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Abstract

In the paper an approach to decision making in situations with non-point-
like characterisation and subjective evaluation of the actions is considered. The
decision situation is represented mathematically as fuzzy multiobjective linear
programming (fMOLP) model, where we apply the reduced fuzzy matrices
instead of fuzzy classical numbers. The fMOLP model with reduced parameters
is decomposable into the set of point-like models and the point-like models
enable effective construction of an optimisation procedure – fBIP, see Wojewnik
(2006ab), extending the bireference procedure by Michalowski and Szapiro
(1992). The approach is applied to a fuzzy optimization problem in the area of
telecommunication services.
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1 Problem formulation

We consider a class of decision problems where the point-like description of decision
situation is insufficient and therefore we apply the fuzzy set theory. Moreover, we
assume that the decision maker modifies her perspective during the problem solving
process and therefore we apply the multicriteria interactive approach to identify the
final recommendation of the problem solution.
Let us present the motivation to use fuzzy descriptions for economic problems and
subjectivity in decision making support.
The economic problems which are characterized by points and vectors in Rn space
admit decision support procedures in precise identification of the problem solution.
However, there are decision problems described in natural language, where the
single vector representation is not adequate. The inadequacy of the point-like
representations results from physiological and psychological features of humans and
effects the formulation of economic problems. Human perception provides examples of
phenomena when different stimulations result in the same sensor activity. Then these
phenomena are labeled with one name (while in point-like description several labels
would be used). The sensual sensitivity was examined in the detection experiments
from plenty perspectives, e.g.: acoustic and visual perception, see Swets, Green, Getty
(1978), Glezer (2009). If the symbol L means the light lumination, a – the color from
green to magenta, and b – the color from blue to yellow, then the humanbeing is not
able to distinguish two lights different by:

E =
√

∆L2 + ∆a2 + ∆b2,

where ∆E is smaller than 1, see e.g. www.cie.co.at.
If one expression is used to describe a few stimulations then Aronson and
Wieczorkowska (1999) refer to this fact as to cathegorization. According to earlier
findings of Wieczorkowska (1991), the natural language expressions have some width,
and thus the points of the Rn-space are inappropriate to represent such non-point-
like concepts. Moreover, Wieczorkowska (1991) argues that in some cases the model
based on the Rn-points results in false conclusions. For example, let us consider the
minimal distance axiom. If the X-stimulant is identified as Y more often than it is
identified as X, then the stimulant is more similar to Y than to itself. If the distance
will be denoted by d(·, ·), then the inequality holds d(X,Y) < d(X,X), though the
measure axiom says d(X,X) = 0 and d(·, ·) ≥ 0.
Let us consider the economic analyses, where the point-like description of concepts
is insufficient and the non-point-like terms are used. For example, to describe the
macroeconomic situation the economists exploit the expressions like: small inflation,
moderate GDP growth, high public expenditures etc., where none of the expressions
has a point-like representation (small inflation means both 0,5% and 1%). Though
the economic terms sound clear, but the perception of the terms and the following
decisions differ among individuals according to their experience, knowledge and
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personal situation. Therefore, the individual perspective plays always an important
role in economic analysis.
The argument above – the economic examples, as well as the physiological and
psychological results – legitimises application of non-point-like values to describe the
economic decision problems.
In the paper we take into account also another decision making perspective which is
related to the fact that different people solve the same problem in different ways and
get different solutions. For example, the stock market investors dispose similar budget
and information. Among the criteria they consider are identical ones – profitability
and risk – but their portfolios differ and as a consequence they earn and lose to
different extend. The situation gets even more complicated if we consider the following
two facts. Firstly, the investors regard the future projections of the profit and the
risk rather than their current objective values. Secondly, the investors consider a few
criteria simultaneously. The profitability is calculated in the form of return, internal
rate of return, net present value, and the risk – in the form of price variability,
probability of reaching some extreme values, and stock liquidity.
One of the explanations for the individualised result of decision making process is
that investors formulate the projections for the future and make the decisions basing
on their own experience and social, cognitive and emotional factors, see the seminal
paper of Kahneman and Tversky (1979), and the series of articles by Thaler (1987–
1990). Therefore, we will support such decision makers, only if we deepen their
insight into the decision problem and give them possibility to sovereignly identify the
problem solution. In particular we consider the interactive optimization methods,
where the phases of information gathering and optimal solution identification are
applied alternately. DM evaluates each trial solutions and her opinion is exploited
to find the next efficient solution, see e.g. Kaliszewski (2006), Roy (1996), Slowinski
(1984), Trzaskalik and Michnik (2002).
Considering the structure of the optimization model: a few partial criteria, feasibility
constraints and preference model, Kaliszewski (2004) distinguishes three groups of
interactive methods: weighted methods, constraints methods and reference points
methods.
The authors of interactive weighted methods assume there is a mathematical structure
aggregating the values of partial criteria. In the literature there are various types of
aggregating functions: linear, Chebyshev, and augmented Chebyshev of type I and
II, see e.g. Wierzbicki (1986), Kaliszewski (2006). The decision maker reviews and
evaluates the subsequent efficient solutions. The revealed information changes the
weights of the aggregation function.
In the interactive ε-constraints methods the multicriteria problem is approximated by
a series of single criteria problems. In the auxiliary problems one of the partial criteria
is optimized and some additional constraints on the rest of criteria are formulated.
Benayoun, Montgolfier, Tereny, Laritchev (1970) in STEM approach propose to
identify the trial solutions with Chebyshev metric. The ε-constraints represent the
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decision maker’s opinion on the expected change in criteria values. Haimes and Hall
(1974) in SWT method propose to introduce for every trial solution the substitution
function in the Lagrange form. In 1981 Sakawa presented SPOT method where the
constraints are modified following the marginal substitution rate between the criteria.
Sakawa assumes that the decision maker can formulate the rate for every trial solution.
The reference point methods employ the ideal and the worst evaluation, to describe
the decision maker’s aspiration y∗ and the reservation level y−. Conceptually, the
final solution should be possibly close to y∗, but in every iteration the metric and the
reference points are changed as the decision maker evaluates current solutions, see
e.g. Wierzbicki (1982), Jaszkiewicz and Slowinski (1999), Michalowski and Szapiro
(1992).
In the paper we apply the fuzzy version of the bireference procedure introduced by
Michalowski and Szapiro (1992) and recommended by Luque, Ruiz, Steuer (2010).
The procedure is a reference point method, but one can prove its connections to the
weighted and ε-constraints methods ex post. For example, given the recommendation
in the decision problem the trade-off weights are reckonable.
The paper is organized as follows. The Section 2 presents the concept of fuzzy
optimization. We introduce the fuzzy multiobjective linear programming model
(fMOLP) to represent the decision situations considered in this paper. We show the
properties of presented fMOLP model employed to build the decision support method
– the fuzzy bireference procedure in Section 3. Next, in Section 4, we use the procedure
to analyze the problem of pricing the telecommunication services. The performance of
the introduced method in comparison to other interactive fuzzy optimization methods
is discussed in Section 5. The paper ends with Conclusion remarks, Bibliography and
Appendix with proofs of theorems presented in Section 2.

