have also
been considered; see Kwiatkowski (2010) for empirical analyses for Polish financial
market. Markov switching volatility models are able to distinguish phases of low and
high volatility, or - in the case of many regimes - many different levels of risk intensity.
However, as concluded by Langa and Rahbek (2009), in spite of the fact that Markov
switching volatility models have recently received much interest in applications, a
sufficiently complete theory of these models is still missing.
Analogously to modelling economic activity of the real sector, the volatility of financial
time series also seems to have phases of expansion and contraction in the long term.
An analysis of financial returns in the span of decades shows that changes between
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states are much closer to continuous rather than discrete. Since those phases alternate
in cases of boom and bust on the market, volatility observed over decades should
also exhibit cyclical behaviour. In order to test for such an effect, a stochastic
process with an approximately periodic structure of unconditional moments should
be considered. For a process {εt, t ∈ Z} defined by equation (1), where {ξt, t ∈ Z}
in (1) is GARCH(1,1) process, it can easily be done on the basis of an appropriately
defined function g(., γ), which describes the variability of moments. In general, we
follow the idea of generalisation of periodicity of real valued functions proposed by
Corduneanu (1989).

Definition 2 A real-valued function f : Z −→ R of an integer variable is called
almost periodic (AP in short), if for any ε > 0 there exists an integer Lε > 0, such
that among any Lε consecutive integers, there is an integer pε with the property

sup
t∈Z
|f(t+ pε)− f(t)| < ε.

Any periodic function is also almost periodic. Conditions from Definition 3
constitute a class of almost periodically correlated (APC) stochastic processes as
a generalisation of periodically correlated (PC) stochastic processes. In the case
of APC processes, an almost periodic function, and in the case of PC processes, a
periodic function, determines the cyclical variability of conditional and unconditional
moments. Therefore PC stochastic processes are also called cyclostationary.
The main properties of the APC class was presented by Corduneanu (1989). In
particular, any almost periodic function from Definition 3 has its unique Fourier
expansion of the form:

f(t) =
∞∑
i=1

(gsi sin(hit) + gci cos(hit)) , (5)

with the series of coefficients (gsi)∞i=1, (gci)∞i=1 and (hi)∞i=1 that express amplitude and
frequency of each individual cyclical component in (5).
For further research concerning cyclical behavior of volatility, we consider the following
function g(., γ) in (1):

g(t, γ) = ef(t,γ), (6)

where

f(t, γ) =
F∑
i=1

(γsi sin(φit) + γci cos(φit)) , (7)

with γ = (γs1, ..., γsF , γc1, ..., γcF , φ1, ..., φF ). Function f(., γ) is defined as a sum
of periodic functions, with parameters φi determining frequencies, while γsi and γci
control amplitudes. Since we limit the infinite series to its finite substitute, formula
(7) yields finite approximation of order F of the almost periodic function, that governs
moment variability of the process.
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The case γsi = 0 and γci = 0 for all i = 1, ..., F , in (7), determines constant function
g(., γ) ≡ 1. According to Hurd and Miamee (2007), the process {εt, t ∈ Z} defined
by equation (1), where {ξt, t ∈ Z} in (1) follows GARCH(1,1) process and g(t, γ) is
defined by (6) and (7), is also Almost Periodically Correlated. The function g(., γ) in
(7) enables to capture cyclicality in the conditional and unconditional variance of the
process. This property will be subject to formal statistical inference in the empirical
part of the paper.
It is clear that defining function f in (7) we follow idea of application of the Flexible
Fourier Form (FFT). This form is known in econometrics for decades, and in 70’s
and 80’s was intensively applied on the field of microeconometrics. In particular the
expenditure system on the basis of FFT was proposed by Gallant (1981), who focused
on the empirical importance of a specific flexible function in demand system analysis.

4 Basic model framework and posterior inference
We model logarithmic returns on the financial instrument with price xt at time t.
Suppose, we observe time series of logarithmic returns given by the form:

yt = 100 ln xt
xt−1

, t = −1, 0, 1, . . . , T.

