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Abstract

The presented paper aims to analyse both statistical and economic aspects
of the model with I(2) variables. The statistical foundations of such models are
introduced. The enlargement of possible statistical interpretation is discussed.
The economic interpretation of both VECM parameters and common stochastic
trends representation is considered in the I(2) domain. The returns of I(2)
approach in terms of stock-flows, nominal-real analysis and diasggregation
into both long-, short and even medium-run analysis are proved. Potential
complications under reflecting I(3) variables are presented.
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1 Introduction
Cointegration is most frequently associated with transforming to stationarity the
combination of I(1) variables. Basic techniques of estimation both cointegrating vector
(two-step Engle and Granger 1987 method) and cointegrating matrix (Johansen 1988
procedure) concerned I(1) categories. Even modified methods of statistical inference
were generally connected with integration of order one analysis. Also empirical
researches were concentrated on I(1) analysis.
Recently, through Johansen (1994), Johansen (1997) and Paruolo (1996) works,
cointegration analysis was enlarged on processes integrated of order two (denoted:
I(2)). New, both economic and statistical possibilities of interpretation that models
including such variables yield (Juselius 1999) are presented.
The structure of paper is as follows. In section one general features of I(2) processes
are considered. There were introduced elements of cointegration analysis inside simple
Engle and Granger (1987) approach. Commonly known Dickey and Pantula (1987)
test was also discussed with a special emphasis on I(2) analysis. In section two, VAR
model for I(2) variables is considered and both statistical and econometric implications
result from it. Section three is devoted to economic interpretation of I(2) variables.
Expanded with respect to earlier considerations (cf. Majsterek 2008) discussion about
relations between I(0), I(1), I(2) shocks and deterministic trends were introduced. In
section four potential I(3) model is considered. In section five, comparison between
I(0), I(1) and I(2) models was performed. In section six empirical example of I(2)
analysis application was presented. Section seven concludes.

2 Features of variables generated by I(2) processes
Process I(2) is by definition second (double) sum of pure random processes (or
alternatively: cumulated random walk). Formally, process generating statistic series
y is called integrated of order two, if it may be performed as stationary, invertible
process ARMA after differencing twice (Engle and Granger 1987).
Discussing the features of variables generated by I(2) it should be remembered
that depending on assumed scientific perspective (sample length, data frequency,
on which this sample is based) these properties might be changed. These features
may be modified depending on the sample length (cf. Figure 1). Irrespective of the
chosen horizon of analysis, for I(2) variables impact of past stochastic shock, not
only will not terminate (as in the I(0) case), but in the contrast of I(1) processes,
will be enforced. It implies a persistence of shock effects for increases and growth
rates of variables. Simultaneously (which is important in the context I(2) processes
identification) differences between properties of variables generated by I(1) and I(2)
processes asymptotically disappear, because sample enlargement make I(2) processes
closed to I(1).
In the small sample I(2) processes have features similar to explosive processes, i.e.
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nonintegrated (Haldrup 1999). Both in the first and the second case the impact of
stochastic shock increases, but for I(2) processes this impact increases slower. The
differences between I(2) and explosive processes are crucial. I(2) processes include by
definition two unit roots, while explosive processes have no such root. Osiewalski and
Pipień (1999) argued, that explosive processes we can treat as stationary with respect
to the future shocks, while I(2) processes achieve stationarity only after application
difference filter twice. Consequently, explosive processes are often generated by AR(1)
processes, in which inertia parameter |α1| > 1, while I(2) processes by autoregressive
(or ARMA) process of order at least two.
With respect to the variables generated by I(2) processes, it is useful to discriminate
strictly long-run shocks and disturbances which are more persistent than transitory,
however dominated by long-run I(2) processes. These shocks, often identified with
stochastic cycles across stochastic trends I(2), are connected with processes integrated
of order one (cf. Figure 1).
Differences interpretation stochastic trends I(1) depending on the highest integration
order of variables presented in the model have their source in the domination rule (cf.
Figure 1). Process with the highest integration order has always dominant character,
hence just this process will has win the stochastic trend role. Process integrated of
one order lower d−1 will has at most (if d ≥ 2 stochastic trend I(d) dominates, d ≥ 2)
character of stochastic cyclical, the longer periods the higher is d − 1 (cf. Juselius
2006). Analysis of Figure 1 allows us to recognise, that if we dispose long sample with
low frequency (for example yearly data), then from both estimation and forecasting
point of view we do not commit a serious error treating variables as I(1). If research
interest is in the cyclical deviations, discrimination between I(1) and I(2) is necessary.
In the case of d = 1 stochastic cycles are excluded by definition and there are
discriminated permanent shocks I(1) and transitory I(0) shocks only.
Very interesting is the integrated processes interpretation related to the basic
classification of economic categories. Flows may be treated as first increments of
connected with them stock categories, for example inflation is a price increase and
chain indices are the increments of fixed base indices. It means, that almost always
flows will be integrated of order one level lower than respective stocks. It may be
supposed, that nominal categories should be integrated of higher order one level
higher than respective real variable. However although the dependency between
order of integration for stocks and associated with them flows may be regarded as
some regularity (Haldrup 1994), with respect to nominal and real values there are
exceptions from this rule. From Haldrup (1999) considerations it follows, that because
in economic reality very rarely I(3) processes occur, I(2) variables are rather stocks
than flows and more often nominal than real categories, tests results shall be treated
with caution if not confirmed these economic suggestions. We may expect, that for
flows in actual prices the best interpretable result would be I(1), for nominal stocks:
I(2), while for real flows: stationary or I(1).
In the case of the modelling with I(2) variables spurious regressions problem is
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Figure 1: Trends and stochastic cycles

sharpened. Probability of such dependencies identification arises, if all variables
are integrated of order two. The distribution of correlation coefficient between two
uncorrelated I(2) variables is bimodal (Figure 2), which although still guarantee zero
expected value cause, but the variance of bimodal distribution is the reason that
not only spurious regressions, misleading, but strictly nonsense dependency may be
identified. In this way in I(2) analysis it is necessary to clearly discriminate this two,
earlier used interchangeably, terms (Yule 1926, Granger and Newbold 1974). Spurious
dependencies were not identified in relationships (noncointegrating by assumption)
between on the one hand side stationary variables, and I(1) or I(2) on the other hand.
The most interesting Banerjee et. al. (1993) research’s results was the confirmation
of high probability of the spurious correlation identification between I(1) and I(2)
variables. It was rather intuitively expected (from the non-cointegration between
I(1) and I(2) processes) the analogy to relationships between I(0) with I(1) or I(2),
for which identification spurious regression probability is very small. Kufel‘s (2001)
experiments confirmed, that the true null hypothesis, that I(1) and I(2) variables
are uncorrelated, is rejected even more often (in 87.2%) than in the case, when both
variables are integrated of the same order I(1) (in this case rejections probability is
78.5%). It means, that with the increase of nonstationarity order, spurious regressions
problem arise.
In the case of two I(1) variables cointegration relationship has "timeless", static
character. It means, that if x1t and x2t variables are cointegrated, then for example
x1,t−1 and x2t are cointegrated. It is correct, with respect to I(1) variables to briefly
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Figure 2: Test statistic distributions for correlation coefficient in the case variables
I(0), I(1) and I(2).

define long-run dependency, apart from time index, i.e. x1 and x2. In the case of two
variables integrated of order two (cf. Haldrup 1999) and simultaneously cointegrated
CI(2,2), i.e. x1t and x2t, variables x1,t−1 and x2t are not cointegrated. It results from
the fact, that if x1t − x2t ∼ I(0) , then x1,t−1 − x2t = (x1t − x2t) − ∆x1t ∼ I(1),
because there no exists cointegration relationship between stationary combination
x1t − x2t ∼ I(0) and integrated of order one ∆x1t variable.
In the case of the variables I(2) modelling, the sense of cointegration is more
complicated than for variables I(1). Due to the classical Engle and Granger (1987)
definition cointegration means the existence of such nonzero (cointegrating) vector
β, which implies that βT Y is integrated of order d − b < d, while Y ∼ I(d). With
respect to multi-dimensional case, it was assumed, that all variables in the matrix
Y are I(d). Johansen 1988 modified this assumption, assuming as d means the
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highest of integration orders among variables reflected in the model. Flores and
Szafarz (1996)summarized this discussion concerning the definition of cointegration
and proposed to call multi-dimensional process including variables integrated of
order at most d cointegrated, if there exists nontrivial linear combination of its
components, which is integrated of order d − b < d . In the case when d = 1,
combination βT Y (random term) is integrated of order zero, which implies that all
cointegration regression must be stationary. The estimator of vector parameters β (in
the multi-dimensional case: cointegrating matrix) is then superconsistent. If however
d = 2, not all cointegrating dependencies are stationary. Also problem of consistency
cointegrating vector estimator is more complex.
Cointegration relationship in I(2) domain mostly (but not always) is the dependency
between levels of variables. Usually, it is long-run, however also medium-run
cointegration is considered. Synthetic comparison of cointegration in the case I(1)
and I(2) is presented in Table 1.
In the case of cointegration between I(2) variables cointegrating vector estimator is
super-superconsistent:

p
(

lim
(
T 2(β̂ − β)