2 Decision making and the optimization model

In this paper we consider supporting the decision making process with mathematical
models and procedures. In this paragraph we present the point-like model – typically
used in optimization – and introduce its fuzzified version – tackling the non-point-like
description of the decision problem.

2.1 Point-like model

If the particular decisions, feasibility constraints, decision evaluations, mapping from
decisions to evaluations, and preferences are described as vectors in Rn space, then
the decision problem is represented by the point-like model. In particular the decision
is represented by the vector x ∈ Rn, and the result of the decision x ∈ Rn – by the
vector y ∈ Rm, with mapping y = C · x, and the matrix C ∈ Rm×n is called the
evaluation matrix. The feasible set is defined by the conditions A · x ≤ b, where the
matrix A ∈ Rk×n, and the vector b ∈ Rk are called respectively technology matrix and
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the constraint vector. In this case we obtain the multiobjective linear programming
(MOLP) problem of the form

C · x→ max, s.t. A · x ≤ b. where x ∈ Rk, A ∈ Rk×n, C ∈ Rk×n, b ∈ Rk.

Definition 1. The MOLP problem is defined as the task of finding the set YN

– the C-mappings maximal in the relation "≤" in the set YD = C · XD, where
XD = {x : A · x ≤ b}. The seventuple σ = 〈n,m, k,A,b,C,≤〉, is called the
structural elements of the MOLP problem. Every admissible solution xE ∈ XD with
C-mapping yN = C · xE in the set YN is called the efficient solution of the MOLP
problem, see Figure 1.

Figure 1: Optimization problem

 

 31

 

Figure 1. The polygon in A) represents the set of feasible solutions, while the 

polygon in B) – their evaluations in the criteria space.  
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The polygon in A) represents the set of feasible solutions, while the polygon in B) – their evaluations in
the criteria space.