Denote by y = (y1, . . . , yT ) the vector of modelled observations. Daily returns y−1
and y0 are used as initial values.
As a point of departure of modelling the dynamics of financial returns we assume an
AR(1) process; see for example Bauwens, Lubrano and Richard (1999) for univariate
case or Osiewalski and Pipień (2004) for multivariate setting. We generalise the
approach, by considering nonstationary disturbances in the following equation:

yt = µt + εt, t = 1, . . . , T, (8)

where µt = δ + ρ(yt−1 − δ) and εt is a process defined as follows:

εt =
√
g(t, γ)ξt, t = 1, . . . , T.

For a process {ξt, t ∈ Z} we consider two alternative specifications, namely
GARCH(1,1) and GJR(1,1), while the function g is given by (6) and (7).
Generally we assume that random variables zt are independent and follow Student-t
distribution with zero mean, unit variance and ν > 4 degrees of freedom. In the
literature the conditional Student-t distribution in GARCH models is considered
with standard restriction ν > 2. This restriction assures existence of conditional
variance and is necessary for existence of unconditional variance. However, as it is
shown in Weiss (1993), Lumsdaine (1995) and Gourieroux (1997)Maximum Likelihood
Estimator (MLE) is consistent and asymptotically Normal in GARCH-type models
provided the existence of the fourth conditional moment. This sufficient condition
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is sometimes too strong in empirical applications, but assures, that MLE with small
sample approximation of the Fisher’s information matrix can be interpreted in a
standard way. Several attempts to weaken this condition have been made, indicating
that the properties of the asymptotic likelihood inference methods in GARCH-type
models are still questionable. Additionally, as suggest Hall and Yao (2003) the
distribution of MLE estimator in case of GARCH-type models with very heavy
tailed conditional distribution (but still with finite conditional variance) may be very
irregular. Hence, in spite of the fact that empirical analysis bases fully on Bayesian
approach to inference, for the sake of possible future comparison of results with the
researchers that apply MLE, we assume that the fourth moment of the conditional
distribution of the error term in (8) exists.
The density of zt is given by the formula:

fs(zt|0, 1, ν) =
Γ(ν+1

2 )
Γ(ν2 )

√
π(ν − 2)

[
1 + z2

t

ν − 2

]− ν+1
2

= c(ν)
[
1 + z2

t

ν − 2

]− ν+1
2

,

where fs(zt|m, s2, ν) denotes the density of the Student-t distribution with mean m,
variance s2 and ν > 4 degrees o freedom.
The conditional distributions of ξt and εt are Student-t distributions with zero mean,
ν degrees o freedom and variances ht and g(t, γ)ht, respectively:

p(ξt|Ψt−1) = fs(ξt|0, ht, ν) = c(ν)√
ht

[
1 + ξ2

t

(ν − 2)ht

]− ν+1
2

,

p(εt|Ψt−1) = fs(εt|0, g(t, γ)ht, ν) = c(ν)√
g(t, γ)ht

[
1 + ε2

t

(ν − 2)g(t, γ)ht

]− ν+1
2

,

where Ψ0 = (h0, y−1, y0), and Ψt−1 = (Ψ0, y1, . . . , yt−1) = (Ψ0, y
(t−1)). Consequently,

the conditional distribution of daily return in (8) is Student-t distribution with mean
µt = δ + ρ(yt−1 − δ), variance g(t, γ)ht and ν > 4 degrees of freedom:

p(yt|Ψt−1) = fs(yt|µt, g(t, γ)ht, ν) = c(ν)√
g(t, γ)ht

[
1 + (yt − µt)2

(ν − 2)g(t, γ)ht

]− ν+1
2

. (9)

Let θ denote the vector that contains all model parameters. We assume that
θ = (µ‘, σ2‘, ν, γ‘)‘ where vectors µ, σ2 and γ collect parameters of the conditional
mean of yt, the conditional variance of ξt and the function g, respectively. In
particular, µ = (δ, ρ)‘ and γ = (γs1, ..., γsF , γc1, ..., γcF , φ1, ..., φF ). If ht follow the
GARCH(1,1) process, then σ2 = (α0, α1, β1)‘, while in the case of the GJR(1,1)
process σ2 = (α0, α

+
1 , α

−
1 , β1)‘.