))
= 0 (1)

which means faster (requiring less long sample) achievement of desired asymptotic
features than in the case of cointegration between I(1) variables. Super-
superconsistency of estimator reaches not only for cointegration CI(2,2), in which
random term is stationary, but also for cointegrating dependencies CI(2,1), in which
random term is I(1) (wider considerations in the next section). Cointegration
CI(2,1) is interpreted as "uncontrolled" long-run stochastic shocks annihilation is
then caused by the centripetal (cointegrating) forces between variables. The shocks
disturbing this relationship are more persistent than temporary disturbances from
cointegrating relationships CI(2,2), but also vanish in the long-run. In this sense
CI(2,1) cointegration is also long-run equilibrium relationships.
Due to Diebold and Nerlove (1990)time series decomposition (modified by Romański
and Strzała 1995) it may be distinguished stochastic trend, deterministic trend, and
cyclical term also broken down into deterministic and stochastic and pure random
term. In the case of model with I(2) variables, I(2) trends may be identified with
stochastic trend (cf. Juselius 1999), whereas I(1) trends rather with stochastic cycles
across long-run I(2) trends. In this sense I(2) analysis allows to distinguish medium-
run deviations, which are absent in the model with I(1) variables.
In the case of testing by DF with respect to I(2) variables very often the true I
type error probability is higher (sometimes significantly higher) than nominal level
of significance (cf. Dickey and Pantula 1987). Meanwhile just arbitrary assumed
nominal (hence wrong) I type error probability is applied to determine critical values.
In particular, the probability of the null hypothesis I(1) (against alternative I(0))
rejection will higher in the case, when in fact the series is I(d), where d ≥ 2, than
if the series is indeed I(1). Consequently, against intuition, "more nonstationary"
I(2) process will be more often misled with stationary process than the random walk
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Table 1: Order of cointegration of variables and estimator properties

Integration order CI(0,0) CI(1,1) CI(2,1) CI(2,2) Non-cointegration
I(0) consistency – – – –

I(1) consistency super- – – non-
consistency consistency

I(2) consistency super- super-super- super-super- non-
consistency consistency consistency consistency

with I(0) processes. Hence, if is supposed that order of integration equals d ≥ 2, it is
proper to apply test, which not verify I(1) against I(0), before checking the hypothesis,
that series is I(2) versus I(1). Dickey and Pantula (1987) proposed a test fulfilling
above conditions. It is assumed in this test, that all variables are generated by AR(p)
process, which after isomorphic transformation has a form:

∆pyt = θ1yt−1 + θ2∆yt−1 + . . .+ θp∆p−1yt−1 + εt (2)

The number of nonsignificantly different from zero θj (j = 1, . . . , p) parameters
suggests the integration order of variable. Applying significance tests t we may verify
a hypothesis that p unit roots exist, using so called "pseudo-t" (t∗) statistics.
The term ∆pyt the most significantly depends on ∆p−1yt−1 (it may be performed,
that if θp = 0, then θ1 = . . . = θp−1 = 0). If test results not allow us to reject
the hypothesis θp = 0 against θp < 0, then there are no bases to reject θj = 0 (
j = 1, . . . , p − 1 ). It may be in this case assumed, that series is I(p), because has
p unit roots. From the identification of stochastic shocks I(2) point of view, it is
purposeful to choose as initial p = 2 (in practice variables integrated of order higher
than 2 rather not occur). Then (2) may be simplified to isomorphic transformation
of AR(2)

∆2yt = (α1 − 1)yt−1 −∆yt−1 + α2yt−2 + εt

= (α1 − 2)yt−1 + (α2 + 1)yt−2 + (α2 + 1)yt−1 − (α2 + 1)yt−1 + εt

= (α1 + α2 − 1)yt−1 − (α2 + 1)∆yt−1 + εt

Variable is I(2), if in the AR(2) model α1 = 2 ∧ α2 = −1 . Then, because from (2)
and (3) results, that:

θ1 = α1 + α2 − 1, θ2 = −(α2 + 1) (3)

so null hypothesis θ1 = θ2 = 0 is equivalent with H0 : y ∼ I(2). Its rejection means,
that variable is integrated of order at most one. In this case the next step shall be
initialized to verify I(p− 1) against I(p− 2) (in our example: I(1) vs. I(0)). The null
hypothesis should be rejected, if value of this t∗ statistic is significantly smaller than
zero. Verification procedure starts from the assumption about potentially the highest
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integration order.
Dickey and Pantula (1987) procedure has some disadvantages (wider discussion in:
Majsterek 2008). It were connected with applying "from specific to general" strategy,
similarly as other unit root tests, test DP has low power. Additionally, the analysis
based on Dickey and Pantula statistic has mechanic, non-system character.
The problem of traditional cointegration testing (for example application of
cointegration Engle and Granger test) also complicates for variables integrated of
order two. In I(2) domain no bases to reject the null hypothesis is not equivalent
with the absence of cointegration between variables, but implies lack of the speediest
cointegrating CI(2,2) dependencies only. Only no bases to reject null hypothesis,
that first increments of disturbances are nonstationary, does imply that there are no
cointegrating relationships CI(2,1), and the absence of long-run dependencies between
variables. Integration order of residuals equal one, as results from Table 2, may (but
not necessarily must) suggests CI(2,1) cointegration, then the more proper approach
in cointegration testing in the I(2) processes case is the analysis based on VAR models.

Table 2: Comparison of cointegration relationships between I(1) and I(2) variables.

I(1) variables I(2) variables
static relationship, "timeless" "static" and "dynamic" relationship, not always "timeless"
stationary relationship CI(1,1) stationary CI(2,2) and nonstationary CI(2,1) relationship

relationship between levels of variables relationship between levels of variables, sometimes
additionally between levels and differences

long-run equilibrium relationship
long-run equilibrium CI(2,1) relationship, long- and
medium-run equilibrium CI(2,2) relationship, medium-run
CI(1,1) relationship

3 VECM model in the case of I(2) variables
Let us consider vector autoregression model (VAR):

Yt = Π(1)Yt−1 + Π(2)Yt−2 + . . .+ Π(S)Yt−S + Σt (4)

where: Yt−s – matrix of observation on variables in the model in the period t − s,
values of these variables for t < 0 are assumed as non-random and predetermined
Π(s) – M ×M matrix of parameters.
This model may be transformed to VECM (vector error correction model) form:

∆Yt = ΠYt−1 +
S−1∑
s=1

Γs∆Yt−s + Σt (5)
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where Π =
∑S

s=1 Π(s) − I and Γs =
∑S

j=s+1 Π(j).
Analogously, after isomorphic transformation:

∆2Yt = ΠYt−1 + Γ∆Yt−1 +
S−2∑
s=1

Ψs∆2Yt−s + Σt (6)

where:

Γ =
S−1∑
s=1

Γs − I (7a)

Ψs = −
S−1∑

j=s+1
Γj (7b)

For example, for S = 3:

∆2Yt = ΠYt−1 −Yt−1 + Yt−2 + Γ1∆Yt−1 + Γ2∆Yt−2 + Σt

= ΠYt−1 + (Γ1 − I)∆Yt−1 + Γ2∆Yt−2 + Σt

= ΠYt−1 + (Γ1 − I)∆Yt−1 + Γ2∆Yt−2 + Γ2∆Yt−1 − Γ2∆Yt−1 + Σt

= ΠYt−1 + (Γ1 + Γ2 − I)∆Yt−1 − Γ2∆2Yt−1 + Σt

(7c)
Matrix Γ (M ×M) is called mean lag matrix.
Alternatively it may be considered representation, which will be isomorphic
transformation of (6):

∆2Yt = ΠYt−S + Γ̃∆Yt−1 +
S−2∑
s=1

Ψs∆2Yt−s + Σt (8)

where Γ̃ =
∑S−1

s=1 Γ̃s − I.
In the case of joint stationarity (no nonstationary variables in the system),
cointegrating dependencies identification is superfluous, however structuralisation
restrictions may be imposed. All representations (4)–(8) may in this case solution
with respect to the stationary shocks. This solution is called vector moving average
(VMA) representation:

Yt =
(
I−Π(1)L− · · · −Π(S)LS

)−1
Σt (9)

and may be calculated because I − Π(1)L − · · · − Π(S)LS matrix is nonsingular,
if shocks are short-run (according to stationary processes properties roots of
I−Π(1)L− · · · −Π(S)LS lie outside unit circle, and so all characteristic roots of
this matrix are nonzero).
All shocks influencing variables in the VAR model are in this case transitory and not
cumulate (rows of matrix I−Π(1)L−· · ·−Π(S)LS are connected with variable, which
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is influenced by shock, whereas columns exhibit short-run shocks sources).
If rank of Π (which is the same as rank of I−Π(1)L−· · ·−Π(S)LS) fulfils R < M , then
from noninvertibility of matrix I−Π(1)L−· · ·−Π(S)LS , moving average representation
should be replaced by the following model (cf.Engle and Granger 1987, derivation in:
Johansen 1995a pp. 40):

Yt = c|
t∑

i=1
Σi + c|(L)Σt (10)

where:

c| = B⊥

(
AT
⊥

(
S−1∑
s=1

Γs − I
)

B⊥

)−1

AT
⊥,

A⊥ = [āij ], B⊥ =
[
b̄ij

]
- M × (M − R) orthogonal compliments of matrix A

and B respectively (AT A⊥ = 0 and BT B⊥ = 0), (r
[

A A⊥
]

= M and
r
[

B B⊥
]

= M).
The form (10) is called common stochastic trends I(1) representation.
VECM has solution in the form (10) only if, c| = B⊥

(
AT
⊥

(∑S−1
s=1 Γs − I

)
B⊥
)−1

AT
⊥

matrix exists. It is connected with the implicitly assumed in I(1) analysis assumption
about the full rank of matrix (AT

⊥

(∑S−1
s=1 Γs − I

)
B⊥). It should be noted, that

above I(1) model condition was defined both for matrix parameters from the primary
representation (VECM), and from the solution (dual representation).
In the case of double reduced rank r(Π) = R < M and r

(
AT
⊥

(∑S−1
s=1 Γs − I

)
B⊥
)