According to (9) we rewrite the sampling model for a vector y in the following way:

p(y|θ) =
T∏
t=1

p(yt|Ψt−1) =
T∏
t=1

fs(yt|µt, g(t, γ)ht, ν).
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The Bayesian model, i.e. the joint distribution of observables and parameters, requires
specification of the prior distribution p(θ). In the case of the GARCH(1,1) process
for ξt we assume the following prior independence:

p(y, θ) = p(y|θ)p(θ) = p(y|θ)p(δ)p(ρ)p(α0)p(α1, β1)p(ν)p(γ),

while in the case of the GJR(1,1) process we consider the following model:

p(y, θ) = p(y|θ)p(θ) = p(y|θ)p(δ)p(ρ)p(α0)p(α+
1 , α

−
1 , β1)p(ν)p(γ).

Additionally we assume that p(δ) is the standard Normal distribution, p(ρ) is
uniform over (-1,1), p(α0) is the exponential distribution with unit mean, p(ν) is
the exponential distribution with mean 10 truncated at ν > 4, p(γ) is multivariate
normal, p(φ) is multivariate uniform over the set obtained by identification restrictions
that eliminate label-switching effect in (7). We assume, that L < φ1 < . . . < φF < U ,
for appropriately chosen L and U , which eliminates frequencies of length shorter than
a quarter and longer than the time interval covering the observed time series. In the
case of the GARCH(1,1) model p(α1, β1) is the bivariate uniform distribution on the
unit square [0, 1]2, while in case of GJR(1,1) p(α+

1 , α
−
1 , β1) is trivariate uniform over

[0, 1]3.
Alternatively, we consider for zt standard Normal distribution, with the density:

fN (zt|0, 1) = 1√
2π

exp
(
−z

2
t

2

)
,

where fN (zt|m, s2) denotes the density of Normal distribution with mean m and
variance s2.
In this case the conditional distributions of ξt and εt are Normal with zero mean and
variance ht and g(t, γ)ht respectively:

p(ξt|Ψt−1) = fN (ξt|0, ht) = 1√
2πht

exp
(
− ξ2

t

2ht

)
,

p(εt|Ψt−1) = fN (εt|0, g(t, γ)ht) = 1√
2πg(t, γ)ht

exp
(
− ε2

t

2g(t, γ)ht

)
.

The conditional distribution of daily return yt is Normal with mean µt and variance
g(t, γ)ht:

p(yt|Ψt−1) = fN (yt|µt, g(t, γ)ht) = 1√
2πg(t, γ)ht

exp
(
− (yt − µt)2

2g(t, γ)ht

)
.

In the case of conditional normality, the vector of model parameters θ−ν differs from
θ only by degrees of freedom parameter ν. The sampling model is given as follows:

p(y|θ−ν) =
T∏
t=1

p(yt|Ψt−1) =
T∏
t=1

fN (yt|µt, g(t, γ)ht).
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When specifying the Bayesian model in this case, we formulate the prior distribution
of elements of the vector θ−ν in the same way as in the case of the conditional Student-t
distribution.

5 Empirical analysis
In this section we present the empirical analysis and make formal Bayesian inference
about the empirical importance of the cyclical component in the volatility of daily
returns of one of the most important US Stock Market indices. Our dataset consists
of T = 15615 observations of daily logarithmic returns on the S&P500 index, covering
the period starting from the postwar era of the US economy till the beginning of 2012.
The time series starts on 18 January 1950 and ends on 7 February 2012.

Table 1: Decimal logarithms of the marginal data densities for the set of competing
specifications and posterior probabilities in case of prior model probabilities defined
as proportional to 6−3F , where F = 0, 1, 2, 3, 4 denotes the number of frequencies in
function g. Posterior model probabilities are calculated separately within each class
of models.