=
= P1 < M − R, the solution in the form of common stochastic trends model is as
follows:

Yt = c|1
t∑

i=1
Σi + c|2

t∑
j=1

j∑
i=1

Σi + C(L)Σt (11)

where c|2 is parameters matrix connected with stochastic I(2) trends
∑t

j=1
∑j

i=1 Σi.
The ¯̄

c|mn element of M ×M -dimensional I(2) shocks matrix c|2 measures the impact
of permanent (double cumulative) shock from n-th variable on m-th variable. The
c̄|mn element of M ×M -dimensional matrix c|1 is the measure of medium-run shock
impact from n-th variable on m-th variable.
Matrix of long-run shocks c|2 may be decomposed:

c|2 = B2⊥AT
2⊥ΓB

(
BT B−1

(
AT A−1AT Γ−

S−2∑
s=1

Ψs

)
BT

2⊥

)−1

AT
2⊥ (12)

where Γ =
∑S−1

s=1 Γs − I and Ψs = −
∑S−1

j=s+1 Γj .
The AT

2⊥ matrix consists of coefficients of the baseline (independent) stochastic I(2)
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trends. Matrix B2⊥ is the key component of the weights matrix for common stochastic
I(2) trends, defined as AT

2⊥
∑t

j=1
∑j

i=1 Σi. Independent common stochastic I(2)
trends may be performed as:

¯̄a1n

∑∑
Σ1t + · · ·+ ¯̄aMn

∑∑
ΣMt, n = 1, . . . , P2 (13a)

where ¯̄aij is the element of matrix A2⊥.
Independent common stochastic trends I(1) may be denoted as:

ā1n

∑
Σ1t + · · ·+ āMn

∑
ΣMt, n = 1, . . . , P1 (13b)

where āij is the element of matrix A1⊥.
Chosen m-th variable is influenced by combination of common stochastic trends I(2):

w̄m1
(¯̄a11

∑∑
ε1t + · · ·+ ¯̄aM1

∑∑
εMt

)
+ · · ·+

+ · · ·+ w̄m,P2

(¯̄a1,P2

∑∑
ε1t + · · ·+ ¯̄aM,P2

∑∑
εMt

) (13)

where coefficient w̄mr is the element of weights matrix

B̃2⊥ = B2⊥AT
2⊥ΓB

(
BT B−1

(
AT A−1AT Γ−

S−2∑
s=1

Ψs

)
BT

2⊥

)−1

connected with m-th variable and r -th independent common stochastic I(2) trends
(r = 1, . . . , P2).
Matrix AT

1⊥ consists of coefficients of independent stochastic I(1) trends, which
are defined by the formula (13a). It should be stressed, it is impossible to
decompose medium-run matrix of shocks c|1 analogously to the c|2 case. Then matrix
B1⊥ may not be interpreted as the component of weights matrix connected with
common stochastic I(1) trends, because such weights matrix were not defined in the
representation (11).
The interpretation of A⊥ and B⊥ matrices is clear only in I (1) case. In I(2) analysis,
the additional decomposition of stochastic trends A⊥ and their weights B⊥ into
the matrices defining I(1) and I(2) trends is required. It this purpose the following
dependencies are useful:

A
(
AT A

)−1 AT + A⊥
(
AT
⊥A⊥

)−1 AT
⊥ = I (14)

B
(
BT B

)−1 BT + B⊥
(
BT
⊥B⊥

)−1 BT
⊥ = I (15)

which allow us to obtain (cf. Paruolo 2000):

Ā⊥Ξ = A⊥
(
AT
⊥A⊥

)−1 Ξ = A1⊥ (16)
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because:

A1⊥ =
(
A
(
AT A

)−1 AT + A⊥
(
AT
⊥A⊥

)−1 AT
⊥

)
A1⊥

= A⊥
(
AT
⊥A⊥

)−1 (AT
⊥A1⊥

)
= Ā⊥Ξ

and
A
(
AT A

)−1 AT A1⊥ = 0

Analogously:
B̄⊥N = B⊥

(
BT
⊥B⊥

)−1 N = B1⊥, (17)

(M −R)×P1-dimensional (where P1 < M −R) matrices Ξ, N fulfil from the reduced
rank condition

(
AT
⊥

(∑S−1
s=1 Γs − I

)
B⊥
)
equality:

AT
⊥ΓB⊥ = ΞNT (18)

This is analogous to the famous from I(1) analysis decomposition:

Π = ABT (19)

where:

A = [α1α2 . . . αR]MxR - weights matrix (adjustments matrix),

B = [β1β2 . . . βR]MxR - matrix consisting of independent cointegrating vector.

The main difference is that matrices Ξ and N are not directly interpretable.
Simultaneously, following dependencies are fulfilled:

AT
⊥A1⊥ = Ξ (20)

BT
⊥B1⊥ = N (21a)

Formulas (16)-(17) allows us to project B⊥ into the medium-run stochastic trends I(1)
subspace, whereas projection into I(2) trends subspace is possible by decomposition:

A⊥Ξ⊥ = A2⊥ (21)

B⊥N⊥ = B2⊥ (22a)

where Ξ⊥ and N⊥ denote orthogonal compliments of respective matrices.
In I(1) case both from economic, and statistical point of view decomposition (19) is
satisfactory. If Y ∼ I(2), among independent cointegrating dependencies, described
by the matrix B, may be present both directly stationary CI(2,2), and nonstationary
CI(2,1) dependencies. As a consequence, the estimation of B, A, Γ does not suffice to
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obtain economically interpretable results (even after structuralisation). In particular
it is difficult to interpret cointegration space, defined by vectors concatenating
B matrix. In the model with I(1) variables this space encompass stationary
relationships combinations only. In the model with I(2) variables, by definition it
is possible to consider among R linearly independent cointegrating relationships both
R0 dependencies making I(2) variables stationary, and R1 cointegrating regressions
CI(2,1). These relationships may be described by matrices B0 or B1, M × R0,
M × R1 respectively. In the space defined by B lie combinations of both stationary
and nonstationary dependencies, hence the interpretation of such combination is
impossible in general. Besides parameters estimation of VECM, in the model
with I(2) variables it is then necessary to search the obtained from I(1) analysis
cointegrating dependencies projection into cointegrating subspace CI(2,2) (it is the
space of long- and medium-run equilibrium relationships) and subspace CI(2,1)
with more complicated interpretation. These subspaces are mutually orthogonal.
Matrix B1 describes nonstationary relationships. However the vectors concatenating
this matrix are cointegrating vectors, because order of integration is decreased.
Cointegration CI(2,1) type means (as it was mentioned in section one), that there
are similar stochastic trends in variables in the long (strictly: in very long) period,
however in the short and medium their paths are not mutually related. Cointegrating
dependencies B1Yt−1 liquid stochastic trends in first differences, such combinations
stay nonstationary in this sense that deviations from such long-run dependencies are
generated by the random walk process. Error correction mechanism dominates in the
very long run only in the case, when random term from the relationships CI(2,1) is
integrated of order one. The essence of cointegration CI(2,1) is that shocks influencing
these relationships stop amplifying.
Figure (3) exhibits the projection of R-dimensional "resultant" cointegration space
into R0-dimensional CI(2,2) space and R1-dimensional CI(2,1) space.
To simplify the Figure three-dimensional cointegration space was regarded, which is
CI(2,1) in general, because nonstationary cointegrating dependencies are possible.
In the considered case, formulas made possible the three-dimensional space
projection into stationary CI(2,2) dependencies plane spanned on independent vectors
β0

r (r = 1, 2) and into orthogonal with them vector of CI(2,1) dependencies β1
1

(assuming that R0 = 2, which implies R1 = 1) are necessary.
From the projection into CI(2,1) and CI(2,2) spaces point of view, it is crucial
to consider polynomial cointegration relationships, which join these variables (or
combinations variables), which did not achieve stationarity by simple cointegrating
dependencies (i.e. CI(2,1)). By the definition, CI(2,1) cointegration produce random
terms I(1), not cointegrated each over (as random terms from independent and hence
mutually orthogonal dependencies). The one possibility to make R1 combination
BT

1 Yt−1 stationary is to cointegrate them with other I(1) variables, which are
potentially present in the model. Such variables are the first increments of integrated
of order two noncointegrating dependencies BT

2⊥∆Yt−1 (vectors concatenating matrix
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Figure 3: Cointegration space decomposition in I(2) Model.