Logarithms of the marginal data density
Number of frequencies N-GARCH N-GJR t-GARCH t-GJR

0 -163.64 -121.03 0.30 37.84
1 -158.76 -110.44 5.25 42.00
2 -152.94 -100.95 7.59 48.24
3 -150.65 -99.18 8.52 48.98
4 -149.77 -96.35 9.89 49.95

Posterior model probabilities
within each class of models

Number of frequencies N-GARCH N-GJR t-GARCH t-GJR
0 0.00 0.00 0.00 0.00
1 0.00 0.00 0.49 0.00
2 0.52 0.47 0.49 0.97
3 0.47 0.13 0.02 0.025
4 0.02 0.40 0.00 0.00

In Table 1 we present results of Bayesian model comparison, conducted for four
subsets of competing specifications. We considered alternatively Normal or Student-t
conditional distribution, and also for the volatility ht the GARCH(1,1) or GJR(1,1)
equation. Given a particular type of conditional distribution and functional form
imposed on ht, we consider a pure GARCH-type model, namely with constant
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parameters, versus APC(F)-GARCH(1,1) models with F = 1, 2, 3, 4 individual
periodic components. This gives us four subsets of models, denoted by N-GARCH,
t-GARCH, N-GJR and t-GJR respectively. Within each class of models we considered
five competing specifications, as F = 0, 1, 2, 3 and 4. In Table 1 we collect
the marginal data density values for each model approximated by the Newton
and Raftery (1994) estimator. We see that, in the case of models with constant
parameters the GJR(1,1) specification with the conditional Student-t distribution
receives the greatest data support, completely outperforming the GARCH(1,1) model
and conditional Normality. It seems, that stronger rejection is attached to the
conditional Normality, since, given a particular form of the ht, the marginal data
density value of the conditional Student-t models is about a hundred orders of
magnitudes greater, as compared to the case with the conditional Normal distribution.
On the other hand, given a particular conditional distribution, the GJR(1,1) form of
ht yields the marginal data density value greater by a dozens of orders of magnitude,
than in the case of GARCH(1,1) model. This effect is also present in the case
of time varying GARCH-type models. We see the same regularity for each case
of F = 1, 2, 3, 4, making the conditional Student-t distribution and the GJR(1,1)
equation for ht decisively important in the view of the data.
Analysing results presented in Table 1 we see that the dataset strongly supports
time variability of parameters, and consequently nonstationarity in the strict sense.
This effect is invariant with respect to the type of ht and to the type of conditional
distribution. For each of subsets of models, the case with F = 0, representing
constancy of parameters, is rejected by the data, as the marginal data density in
all four cases is smaller by at least a couple of orders of magnitude compared to
marginal data density for any of generalisation with time varying parameters. The
constancy of parameters receives the strongest rejection in the case of conditional
Normality and the GJR(1,1), where marginal data density value for the GJR(1,1)
model is about nine of orders of magnitude smaller than the worst case with time
varying parameters. In all remaining cases constancy of parameters yields marginal
data density value about five orders of magnitude smaller than its worst (in the view
of the data) generalisation that assures variability of parameters in time.
Slightly disappointing, the dataset does not determine decisively the form the of
function which assures time variability of parameters in ht. In both cases of the
conditional distribution, and also for both types of volatility equation, the data leave
a considerably great uncertainty about the number of individual periodic components
in function g. The existence of the single periodic component (F = 1) is decisively
more probable a posteriori than GARCH-type models with constant parameters. The
values of the marginal data density increase as F increases. However, the greater value
of F one may take, the less relative support receives model with F + 1 individual
periodic elements in function g against the model with F components. We did not
check the data support of models for F > 4, because those specifications are not
parsimoniously parameterised. In order to adjudicate which case receives the greatest

B. Mazur, M. Pipień
CEJEME 4: 95-116 (2012)

106



On the Empirical Importance of Periodicity . . .

Ta
bl
e
2:

Po
st
er
io
r
m
od

es
(M

od
(.|
y
))
,m

ea
ns

E
(.|
y
)
an

d
st
an

da
rd

de
vi
at
io
ns

(D
(.|
y
))

of
pa

ra
m
et
er
s
in

A
PC

(F
),

fo
r

F
=

0
(G

A
R
C
H
(1
,1
)a

nd
G
JR

(1
,1
))

ca
se
sa

nd
F

=
2
(t
he

be
st

m
od

el
sw

ith
in

su
bs
et
sw

ith
th
e
sa
m
e
ty
pe

of
co
nd

iti
on

al
di
st
rib

ut
io
n
an

d
fu
nc

tio
na

lf
or
m

im
po

se
d
on

h
t
)

P
ar

am
et

er
s

δ
ρ

ν
α

0
β

1
α

1
α

+ 1
α
− 1

γ
s

1
γ
c

1
γ
s

2
γ
c

2
φ

1
φ

2
N

-G
A

R
C

H
M
o
d

(.
|y

)
0.

04
6

0.
16

0
0.

00
5

0.
93

0
0.

06
3

E
(.
|y

)
0.

04
6

0.
15

9
0.

00
5

0.
93

0
0.

06
3

D
(.
|y

)
0.

00
6

0.
00

8
0.

00
1

0.
00

4
0.

00
4

A
P

C
(2

)-
N

-G
A

R
C

H
M
o
d

(.
|y

)
0.

04
7

0.
16

0
0.

00
9

0.
92

1
0.

06
5

-0
.1

21
0.

34
7

-0
.1

74
-0

.3
14

0.
00

07
44

0.
00

17
69

E
(.
|y

)
0.

04
6

0.
16

0
0.

00
9

0.
92

1
0.

06
5

-0
.1

31
0.

32
1

-0
.1

52
-0

.3
10

0.
00

07
31

0.
00

17
64

D
(.
|y

)
0.

00
6

0.
00

8
0.

00
1

0.
00

5
0.

00
4

0.
10

6
0.

07
4

0.
10

1
0.

07
6

0.
00

00
55

0.
00

00
42

N
-G

JR
M
o
d

(.
|y

)
0.

03
0

0.
16

1
0.

00
6

0.
93

1
0.

02
6

0.
09

5
E

(.
|y

)
0.

03
0

0.
16

1
0.

00
6

0.
93

1
0.

02
6

0.
09

5
D

(.
|y

)
0.

00
6

0.
00

8
0.

00
1

0.
00

4
0.

00
3

0.
00

6
A

P
C

(2
)-

N
-G

JR
M
o
d

(.
|y

)
0.

02
9

0.
16

2
0.

01
0

0.
92

1
0.

02
2

0.
10

5
-0

.0
47

0.
41

3
-0

.1
06

0.
38

3
0.

00
07

34
0.

00
41

94
E

(.
|y

)
0.

02
9

0.
16

0
0.

01
0

0.
92

2
0.

02
2

0.
10

4
-0

.1
24

0.
37

5
-0

.1
42

0.
08

8
0.

00
07

00
0.

00
31

80
D

(.
|y

)
0.

00
6

0.
00

8
0.

00
1

0.
00

5
0.

00
3

0.
00

6
0.

12
1

0.
06

7
0.

08
7

0.
34

1
0.

00
00

45
0.

00
11

90
t-

G
A

R
C

H
M
o
d

(.
|y

)
0.

04
9

0.
15

9
5.

93
2

0.
00

4
0.

93
7

0.
05

9
E

(.
|y

)
0.

04
9

0.
15

9
5.

91
2

0.
00

4
0.

93
7

0.
05

9
D

(.
|y

)
0.

00
6

0.
00

8
0.

28
5

0.
00

1
0.

00
4

0.
00

4
A

P
C

(2
)-
t-

G
A

R
C

H
M
o
d

(.
|y

)
0.

04
9

0.
16

0
5.

96
3

0.
00

8
0.

93
0

0.
05

9
-0

.0
38

0.
37

3
-0

.3
31

-0
.2

72
0.

00
08

99
0.

00
18

36
E

(.
|y

)
0.

04
9

0.
15

9
5.

92
8

0.
00

6
0.

93
3

0.
05

9
1.

35
3

0.
53

8
-1

.6
86

-0
.6

81
0.

00
12

60
0.

00
22

20
D

(.
|y

)
0.

00
6

0.
00

8
0.

28
6

0.
00

1
0.

00
5

0.
00

4
5.