B2⊥ do not define relationships which reduced integration order), the number so
such increments equals P2 (by the definition they are I(1)). The necessary condition
for model "balance" is then P2 = M − R − P1 = R1. Polynomial cointegration
relationship is then CI(1,1) regression between levels and first differences of variables
(it may be relationship between CI(2,1) combinations of flows categories, and the first
differences of mutually noncointegrated stocks). Then polynomial cointegration shall
be interpreted as cointegration relationship between flows, while CI(2,2) and CI(2,1)
is always (under rather realistic assumption, that no I(3) trends at all) cointegration
between stock variables (for example price and money supply).
Three cases are possible. If P2 > R, then model is wrongly specified (in the sense of
the economic choice of variables to the system), because not all common trends I(2)
will be derived from VECM model by the polynomial co integration.
In the case P2 = R equilibrium condition arrives, when the one cointegrating
relationships in the model are CI(2,1) dependencies. It means that there are no such
dependencies between variables, which occur both in the long, and medium period.
Number of I(1) trends in such model equals P1 = M − 2P2 = M − 2R.
If P2 < R, then the following combinations should be determined

BT Yt−1 −ΛT BT
2⊥∆Yt−1 ∼ I(0) (22)

where ΛT = (AT A)−1AT ΓB2⊥(BT
2⊥B2⊥)−1 is R×M −R−P1 matrix (cf. Haldrup

1994, Haldrup 1999).
The element (p2, r) of matrix Λ may be interpreted as the component of r-th
cointegration vector, connected with the p2-th combination of noncointegrated I(2)

M. Majsterek
CEJEME 4: 215-252 (2012)

228



Cointegration Analysis in the Case of I(2)...

trends first differences.
From the dependency (22) it is clear, thatM−R−P1 = P2 stochastic I(2) trends may
be connected by polynomial cointegration with R linearly independent combinations
of levels (it derives from the matrix Λ dimensions). Equilibrium condition suggests
however, that only R1 of such combination are linked by polynomial cointegration.
Reduced column rank of matrix Λ, whereas full row rank (which is the consequence of
condition R ≥ P2) allows us to remove this apparent contradiction. It should be noted,
some combinations concatenating cointegration matrix B are stationary directly by
cointegration CI(2,2). This is the feature of R0 combinations BT

0 Yt−1 ∼ I(0),
which achieve stationarity by simple cointegration. Hence there exist R − R0 = R1
independent cointegrating relationships (23) only, so the matrix rank Λ equals
R1 = P2 (cf. Haldrup 1999).
Transformation (23) allows us to write (Juselius 2004):

BT
1 Yt−1 −KT ∆Yt−1 ∼ I(0) (23)

where K = B2⊥ΛΛT , B1 = BΛT , which after simple transformations lead us to

Λ
(
BT Yt−1 −ΛT BT

2⊥∆Yt−1
)
∼ I(0) (24)

The advantages of equilibrium condition in terms of (24) are as follows. Firstly,
it defines relationships of stochastic trends I(2) first differences with cointegration
relationships CI(2,1) exclusively, and then direct cointegration dependencies in
BT Yt−1 are omitted (matrix K has full column rank contradictory to matrix Λ).
Secondly, apart from polynomial cointegration matrix Λ, more interesting matrix K
is obtained which links first increments variables.
Formula (24) allows us to interpret Λ as projection matrix of "traditional"
cointegrating matrix B into subspace CI(2,1). Simultaneously (Haldrup 1999):

B0 = BΛT
⊥ (25)

which means, that ΛT
⊥ is (R × R0) projection of matrix B into subspace of direct

dependencies CI(2,2). Problem of cointegrating matrix projections has just solved on
the basis of polynomial cointegration. Applying:

A1KT = AĀT ΓB̄2⊥BT
2⊥ (26)

it is possible to make similar projection of adjustments matrices (Juselius 2004).
The CI(2,1) relationships matrix of weights has the form:

A1 = AĀT ΓB̄2⊥BT
2⊥K

(
KT K

)−1 = AĀT ΓB̄2⊥BT
2⊥K̄ (27)

Consequently, it holds A0KT
⊥ = AĀT ΓB̄2⊥BT

2⊥ which allows us to obtain weights of
relationships CI(2,2) matrix:

A0 = AĀT ΓB̄2⊥BT
2⊥K⊥(KT

⊥K⊥)−1 = AĀT ΓB̄2⊥BT
2⊥K̄⊥ (28)
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It means, that K̄ matrix (or its orthogonal compliment) play the same role with
respect to the weights matrix as projection matrix ΛT

⊥ with respect to cointegration
space (or its orthogonal compliment). This analogy is however not exact, because the
“full" projection matrix has a form ĀT ΓB̄2⊥BT

2⊥K̄ or ĀT ΓB̄2⊥BT
2⊥K̄⊥ respectively.

Recapitulating, in the VECM model with I(2) variables full matrix rank AT
⊥ΓB⊥

means the absence of I(2) trends.
The matrices Ξ and N are useful not only to decompose into respective subspaces.
They are applied to the estimation of VECMmodel parameters in the case of potential
presence of I(2) trends. Apart from the iterative method (Johansen 1994), the most
popular is two-stage Johansen procedure (1995b). The name "two-stage Johansen
procedure" origins from that, Johansen approach is applied twice. In the first step, A
and B matrices are estimated (almost identically, as for the model with I(1) variables),
ignoring reduced matrix rank AT

⊥ΓB⊥. The one difference with respect to traditional
I(1) Johansen procedure is that in this step: ∆2Yt = Z0t, ∆Yt−1 = Z1t, Yt−1 = Z2t,
whereas all lagged second differences and eventually deterministic terms defines Z3t

variable matrix. The starting model has then more complicated form than the model
with I(1) variables):

Z0t = ΓZ1t + ABT Z2t + ΨZ3t + Σt (29)

which means, that the first from residuals regression models (for details of Johansen
procedure: Majsterek 1998, Majsterek 2008) will be as follows:

R0t = ΓR1t + ABT R2t + Σ̃t (30)

which requires one more concentrated likelihood function must be additionally
constructed, to obtain desired estimates of Ψ, Γ, A and B. Similarly as in the
case of one-step procedure, cointegrating matrix B is obtained from the solution
of determinant problem, which due to the Rao (1973) lemma is equivalent with
maximization of values “most concentrated" (the simplest from the optimisation
point of view) likelihood function value Lmax(B̂). The other parameters matrices
were defined in the former steps (after successive transformations of explained and
explanatory variables matrices) as functions of other matrix parameters. Firstly,
estimation of cointegrating matrix allows us to calculate (not: to estimate) the weights
matrix Â(B̂), secondly weights (adjustments) matrix is useful in the calculation of
the medium-run relationships Γ(Â, B̂) matrix, and finally to obtain the block matrix
Ψ(Γ̂, Â, B̂) consisting of all ∆Yt−s (s = 1, . . . , S − 2). In all above stages the
invariance of FIML estimator is a very important feature contrary to non-invariant
estimators based on OLS (for example SUR). This estimation of cointegrating matrix
is preceded by construction of successive models and consequently more concentrated
(simplified) likelihood function. Initial function has the form L(Ψ̂, Γ̂, Â, B̂, Ω̂). After
defining Ψ(Γ̂, Â, B̂), VECM model is transformed and its concentrated likelihood
function is just L(Γ̂, Â, B̂, Ω̂). In the next step after defining Γ(Â, B̂) the next
transformation of VECM model is obtained, for which the likelihood function
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concentrates to L(Â, B̂, Ω̂), and in the following step - to the determinant problem
solution. It should be noted, that estimator of cointegrating matrix is still super-
superconsistent. Super-superconsistency of cointegrating matrix B estimator may be
explained, that in the successive steps following concentrated regression (analogously
as in the Johansen procedure for I(1)) is obtained:

R̃0t = ABT R̃2t + ˜̃Σt (31)

which cointegrate variables integrated of order two R̃2t in stationary combinations
(both R̃0t and ˜̃Σt are stationary). This is because from (31) R̃0t are residuals
from concentrated regression between Z0t, (stationary second differences) and lagged
second differences Z0,t−s. Such residuals are stationary by definition. On the other
hand, residuals R̃2t origin from the regression between Z2t (which are integrated of
order two levels) and stationary Z0,t−s. Not surprisingly, R̃2t are I(2). However
it should be emphasised, that super–superconsistency is the feature of all matrix
B estimator, not only the property of measuring CI(2,2) relationships projection
B0 matrix. In particular, the estimates of matrix B1 (although connected with
such relationships, deviations from which are not stationary) are significantly more
precise (due to the super - superconsistency) than estimates of defining stationary
dependencies the cointegrating matrix in the model with I(1) variables. I(1) analysis
invalidity is then caused not by technical reasons, but by the lack of matrix B and A
interpretability. Additionally it is impossible to project these matrices into respective
subspaces. The same disadvantage concerns the orthogonal compliments of these
matrices. The two-stage Johansen procedure is then necessary (cf. Figure (4)).
In this step, analogously as in the first stage, the next reduced rank regression problem
is solved to obtain AT

⊥ΓB⊥. It is then useful to premultiply (7) by ÂT
⊥ (this matrix

estimate is obtained in the first stage, consequently it is possible to apply estimation
methods of the orthogonal compliments matrix for model with I(1) variables). The
following modification of VECM is obtained:

ÂT
⊥∆2Yt = ÂT

⊥Γ∆Yt−1 + ÂT
⊥

S−2∑
i=1

Ψi∆2Yt−i + ÂT
⊥Σt, (32)

because from the orthogonality between A and AT
⊥, there are not long-run relationship

AT
⊥ABT Yt−1 = 0 in the model (32). Instead of M dependencies system comprises

M − R relationships for first and second differences. Form (32) is very similar to
the model (5), but there are first differences instead of levels, and second differences
instead of first ones. Due to relationship (Johansen 1995a, p.135):

B̂⊥
(
B̂T
⊥B̂⊥

)−1
B̂T
⊥ + B̂

(
B̂T B̂

)−1
B̂T = I, (33)
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Figure 4: Two-stage Johansen procedure
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model (32) may be transformed to

ÂT
⊥∆2Yt =

(
ÂT
⊥ΓB̂⊥

)(
B̂T
⊥B̂⊥

)−1
B̂T
⊥∆Yt−1+

+
(
ÂT
⊥ΓB̂

)(
B̂T B̂

)−1
B̂T ∆Yt−1+

+ÂT
⊥

S−2∑
i=1

Ψi∆2Yt−i + ÂT
⊥Σt

(34)

and after applying (19) to:

ÂT
⊥∆2Yt = ΞNT

(
B̂T
⊥B̂⊥

)−1
B̂T
⊥∆Yt−1+

+
(
ÂT
⊥ΓB̂

)(
B̂T B̂

)−1
B̂T ∆Yt−1+

+ÂT
⊥

S−2∑
i=1

Ψi∆2Yt−i + ÂT
⊥Σt

(35)