41
2

2.
38

3
5.

44
7

2.
29

1
0.

00
05

59
0.

00
28

90
t-

G
JR

M
o
d

(.
|y

)
0.

03
8

0.
16

2
6.

22
7

0.
00

5
0.

93
4

0.
02

0
0.

09
9

E
(.
|y

)
0.

03
8

0.
16

2
6.

22
7

0.
00

5
0.

93
4

0.
02

0
0.

09
9

D
(.
|y

)
0.

00
6

0.
00

8
0.

30
8

0.
00

1
0.

00
5

0.
00

4
0.

00
7

A
P

C
(2

)-
t-

G
JR

M
o
d

(.
|y

)
0.

03
7

0.
16

2
6.

32
2

0.
01

0
0.

92
5

0.
01

6
0.

10
5

-0
.2

84
0.

27
4

-0
.2

44
-0

.2
64

0.
00

06
98

0.
00

18
14

E
(.
|y

)
0.

03
8

0.
16

2
6.

30
4

0.
00

9
0.

92
7

0.
01

6
0.

10
5

-0
.2

75
0.

23
8

-0
.2

34
-0

.2
56

0.
00

06
92

0.
00

18
17

D
(.
|y

)
0.

00
6

0.
00

8
0.

32
1

0.
00

1
0.

00
6

0.
00

4
0.

00
8

0.
12

0
0.

08
8

0.
10

2
0.

09
6

0.
00

00
67

0.
00

00
43

107 B. Mazur, M. Pipień
CEJEME 4: 95-116 (2012)



Błażej Mazur, Mateusz Pipień

posterior probability, we imposed an extra information, penalising the number of
parameters determining the form of function g. Intuitively, the strongest periodic
effect in the volatility of financial returns can be related with the cyclical component
of rather long period. One may not reject immediately possibility that the volatility
cycles of the short period (like monthly or quarterly) are also important, but long term
changes in the volatility occur in the foreground. Additionally, the long term cycle
in volatility is economically interpretable as an empirical consequence of existence of
market crashes and booms. Consequently, we believe that the model with limited
number of individual periodic components in function g is sufficient to capture the
effect of long term fluctuations – the strongest data feature observed in case of long
financial time series. Those beliefs are reflected in our prior model probabilities. In
case of model with F individual periodic elements, the vector γ′ contains 3F free
parameters. Hence, separately for each subset of models, N-GARCH, t-GARCH,
N-GJR, t-GJR, we consider prior model probabilities proportional to 6−3F , strongly
penalising models with too much expanded form of function g and strongly supporting
(a priori) models with constant parameters.
The idea of imposing prior model probabilities of such a form was discussed by
Osiewalski and Steel (1993) and applied in Bayesian comparison of GARCH models by
Osiewalski and Pipień (2003). The resulting posterior model probabilities, calculated
separately for each subset of models, are presented in Table 1. When penalty on the
number of periodic components is imposed, the model with F = 2 individual cycles
receives the greatest posterior probability. It seems, that the APC(2) specification is a
reasonable choice among competing time varying GARCH-type processes. It receives
substantial data support and imposes time variability of parameters in a parsimonious
way. This result is invariant with respect to the changes in the conditional distribution
and also is observed in both cases of the functional form of ht. Only in the case of
GARCH(1,1) model with conditional Student-t distribution the model with F = 2
individual periodic components has the same posterior probability as the model
with F = 1. Additionally, constancy of parameters receives almost zero posterior
probability despite of very high prior probability attached to this case.
In Table 2 we present the results of Bayesian estimation of parameters within
a selected subset of models. We consider four basic pure GARCH-type
models with constant parameters, namely the conditionally Normal GARCH(1,1)
model (N-GARCH), the conditionally Student-t GARCH(1,1) model (t-GARCH),
the conditionally Normal GJR(1,1) model (N-GJR) and the conditionally
Student-t GJR(1,1) model (t-GJR). Additionally we consider appropriate APC(F)
generalisations of those models with the greatest posterior probability, discussed
previously. We report the following posterior summaries: the mean (E(.|y)), the
modal value (Mod(.|y)) and the standard deviation (D(.|y)) of model parameters.
Posterior inference about the autocorrelation parameter ρ remains unchanged. The
marginal posterior distribution for ρ is very strongly concentrated around value
ρ = 0.16 in all specifications. Posterior inference about δ is also qualitatively the same
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in each of models, however the localisation and spread of its posterior distribution
changes slightly. It seems, that in the case of the models with the GARCH(1,1)
equation for ht, the posterior distribution of δ is localised around value δ = 0.047,
while in the case of models with the GJR(1,1) equation defined for ht, we may
report a slight change of location. The posterior inference on the degrees of freedom
parameter ν in the conditionally Student-tmodels clearly confirms the results of model
comparison. For each specification the marginal posterior distribution of ν is strongly
concentrated around value ν = 6, with rather small posterior standard deviation.
The data support moment existence at least up the fifth order, and consequently, the
assumption ν > 4, initially imposed, is also empirically valid.
Another interesting empirical feature can be observed when analysing posterior
summaries for parameters describing ht. In the case of the GJR(1,1) specifications, we
see strong support in favour of asymmetric reaction of the conditional variance of ξt to
the news. According to the relative differences between the posterior expectations of
the parameters α+