The form (35) is analogous to the starting VECM model (6), and then Johansen
method may be then applied again. By the analogy to the first step, in the second one
matrices N, Ξ and Ψ are estimated, and afterwards mean lag matrix Γ is reestimated,
in the second stage of the Johansen approach under reduced rank AT

⊥ΓB⊥ condition
whereas in the first step this matrix was calculated under full rank of AT

⊥ΓB⊥.
Consequently, Γ matrix is modified (the very similar is mechanism of modification
the form of long-run relationships matrix Π in the case of its full and reduced rank in
the I(1) analysis, cf. Majsterek 2008). Just in the second step of Johansen procedure
the advantage of decomposition (18) is clear, because due to (18) we are able to
obtain Ξ and N matrices explicitly. On the basis of (16)-(17) it is not difficult to
estimate matrices of parameters A1⊥ and B1⊥ (invariance of FIML estimator is useful
again). Similarly, formulas (21)-(22a) allows us to obtain A2⊥ and B2⊥. Projection of
cointegrating matrix and weights matrix into subspaces CI(2,2) and CI(2,1) is possible
from formulas (27), (28), (25), (23), because all elements of theirs were estimated
earlier. Johansen (1995b) and Paruolo (1996) confirmed, that two-stage Johansen
procedure is asymptotically the most efficient, equivalent with FIML.
The interesting property of the two-step Johansen method is application of nondirect
cointegration phenomenon. It may be noted, that the method explained above
simulates gradual equilibrium achievement, and in this sense imitates real adjustment
processes in economy. Firstly introductory global long-run equilibrium between
economic categories (their increments, so flows) is achieved, in the next step levels
(stocks) of these variables are adjusted. In the first step B and A matrices are
estimated globally (without decomposition into direct and polynomial cointegration),
in the second stage the main purpose is decomposition of these cointegrating
relationships, and projections of common stochastic trends matrix into I(1) and I(2)
subspaces.
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There not exists (contrary to I(1) case) separate problem of common stochastic trends
I(2) representation parameters estimation. In the model with I(1) variables there
exist separation between matrices from "primary" representation (presented in the
VECM or VAR model exclusively), and their orthogonal compliments (presented in
the common stochastic trends I(1) model only), hence it is necessary to separately
estimate parameters of both alternative models (primal and its solution). In the
model with I(2) variables, as may be seen for example from (12) such discrimination
does not occur. All matrices necessary to estimate parameters of common trends I(2)
model were just estimated earlier, in the two-stage Johansen methods.
The problem of cointegration rank determination in the model with I(2) variables is
more complicated than in I(1) domain. Two approaches are possible. The simplest
is based on sequential procedure. In the first step cointegration rank is determined
(by traditional trace test or maximum eigenvalue test) in traditional way, so under
assumption about full rank of AT

⊥ΓB⊥. In the next step, actual rank of this latter
matrix is found, which allows us to determine not only the number of I(1) and I(2)
stochastic trends but matrices ranks of N and Ξ too. The classical tests procedure
based on likelihood ratio is applied again (trace test is preferred). By the analogy
to the finding R cointegrating directions in I(1) analysis, likelihood ratio tests are
applied to find the dimensions of N and Ξ, which again determine dimensions of
B0 and B1 matrices. Because the cointegration rank test measures the number of
stochastic trends for variables levels, number of common trends for first differences
(so: I(2) trends)) is a compliment to M − R of AT

⊥ΓB⊥ matrix rank. Rank of this
matrix is tested the same way as for the matrix rank Π by likelihood ratio test (trace
test is suggested by Juselius (1999).
Cointegration rank test (first step) is however correct only, when the hypothesis about
full rank of matrix AT

⊥ΓB⊥ is true. If else, Johansen (1995b) and Paruolo (1996)
proposed joint test to establish both cointegration rank R, and P1. Following test
statistic Q is applied:

Q (P1, R) = TRACE (R) + TRACE (P1/R) (36)

where TRACE are respective trace statistics values.
The testing starts from the joint hypothesis H0 : R = 0 ∧ P1 = 0 and in the case of
its rejection there are tested: H0 : R = 0 ∧ P1 = 1, H0 : R = 0 ∧ P1 = 2,. . . until,
H0 : R = 0 ∧ P1 = M −R− 1 (equivalent in this step: H0 : R = 0 ∧ P1 = M − 1).
The rejection of all above null hypothesis leads us to verification H0 : R = 1∧P1 = 0.
Procedure terminates, when the null hypothesis may not be rejected. Finally, the
determination of P1 allows us to find P2, which from polynomial cointegration
condition equals R1. The serious disadvantage of all traditional tests to determine
R and P1, is very low power (Juselius 1999). On the other hand, the advantage
is that, similarly as in the model with I(1) variables, it is not necessary to pre-
establish deterministic structure (in particular deterministic trend) to properly
identify cointegration ranks R and P1 (Rahbek, Jorgensen, Kongsted 1999). Johansen
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(1995b) and Rahbek, Jorgensen, Kongsted 1999 claim, that joint test is consistent with
asymptotically correct size.
Recapitulating, consequences of the ignoring the presence of I(2) trends in the
model are apparently not serious. The estimator of cointegrating matrix is super-
superconsistent (proof in Juselius 2006), and then the estimates of parameters should
be, even in not large sample, sufficiently precise. By paradox, in samples with
moderate size, will be even more exact than with respect to variables generated by I(1)
processes. In the last case the estimators of cointegrating matrix are superconsistent
only, which means, that significantly longer sample is required to achieve acceptably
high probability of the precise estimates obtaining.
On the other hand, the dimension of matrix B may be determined wrongly, because
cointegration rank test results base on assumption r(AT

⊥ΓB⊥) = M − R, which is
not fulfilled in this case. This may cause, that dimension of common stochastic
trends space will be overestimated, so some of cointegrating dependencies will not be
identified.
In the multi-equation model with I(2) variables cointegration relationship not
necessarily must be long-run (cf. Table 2). Economic implications of medium-run
cointegration relationship are almost always connected with stochastic cycles. The
defining of P1 dependencies BT

1⊥∆Yt−1 base on decomposition: Γ = A1⊥BT
1⊥. The

latter come from substitution above decomposition to the formula (18), then:

AT
⊥ΓB⊥ = AT

⊥
(
A1⊥BT

1⊥
)
B⊥ (37)

However it is worth emphasising, that decomposition Γ = A1⊥BT
1⊥ is not unique and

there may be proposed alternative solutions with respect to the matrix Γ.

4 Economic interpretation of I(2) processes
The economic interpretation of both I(1) and I(2) trends and main dependencies
in reliable models describes Table 3, which reflects coexistence of deterministic
and stochastic trend. All former considerations was conducted implicitly under
assumption that no deterministic trend at all (or its existence did not affect
considerations results, which was for example in the case of two-stage Johansen
method). However it should be considered, how strongly the presence of deterministic
tendency (without loss of generality let us assume linear trend) affects the
interpretation of I(0), I(1) and I(2) shocks from the Figure (1).
In the Table 3 I(0) shocks were omitted, because interpretation of them stays invariant,
irrespective of whether stochastic trends I(2) and/or deterministic trend were reflected
in the analysis. I(0) shock, which by definition is not a stochastic trend, has always
short-run self-decaying character (cf. Table 4).
The most interesting are stochastic shocks I(1). Their sense differs depending on
presumptions with respect to circumstances. In the case of no "dominating" trends,
for example in the classical model with I(1) variables, it may be identified I(1) shock
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Table 3: Economic interpretation of I(1) and I(2) trends

Type of shock
influencing
variable

Lack of deterministic trend Levels of variables are influenced by
linear deterministic trend

I(2) trend occur no I(2) trend I(2) trend occur no (2) trend

I(1)

medium-run
shock (cyclical
deviation) or
long-run shock
persistently
disturbing from
the long-run
tendency

medium-run
trend maintained
in the long period

medium-run
deviation from
the long-run cycle

medium-run
deviation from
the deterministic
trend

I(2) long-run trend -–

long-run
deviations from
deterministic
trend (similar
to long-rung
cycle) or long-run
shock persistently
disturbing from
the long-run
tendency

—

with stochastic trend, and then I(1) is long-run. It results from the assumed in
the models with I(1) variables interpretation that I(0) impulse is short-, whereas
I(1) long-run. This is because, that process with the highest integration order (in
this case: I(1)) is pushed by stochastic trend, which dominates other shocks. In
this way medium-run shock gets reinforce to the long-run and hence it is correct to
call it "trend". Deterministic tendency however may theoretically dominate trend
I(1) and to "degrade" it to the role of cyclical deviations from deterministic trend.
Such inference is proper only under the assumption, that I(1) trend dominates I(0)
shocks, but not deterministic trend. It is supposed, that in this direction should
be performed the correct economic explanation of the apparent contradiction, if
I(1) type nonstationarity occurs in the case of deterministic trend ignoring, but
the integration order is zero, when presence of this trend is reflected. If however
stochastic trend dominates, which cause permanent disturbance of the variables from
its long-run tendency, then it should be expected the identification of stochastic trend
I(1), independently whether deterministic trend is considered or not. It should be
additionally stressed, that in the case of I(2) trend presence, just this trend dominates
I(1) trend independently whether, deterministic trend is statistically significant or not.
I(2) trend is always long-run. Similarly as I(1) trend, it may dominate deterministic
trend or may be dominated by this trend. In this second case it should be expected
the identification of I(2) shocks only, when lack of deterministic tendency is assumed.
Integration order of processes generating variables shall not be treated mechanically,
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as is done by researchers analysing traditional unit root integration tests results only.
Some of variables may cointegrate both with I(1) and I(2) variables (cf. Juselius 2006).
Non-unique interpretation of I(1) trends allows us to better understand the economic
sense of cointegration CI(2,1). In the model with variables at most I(1) random
term I(1) means, that deviations have maintaining character, errors cumulate. In I(2)
model, random term I(1) means the introductory, long-run equilibrium (i.e. flows
equilibrium between stock categories) achievement in the system.
Supplementary economic interpretation of the integration with different order presents
Table 4.