1 and α−1 , the dataset supports a news impact curve with asymmetric
shape. It seems that the volatility increases three to six times faster as the bad news
from the past of the process is observed, compared to the case, when the good news are
considered. The asymmetric effect seems to be strengthened in the case of the models

with time varying parameters. The ratio α−1
α+

1
, calculated for the values representing

posterior expectations, increases from 3.65 to 4.77 in the case of the N-GJR model
and increases from 4.95 to 6.56 in the case of the t-GJR model.
In contrast, the posterior distributions of parameters describing time variability in
ht are irregular, as the expectation and modal value in these cases may be located
in different areas of the parameter space. We see relative strong dispersion of the
parameters controlling amplitudes in (7), namely for γs1, γs2, γc1 and γc2 in the case
of the conditionally Student-t APC(2) specification. For the frequency parameters φ1
and φ2 a more regular posterior distribution was obtained.
Figure 1 shows the results of posterior inference about the length of the period pi
of a single cyclical component in (2), induced by the posterior distribution of the
frequency parameters φi for i = 1, 2 in the case of the APC(2) models. We show
histograms of the length in years, according to the formula:

pi = 2π
φi250

, i = 1, 2,

assuming 250 trading days per year. We compare histograms in cases where function
f is defined as a sum of two different cyclical components. Those models receives
the greatest posterior probability, as i was discussed above. Besides the conditionally
Normal model with the GJR(1,1) structure in ht, all specifications describe long term
periodicity in the volatility in the qualitatively the same manner. The posterior
distributions of the length in years are located around the values 31-47 for p1 and
14-15 for p2, clearly indicating the existence of two cycles in the volatility, the first one
of length about 14 years and the second one of length more than 34 years. This long
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term cycle is also supported in the case of the N-GJR model, however multimodality
of the marginal distribution of p2 leaves great uncertainty about the remaining cyclical
component of this model.

Figure 1: Posterior inference about the length of the period (in years) pi induced by
frequency parameters φi according to the transformation pi = 2π

250φi
, i = 1, 2.

APC(2)-N-GARCH APC(2)-N-GJR

24 26 28 30 32 34 36 38 40 42

5000

10000

15000

p1 med:
       34.251

13.00 13.25 13.50 13.75 14.00 14.25 14.50 14.75 15.00 15.25 15.50 15.75 16.00

5000

10000

15000

20000

p2 med:
       14.185

29 30 31 32 33 34 35 36 37 38 39 40 41

2500

5000

7500

10000

12500
p1 med:
       35.569

6 7 8 9 10 11 12 13 14 15

50000

100000

150000

200000

p2 med:
       6.0180

APC(2)-t-GARCH APC(2)-t-GJR

22 24 26 28 30 32 34 36 38 40

2500

5000

7500

10000
p1 med:
       30.368

8 10 12 14 16 18 20 22 24 26

25000

50000

75000

100000

p2 med:
       13.769

22 24 26 28 30 32 34 36 38 40 42

p1 med:
       36.513

13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14.0 14.1 14.2 14.3 14.4 14.5