Table 4: Interpretation of variables integration order

Integration order Interpretation
I(-1) past changes correction of cumulant
I(0) shocks are temporary, which means, that changes decay

I(1)
shocks influencing variable are permanent, variables is dominated by its
own past, shocks influencing increments are temporary, which means, that
changes maintain, but its acceleration does not

I(2) permanent shocks on increments, acceleration of changes maintain

The problem of economic restrictions imposing and VECM model structuralisation
is widely discussed in literature for the case I(1), cf. for example fundamental
works: Johansen 1988, Johansen 1994, Juselius 1999, Juselius 2004 and descriptions:
Majsterek 2005, Majsterek 2008. It should be noted, that reduced rank of
Π assumption is connected with the switch from the model with jointly stationary
variables to the model, in which variables integrated of order at least first occur.
Such restrictions are imposed on parameters from the VECM model, but not from
the common stochastic trends representation. Assuming additionally reduced rank
of AT

⊥ΓB⊥ matrix, the presence I(2) trends is allowed. In this context I(2) model
may be treated as nested case of I(1) model after positive verification of reduced rank
AT
⊥ΓB⊥ restrictions. Analogously, I(1) model is treated as nested case of I(0). If

however common stochastic trends model is analysed, then the encompassing occur
in the opposite direction. In this case I(1) model is nested in I(2), when restriction
that c|2 is the zero matrix is fulfilled. Analogously, when c|1 is the zero matrix, then
I(1) model may be simplified to I(0). However it should be stressed, that if c|2 is
nonzero, then even if c|1 is zero, we may only conclude lack of medium-run shocks,
but not the case of joint stationarity.
More complicated is interpretation of those matrices, which occur both in the
dual and primary representation, because restrictions imposed on these parameters
have non-unique meaning. There is a danger, that restriction will introduce as
supplementary effect such condition, which is from the economic or statistical point of
view undesirable. Sense of some such restrictions is easier to understand, comparing
simultaneously the interpretation of key economic matrices in the representation (6)
and their orthogonal compliments (cf. Table 6).
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Table 5: The application of restrictions on matrices in the model with I(2) variables

Restrictions
on matrix

Basic Application Supplementary Application

Π no joint stationarity restrictions
cointegration rank determination

AT
⊥ΓB⊥ no joint stationarity of first differences

restrictions

Γ number of medium-run cointegrating
relationships determination

B0 stationarity of variables combinations test stationarity tests with respect to the basic
variables of the system

B1 difference stationarity of variables
combinations test

difference stationarity tests with respect to
the basic variables of the system

A0

inclusion of economic knowledge
concerning adjustment reactions to
the relationships CI(2,2) weak exogeneity
in CI(2,2) relationships

A1

inclusion of economic knowledge
concerning adjustment reactions to
the relationships CI(2,1) weak exogeneity
in CI(2,1) relationships

c|1
stationarity restrictions concerning
variables (only after testing restrictions
about c|2 )

c|2 no I(2) trends in variables restrictions

B⊥ inclusion of economic medium-run theory
number of medium-run relationships

B2⊥

system stationarity testing for first
increments of variables quadratic
trend removing analysis of I(2) shocks
destinations in the system

A1⊥
medium-run weak exogeneity medium-run
adjustments

source of shocks I(1)

A2⊥ source of shocks I(2)

Ψi

VECM model order of lags research strict
exogeneity in short-run inclusion of short-
run economic theory

no impact of chosen lagged variable

Λ inclusion of knowledge about dynamic
equilibrium relationships

K inclusion of knowledge about dynamic
equilibrium relationships

A2
sim short-run weak exogeneity impact of chosen structural shock exclusion

In some cases, on the basis of matrix A2⊥ elements analysis (or respectively A1⊥) it
may be identified the dominant term of baseline stochastic trend (or respectively
stochastic cyclical). Such trend may be called autonomous. With respect to
autonomous shocks it is sufficient to fulfil the assumption, that these shocks are weakly
correlated. If above condition is fulfilled, it is useful to classify shocks as stock or flows,
real or nominal and finally demand or supply. However it must be discriminated
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Table 6: Interpretation of matrix A, B, their compliments and projection

Matrix Interpretation

A0
Weights of CI(2,2) relationship – parameters connected with stationary deviations
from long- and medium-run equilibrium relationship. Deviations "dominate" only in
the short-run

A1
Weights of relationship CI(2,1) – parameters connected with I(1) deviations from long-
run equilibrium relationship. Deviations "dominate" both in the short and medium-
run

A1⊥

Weights of medium-run relationship – parameters connected with stationary (short-
run) deviations from this relationship. Because medium-run cointegration may be
identified with cyclical relationships, both with respect to the dominant I(2) trend,
as with respect to the long-run dynamic equilibrium state I(0), above deviations are
interpreted as short- and medium-run stochastic trends I(1). They are equivalent
with the coefficients of stochastic trends I(1). In the long period however these
deviations are stationary with respect to I(2) trends (domination effect occur), hence
they cumulate to the long-run I(2) trends with respect to the stationary state

A2⊥

Weights of short-run (non-cointegration) relationship – parameters connected with
deviations from these relationships (short-, long- and medium-period). These
deviations are I(2) with respect to the stationary state, are then equivalent with
coefficients connected with the stochastic trends I(2)

B0 Coefficients of CI(2,2) relationship defining in the short period deviations from the
long- and medium-run equilibrium relationships

B1 Coefficients of CI(2,1) relationship defining in the short and medium period deviations
from the long-run equilibrium relationships

B⊥

Coefficients of medium-run relationship (i.e. stochastic cycle relationship). In the
short period deviations from this relationship are stationary. Both in the short,
as in the medium period these are deviations both from stationary state, and from
dominant I(2) trend. In the long-run these deviations are stationary with respect to
I(2) trend, however are I(2) with respect to the long-run dynamic equilibrium state

B2⊥

Coefficients of noncointegrating relationship, which acts in the short period. Both in
the long and medium period deviations from this relationship are nonstationary, in
the long whereas in the long-run their cumulate to the I(2) trend, in the medium - to
I(1) trend only.

for example nominal shocks and the shocks influencing nominal category, the latter
should be analysed in terms of B̃2⊥ matrix. Consequently, type of shocks has not
many common with the level of its persistence. Contrary to shocks influencing stocks,
which by definition are more permanent than shocks influencing flows, stock shocks
not necessarily have longer period of impact than flows shocks. Hence the proper
identification of economic shocks allows us to identify for example the impact of
nominal shocks on the real side of the economy (in the long and medium period) or
vice versa. On the other hand the analysis of centripetal (cointegrating) powers in the
system is very similar. Very helpful are in this case A0 and A1 matrices, which inform
us about o adjustments to the relationships CI(2,2) and CI(2,1) respectively. Hence,
depending on which variable is governed by adjustment reaction, it may be, by analogy
to the centrifugal shocks, regarded nominal or real categories adjustments, demand
or supply adjustments and flows or stocks adjustments. Depending on, whether these
are error correction reactions with respect to CI(2,2) or CI(2,1) it may be classified
long- and medium-run adjustment or long-run adjustment only.
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Duality in the interpretation of matrix A1⊥origins from, that depending on assumed
perspective (cf. Figure 1) medium-run cointegration relationship might be treated as
centrifugal (common trend I(1)) or centripetal (stationary across stochastic cycle).
Analogously it may be considered the matrix B and its orthogonal compliments
interpretation. The rows of matrix B2⊥ identify variables, which are the most sensitive
on double cumulative long-run shocks in the system. With respect to the matrix B1⊥
similar interpretation is impossible. In the case of the analysis of column in the Table
6 it should be noted, that the columns of orthogonal compliments cover coefficients of
defining random term dependencies, whereas columns of several A projection matrices
and their orthogonal compliments cover parameters connected with (stationary or not)
random factors. The most complicated and the less discussed in the literature is a
matrix B1⊥ interpretation. Its elements may be defined as coefficients of medium-run
dependencies.

5 Whether I(3) model has economic explanation?
Model (6) may be transformed to the form:

∆3Yt = ΠYt−1 + Γ∆Yt−1 + Φ∆2Yt−1 +
S−3∑
s=1

Ψs+1∆3Yt−s + Σt (38)

where Φ =
(∑S−2

s=1 Ψs − I
)
.

The necessary condition of no I(3) trends in the model is (proof in Johansen 1995a)
that M ×M matrix:

M = ΓB
(
BT B

)−1 (AT A
)−1 AT Γ−Φ (39)

has full column rank. Such matrix may not be decomposed. It means, that similarly
as full matrix rank of Γ guarantees for all m (m = 1, . . . ,M) stationarity of first
differences - full matrix rank M assures for all m stationarity of second differences. It
is worth emphasising, that only reduced rank of Γ and full rank of M jointly constitute
the correct I(2) condition.
It is clear, that the most of the generating variables processes may be transformed to
stationary by at most application of difference filter twice or is not integrated at all.
On the other hand, especially in the less stable economies, it may be possible, that
some variables may be, particularly in the economic disturbances periods, integrated
of order three (the possibility of such processes reflect Juselius 2004 and Burke and
Hunter 2005, p.159). It is supposed, that such variable may be prices in terms of
permanent, nonstable hyperinflation (Juselius 2004). Such type of hyperinflation may
be identified with inflationary process, which increase is generated by the random
walk, so inflation is I(2), whereas prices are I(3). The main hindrance in such
models with I(3) variables application is that, such phenomena, as hyperinflation
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are rather not permanent. Only disposing the data with sufficiently high frequency,
such processes may be modelled. It narrows the potential application of model with
I(3) variables to nonstable state economies (in the case of Poland these techniques
might be useful for economy historicians analysing for example hyperinflation after
first world war). The next problem is that nontypical variables (i.e. I(3)) do not
cointegrate with any basic economic categories. This suggests that hyperinflation may
be considered as for example lack of long-run equilibrium between wages (integrated
of order at most two) and prices (I(3)). In the case of I(3) variables the analysis
of model (39) should be applied, simultaneously in the I(3) domain the matrix
M̃ = AT

2⊥(ΓB(BT B)−1(AT A)−1AT Γ −Φ)B2 has no full rank (M − R − P1), and
may be decomposed as follows:

M̃ = THT (40)

where T and H matrices are (M −R− P1)× P2.
Contrary to the models with I(2) variables: identity (M − R − P1) = P2 does not
occur, because P3 stochastic trends I(3) additionally occur.
Apart from classical long-run dependencies ΠYt−1, and short-run relationships∑I−3

i=1 Ψi+1∆3Yt−i there are two types of medium-run relationship (in the Table
7 denoted as (a) and (b) respectively): with first Γ∆Yt−1 and second differences
Φ∆2Yt−1. Their potential interpretation is connected with cyclical deviations with
longer period of fluctuations (first increments) and overlapping deviations, for example
seasonal (second differences). Long-run relationships between the variables integrated
of order three have three forms: direct long - and medium-run equilibrium relationship
CI(3,3) and nonstationary cointegrating relationships both CI(3,2), and CI(3,1).
Cointegration matrix and weights matrix are decomposed (by reliable projections) on

three parts: B =
[
B0

...B1
...B2

]
and A =

[
A0

...A1
...A2

]
respectively, where B0 isM×R0

matrix of CI(3,3) dependencies, B1 -M×R1 matrix of CI(3,2) relationships, whereas
B2 M × R2 matrix explains CI(3,1) relationships. Analogously the components of
weights matrix are defined. All matrices projections are mutually orthogonal. Similar

relationships take place for the orthogonal compliments: B⊥ =
[
B1⊥

...B2⊥
...B3⊥

]
and

A⊥ =
[
A1⊥

...A2⊥
...A3⊥

]
, whereas the latter define common trends: I(1), I(2) and

I(3) respectively. Dependencies between first differences are defined by stationary
combinations BT

1⊥∆Yt−1 (the number of which is P1) and integrated of order one
relationships BT

2⊥∆Yt−1, which number equals P2. Relationships BT
3⊥∆Yt−1 are

not cointegrating, and then define combinations integrated of order two. The
links between second differences consist of stationary dependencies BT

2⊥∆2Yt−1 and
integrated of order one noncointegrating combination: BT

3⊥∆2Yt−1. Strictly short-
run dependencies are described by relationships between third increments.
There may be present two types of dynamic cointegrating dependencies between
levels and first differences, however only the combinations BT

1 Yt−1 and BT
2⊥∆Yt−1
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Figure 5: Model for I(3) variables
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are stationary CI(1,1). There additionally exist relationships between BT
2 Yt−1 and

BT
3⊥∆Yt−1. Some of them are stationary CI(2,2), but some are CI(2,1). To make

these dynamic dependencies stationary, these combinations should be cointegrated
with integrated of order one combinations BT

3⊥∆2Yt−1. Consequently, such type of
polynomial cointegration, although stationary, has more complicated character. It
links the combinations of levels and first differences with the second differences. It
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may be proposed for such polynomial cointegration relationships the name complex
polynomial cointegration (second order), contrary to relationships between levels
and first differences, which may be called as simple (first order). Second order
dynamic cointegration dependencies may be for example the relations between
price acceleration (in terms of hyperinflation) and variable being a combination of
integrated of order one categories and the increase of (stock) variables integrated of
order two. Besides the classical I(2) polynomial cointegration condition R1 = P2 (in
the I(3) model this condition may be renamed to first order stationary polynomial
cointegration condition) there shall be reflected first order polynomial nonstationary
cointegration condition: R2 = P3. This condition should be however decomposed.
Among the first order polynomial cointegration relationships, relating I(2) variables,

Table 7: Cointegrating relationships in the model for I(3) variables

Type of
relation-
ship

Static relationships Polynomial relationships (dynamic)

Long-run
relationship

Medium-run
relationships

(a)

Medium-run
relationships

(b)
simple complex

CI(3,3) R0 dependen-
cies BT

0 Yt−1

CI(3,2) R1 dependen-
cies BT

1 Yt−1

CI(3,1) R1 dependen-
cies BT

2 Yt−1

CI(2,2)
P1
dependencies
BT

1⊥∆Yt−1

relationship
BT

2 Yt−1 and
BT

3⊥∆Yt−1

CI(2,1)
P2
dependencies
BT

2⊥∆Yt−1

relationship
BT

2 Yt−1 and
BT

3⊥∆Yt−1
(w1,t−1)

CI(1,1)
M1
dependencies
BT

2⊥∆2Yt−1

relationship
BT

1 Yt−1 and
BT

2⊥∆Yt−1

relationship
(w1,t−1) and
BT

3⊥∆2Yt−1

there are both relationships CI(2,2), which number equals R20 and relationships
CI(2,1), which number is R21. Hence, it must be fulfilled: R20 = P30 and R21 = P31,
additionally P30 + P31 = P3. Second order polynomial cointegration links integrated
of order one combination made from CI(2,1) dependencies and second differences of
I(3) variables, i.e. R21 = P32. From the above condition it results rather serious
restriction. The number of second differences of I(3) trends is P3, exactly the same
is the number of second differences. Indeed, second order polynomial cointegration
condition should be R21 = P3, which implies R20 = 0, to avoid contradiction with
first order cointegration condition. The latter means that first order polynomial
cointegration relationship must not be CI(2,2). The new element of the model with
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I(3) variables compare to model with I(2) variables is that stochastic trends I(3) may
in two ways participate in polynomial cointegration dependencies (first and second
differences of such trends separately). I(2) trends may be present in the polynomial
cointegration dependencies as first differences only (the second one stationary by
definition and should not cointegrate at all), I(1) trends are not linked by polynomial
cointegration dependencies at all.
It should be also noted, that BT

2⊥ matrices, present in relationships BT
2⊥∆Yt−1 and

BT
2⊥∆2Yt−1, are probably not the same matrices (as in beginnings of I(2) analysis

it were not be discriminated BT
1 and BT

1⊥ matrices, cf. for example Johansen 1994;
Paruolo 2000). It may be then possible, that space I(3) dimension is greater than
I(2) space, relationship BT

2⊥⊥∆2Yt−1 must be regarded, where matrix BT
2⊥⊥ will be

orthogonal both with respect to BT
2⊥, and cointegrating matrix BT

2 .

6 Models comparison
Comparison of models with I(0) variables, I(1), I(2) presents Table 8. It must not
necessarily be identified the model (4) with the case I(0), the model (5) with the
case I(1), and model (6) with the case I(2). All the mentioned above representations
are indeed the same model, only isomorphically transformed. Then, it is not wrong,
for example, using the model (6) for case I(1), to test possibility of the stochastic
trends I(2) exclusion. The application of the model (4), when common stochastic
trends occur is still not wrong, but is uncomfortable from the cointegrating matrix
and weights matrix estimation point of view. All of representations (4), (5), (6) have
the same solution (dual representation), which is dependent on the highest integration
order of variables in the model.
Order of lags of the VAR model has the substantial meaning not only in the context
of correct model dynamic structure, degrees of freedom number, but also integration
order. In the multi-dimensional case, for the static model it follows:

∆Yt = −Yt−1 + Σt (41)

which lead us to the identical inferences. The matrix Π = −I has by definition full
rank, which implies joint stationarity. It origins from that lags order of VAR model
should be at least one level higher than expected integration order of variables used
in the model. VAR (0) model in the form of (6) is under above assumptions:

∆2Yt = −Yt−1 −∆Yt−1 + Σt (42)

which also confirms inference about VAR(0) stationarity. Consequently, VAR model
(1) in the form (6) is:

∆2Yt = (Π1 − I) Yt−1 −∆Yt−1 + Σt (43)

which means, that r(−AT
⊥B⊥) = r(IT×(M−R)) = M −R, so there are no I(2) trends

in the model. Dependency condition formulation between lags order of VAR model
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Table 8: Comparison of the VAR representations for different types of models

I(0) Variables I(1) Variables I(2) Variables

VAR model for levels variables
recommended

VECM model (5) recommended
(levels and first increments
variables)

model (6) recommended (levels
and first two differences variables)

full rank of Π reduced rank of Π, decomposition
of Π

reduced rank of Π, decomposition
of Π

solution in the form of MA
representation

solution in the form of I(1) trends
representation

solution in the form of I(2) trends
representation

zero rank of C
nonzero rank of C, decomposition
of C, zero rank of C2

nonzero rank of C2,
decomposition of C2, zero
rank of C3

full rank of AT
⊥ΓB⊥ reduced rank of AT

⊥ΓB⊥,
decomposition of AT

⊥ΓB⊥

consistent estimator superconsistent estimator super-superconsistent estimator

short-run analysis short-and long-run analysis short-, long- and medium-run
analysis