p2 med:
       13.785

The effect of cyclicality for the unconditional variance of the error term in (8) and its
empirical importance is depicted in Figure 2. We present the plot of the series of the
absolute returns and the posterior means of the unconditional variance calculated for
each data point, with bounds covering the range of two posterior standard deviations.
We also plotted the posterior mean of the unconditional variance obtained on the
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basis of the corresponding GARCH-type model with constant parameters. Again, the
data clearly support the variability of the unconditional variance. The constancy
of parameters is precluded since the changes of variance in time are substantial.
The plots of unconditional variance obtained in each model are characterised by
fluctuations, strongly associated with long term changes in volatility in line with boom
and bust periods on the US Stock Exchange. The similarity of the dynamic pattern
of the unconditional variance in the case of the GARCH models and the GJR model
with the conditional Student-t distribution is clear. As an exception, the conditionally
Normal GJR model exhibits some irregularities, due to rather nonstandard shape of
the marginal posterior distribution of one of the frequencies.

Figure 2: Posterior inference about unconditional variance of the error term
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An interesting aspect of the posterior inference about the unconditional variance is
connected with changes in spread of the posterior distributions of V (εt). We see
that it strongly declines in periods characterised by low volatility, but it becomes
much greater in the case of periods when volatility intensifies. This leaves much
greater uncertainty about the possible deterministic profile of the cyclical component
in the volatility equation in periods associated with crises when abnormal volatility
is observed.
In the vast literature concerning the empirical properties of the US business cycle,
an interesting analysis was conducted by Chauvet and Potter (2001). According to
the Bayesian analysis presented in that paper, the posterior expectation of time to
wait until the next recession (if we are in recession currently) is equal approximately
14 years. This fully corresponds to our posterior inference about frequencies φi and
length in years pi discussed above. However, it is difficult to find a linkage between
long term volatility cycles and the business cycle. Only in the case of the recession
in the mid 70’s and during the dotcom crisis at the beginning of the 21st century, a
visible increase in unconditional variance accompanies economic slowdown. Also some
short recessions in the 50’s coexist with a long-term but relatively small increase in
unconditional volatility.

6 Conclusions
The main purpose of this paper was to investigate properties of a simple generalisation
of the GARCH process that would enable to model long term features of volatility.
Variability of unconditional moments was described by a class of Almost Periodic (AP)
functions, proposed by Corduneanu (1989). Since in our approach the unconditional
second moment exhibits an almost periodic variability, the process can also be
interpreted as a second order Almost Periodically Correlated (APC) stochastic
process; see Hurd and Miamee (2007).
We make formal Bayesian statistical inference on the cyclicality of volatility changes
and we present evidence in favour of the empirical importance of such an effect. The
illustration was conducted on the basis of daily returns of the S&P500 index covering
the period from the 18 January 1950 till the 7 February 2012.
According to Bayesian model comparison, the cyclical behaviour of unconditional
variance was strongly supported, making GARCH-type specification with constant
parameters improbable. This result was invariant with respect to the conditional
distribution (Normal or Student-t) and the type of the volatility equation (pure
GARCH(1,1) or asymmetric GJR(1,1)). Among competing specifications, the
greatest posterior probability received models where the time variability of the
unconditional variance is described by a combination of two different cycles, with
periods equal about 14 and 30 years. Those cycles were attributed to relatively
different amplitudes, making the dynamic pattern of the unconditional volatility
rather complex. The posterior probabilities, reported in the empirical analyses
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were obtained by imposing very informative prior model probabilities that strongly
penalised unparsimonious specifications of the function, that enabled variability of
the unconditional variance. Models with two individual cyclical components were
chosen as a reasonable compromise linking substantial data support with parsimonious
parameterisation. However, according to the marginal data density values, even more
flexible, but at the same time very expanded, functional forms may be necessary to
adequate describe deterministic time variability of the unconditional variance of the
error term in competing APC(F )-GARCH specifications.
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