SUR estimation Johansen method two-step Johansen method
iterative FIML

non-cointegrating relationships
CI(0,0)

direct cointegration between levels
of variables exclusively

direct (static) and polynomial
(dynamic) cointegration

short-run relationships
maintained in the long

long-run cointegration
relationships

long- and medium-run
cointegration relationships

random term is stationary by
definition

cointegrating relationships with
stationary random term

both stationary and I(1)
cointegrating relationships

and integration order in the form of strong inequality S > d is caused not by technical
reasons (weak inequality would be sufficient from this criterion), but by the fact, that
in the case S = d it must not be estimated the short-run relationships irrespectively of
whether we apply the model (5) or (6). In this context it may be augmented the Table
5 by additional meanings. Restriction Γ1 = 0 in the VECM model (assuming that
higher lags were not reflected) is equivalent with joint stationarity assumption with
respect to first differences variables used in the model, whereas restriction Π1 = 0
in the VECM model (assuming that there are no higher lags) is connected with
assumption concerning joint stationary levels of variables.
In the model with I(2) variables the number of the presented here relationships is
unproportionally more than in I(1) case. Table 9 illustrates this problem.
In the model with I(2) variables there are many types of cointegration due to
different criteria. From the integration order point of view, there are both
CI(2,2), CI(2,1), CI(1,1) dependencies. There are both relationships making directly
stationary random term, and nonstationary cointegration, similarly there are both
traditional long-run and medium-run cointegration relationships. Finally non-
standard polynomial cointegration is present: relationship between levels and first
differences, which must not be easily classified as long- or medium-run. Additionally,
there are non-cointegrating, both stationary (short-run), and I(1) dependencies.
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Table 9: Relationships in the the I(2) and I(1) model - comparison

I(2) Model
Integration order Simple relationships Complex
of combination Long-run Medium-run Short-run relationship

I(0)
R0 CI(2,2) relationships
BT

0 Yt−1

M Ψi∆2Yt−i

relationships

R1 = P2
polynomial
cointegration
CI(1,1)
relationships

P1 CI(1,1)
relationships
BT

1⊥∆Yt−1

I(1)

R1 CI(2,1)
relationships
BT

1 Yt−1; P1
common trends
I(1)

P2 non-
cointegration
relationships
BT

2⊥∆Yt−1

I(2) P2 common
trends I(1)

I(1) Model
Integration order Simple relationships Complex
of combination Long-run Medium-run Short-run relationship

I(0) R CI(1,1) BT Yt−1
relationships

M Ψi∆Yt−i

relationships
no such
relationships

To clarify the order of complexity of I(2) model it shall be compared the part of the
Table 9 connected with I(2) model with this part, which presents relationships in the
model with I(1) variables.

7 Empirical example

Let us consider the model constructed by Majsterek and Kelm (2007). The
relationships linking wage and prices were conducted. After performing I(1) VECM
analysis the initial system was modified.
The modified I(1) system comprised monetary aggregate M2 (lm2p), consumer price
index (lcpi), GDP (lgdp), proxy of the BS effect (lbs), unit labour costs (lulc) as
well as weakly exogenous nominal interest rate (RO) and real exchange rate (lrer).
The weak exogeneity tests strongly supported conditioning the system on the real
exchange rate and, potentially, on the proxy of the Balassa-Samuelson effect (wider
discussion: Majsterek and Kelm 2007), then the number of variables in the system
M = 5. The trace test results suggested three-dimensional cointegration space.
The I(2) analysis was conducted within the two-step Johansen procedure. The joint
cointegration rank was tested by means of the Paruolo (1996) test. The number of
cointegrating vectors R and the number of I(1) stochastic trends P1 was identified
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jointly by means of the Q statistic:

Q (P1, R) = TRACE (R) + TRACE (P1/R) (44)

where TRACE - values of respective trace statistic.
The results of the cointegration rank test are summarized in Table 10. The outcomes
confirmed the conclusions derived from the I(1) models: it was justified to consider
the cumulated unit roots in the data generating processes as the Q test suggests
the presence of two both long and medium term C(2,2) cointegrating vectors (direct,
stationary cointegration) and one non-direct cointegrating relationship C(2,1) which
is nonstationary in the considered sample but which becomes stationary in the long-
term.

Table 10: The joint cointegration test for the I(2) model (critical values in brackets)

M-R R Q(P1,R)
5 0 646.04

[191.9]
454.36
[161.9]

333.98
[137.0]

256.87
[114.9]

205.59
[96.5]

194.34
[82.6]

4 1 452.64
[132.0]

264.46
[107.9]

189.19
[87.9]

118.32
[71.3]

111.92
[59.0]

3 2 337.79
[82.3]

149.63
[64.2]

77.85
[49.7]

66.10
[39.3]

2 3 113.28
[44.5]

31.02∗
[31.6]

22.97
[23.0]

1 4 16.85
[17.6]

5.02
[10.6]

P2 5 5 4 3 2 1 0
∗) – denotes chosen null hypothesis

According to the Johansen procedure the estimation of the cointegrating vectors and
adjustment matrices was performed taking R = 3 in the first step and then assuming
P2 = 1 i.e. the presence of one double unit root in DGP. It is then possible to identify
the sources of the long I(2) shocks in the model as well as the variables affected by
these shocks. Additionally, basing on the cointegrating vectors renormalisation and
the analysis of the adjustment parameters one can try to find a link between the
estimated cointegrating vectors and theory-based models.

Table 11: The estimates of orthogonal compliments for the I(2) model

Matrix rows lm2p lcpi lgdp lbs Lulc
A2⊥ 0.1202 -0.4948 0.0381 -0.0670 0.0280
B2⊥ -0.2770 -0.1168 -0.0760 -0.0404 -0.1167
A1⊥ -0.7413 -0.2901 -2.4188 0.9549 3.6279

The main economic inference from the Table 11 is as follows. Price shocks rather
than money demand shocks produce the I(2) behaviours (elements of A2⊥) in the
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system (the influence of the monetary shocks is about four times weaker, 0.12),
whereas money demand is I(2) variable in the sense that it import such shocks
(elements of B2⊥). Then this is additional argument to recognise famous Fisher
equation as the money demand rather than price equation. Moreover, as the compared
parameters (connected with money and prices) have opposite signs the results may
be perceived as a justification of the hypothesis according to which disinflationary
process strongly outperformed the inflationary pressure connected with the monetary
expansion. Secondly, there are three variables that accumulate I(2) shocks (cf.
elements of B2⊥): the nominal monetary aggregate (-0.28), the consumer prices
(-0.12) and the unit labour costs (-0.12). The elements of A1⊥ matrix inform us
about the sources of medium – run stochastic shocks (stochastic cyclical).
The results of the "stationary" cointegrating vectors concatenating B0 analysis are
as follows. One of the possible renormalizations leads to the following long- and
medium-run CI(2,2) relationships

lm2p = 2.066lgdp+ 1.081lulc− 0.122lcpi+ 0.195lbs− 0.450lrer − 14.6RO
lbs = 0.233lm2p− 0.306lgdp+ 0.050lulc− 0.059lcpi+ 0.043lrer + 2.62RO

(45)
The first cointegrating vector may be interpreted in terms of the money demand
function. The scale variable is represented by GDP with the elasticity exceeding 2.
The estimates of the prices’ elasticities seem to be a little bit confusing as the CPI
elasticity is negative, whereas the ULC elasticity exceeds unit. Such a result might
be acceptable however as it may be connected with the overlapping effect between
CPI and ULC (the estimates sum up to unity). A speculative demand for money
is represented by the real exchange rate and nominal interest rate. The long-term
parameters connected with these two variables are negative and confirm the presence
of the mechanism responsible for the decrease of the money demand in the case of a
zloty depreciation and in the case of an increase of the return rates from the monetary
substitutes.
The interpretation of the second C(2,2) cointegrating vector is less obvious. Let us
recall that Balassa-Samuelson is approximated by the ratio of the wages in sheltered
and open sectors. In such a case the parameters in the second cointegrating vector
allow us for an identification of the main causes of the differences in the dynamics
of the wages in both sectors. If so, the monetary expansion should be interpreted as
the important reason of the increase of the BS ratio whereas the higher dynamics of
GDP leads to the faster wage growth in the open sector. The general conclusion that
may be derived from such results is clear: the wages in the production sector are tied
to the labour productivity whereas the increase of the wages in the service sector is
affected by the indexation mechanisms.
The intepretation of the one vector of B0 is more complicated and requires performing
polynomial cointegration investigations. Hence, this part of analysis may be omitted.
The results confirmed, there are strong I(2) symptoms in the system if we focus on the
transition period 1995-2005. The empirical analysis of the relationship between prices
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and wages calls for the application of the I(2) cointegration techniques. Secondly, the
I(2) properties of the nominal sphere of the Polish economy should be perceived as a
consequence of the strong disinflation process but not as a result of the tight monetary
policy preventing form the excessive monetary expansion.

8 Conclusions
Models with I(2) variables indeed existed in the past, but from different reasons
this fact was ignored. It was cause both by the shortage of statistic and economic
knowledge, lack of proper software (in the past), and many either reasons. Among
main reasons of the I(2) analysis omission there were difficulties connected with
complicated interpretation, especially difficulty with finding the sense of nonstationary
cointegration CI(2,1), which violated general opinions (maintained by too literally
treated Granger Representation Theorem), that the economic sense has only such
long-run relationship, from which deviations are stationary. In the paper it
was proved, that cointegration with random term I(1) has interesting economic
interpretation. It was also presented, that statistic and economic consequences
analysis I(2) ignoring, in the case when such processes really exist in the analysed
system can (but not necessarily) be serious. These conditions serve to simplify I(2)
analysis towards an easy and popular cointegration with I(1) variables.
The mentioned in the paper difficulties connected analysis I(2) application must not
limit its arising popularity. From the earlier considerations it may be derived, that
there exist statistic and economic reasons of its application.
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