If the problem is formulated in the MOLP framework, then the set of admissible
solutions is represented by a polygon in Rn space, see Figure 1A). Similarly in the
linear mapping, y = C · x, the set of feasible evaluations yields a polygon, too, see
Figure 1B). The formulation looks similar to Dantzig linear program but the analysis
is much more complicated. In case of a few criteria the maximization problem has
no single solution, but a set of differently evaluated Pareto-optimal alternatives, see
Figure 1B). Therefore the identification of a distinct solution requires additional
information on the preferences of the decision maker that might be established in
some interactive approach. Alternately the analyst provides a single Pareto solution
and the decision maker evaluates it giving some advices on the expected properties
of the next trial solution.
To assure the reliability of the identified solution in this paper we exploit the
bireference procedure by Michałowski and Szapiro (1991) verified both theoretically,
see Szapiro (1993) and empirically; see Michnik (2000), Polak and Szapiro (2001) and
Wojewnik (2006a), (2006b).
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2.2 Bi-reference procedure

If the analyst will be supplied with the (A,b,C)-model of the decision situation,
then the bi-reference procedure is a tool to identify the admissible trial solutions
successively. The solutions follow the preferences of the decision maker and they will
be identified until the decision maker is satisfied or it is impossible to improve. The
stages of the bireference procedure might be described as follows, see Figure 1.
The procedure begins with MODEL EDITION, where the decision maker provides
the seventuple σ = 〈n,m, k,A,b,C,≤〉, n,m, k ∈ Z, A ∈ Rk×n, b ∈ Rk, C ∈ Rm×n,
see Def.1. Let x ∈ Rn stand for the decision and y ∈ Y ⊂ Rm for its valuation. The
decision maker supplies also the distance in the criteria space e ∈ Rm indistinguishable
to her. If the worst accepted outcome yW ∈ Rm and the most preferred evaluation
yU ∈ Rm are not supplied, they can be calculated as:

∀p=1...m yWp
= min

{∑
i

cpixi|x ∈ X

}
,

∀p=1...m yUp = max

{∑
i

cpixi|x ∈ X

}
.

The reference points play crucial role in the FIND SOLUTION step and their

Figure 2: Scheme of the interactive decision making procedure
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Figure 2. Scheme of the interactive decision making procedure 
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values do change during the optimization proces. In r-th iteration the points yW (r)
and yU (r) depend on the previous reference points and the decisions over the last
trial solution yT (r − 1). For every component of the trial solution the decision
maker suggests bettering, leaving at current value or worsening, and thus the indices
of the criteria are divided respectively to the sets I+(r), I0(r) and I−(r), where
I+(0) = {1, 2, . . . ,m}, I0(0) = ∅ and I−(r) = ∅ at the beginning. Then the extreme
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values are displaced as follows:

∀p=I+(r) yWp(r) = yTp(r − 1)

∀p=I0(r) yWp
(r) = yUp(r) = yTp(r − 1)

∀p=I−(r) yWp
(r) = yWp

(0)

The set of currently admissible outcomes is defined as:

Y (r) =
{

y ∈ Y|∀p=I0(r) fp(x) = yTp(r − 1)
}

Next, yAW (r) – the admissible outcome closest to yW (r) – is found:

yAW (r) = arg min
y∈Y(r)

‖yW (r)− y‖.

Then the improvement direction:

d(r) = yU (r)− yAW (r)

and admissible trial solution is calculated:

yAT (r) = max {yAW (r) + t · d(r)|t > 0, yAW (r) + t · d(r) ∈ Y(r)} .

If yAT (r) is dominated, then the improvement direction d(r) is projected on the closest
admissible hyperplane to find the non-dominated outcome yT (r).
If the trial solution is ACCEPTED or it does not differ from the previous one
|yT (r − 1)− yT (r − 1)| < e, then the procedure ENDS. In other case the decision
maker betters, leaves at current value or worsens the particular components of current
trial solution and thus MODEL EDITION starts over again.

2.3 Fuzzy model
Before we formulate the fuzzy multiobjective linear programming problem (fMOLP)
let us present the notation of fuzzy sets and fuzzy relations used in the paper:

1. x = {(x, µx(x)), x ∈ Rn, µx : Rn → [0, 1]}, x ∈ F(Rn) – fuzzy set (italics
denote fuzzy sets),

2. x ∈ F(Rn), A ∈ F(Rk×n), C ∈ F(Rk×n), b ∈ F(Rk) – fuzzy vectors and
matrices,

3. "≤" ∈ F(Rn × Rn) – fuzzy inequality relation:

µ≤(a, b) =

{
min{µa(a), µb(b)} forb− a ∈ Rn+
0 forb− a ∈ Rn\Rn+
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4. A+B = C ⇔ µC(C) = sup
A,B∈Rm×n

{min {µA(A), µB(B)} |A + B = C} –

sum of fuzzy numbers,

5. A · D = E ⇔ µE(E) = sup
A∈Rm×n,D∈Rn×k

{min {µA(A), µD(D)} |A ·D = E} –

multiplication of fuzzy numbers,

6. XD ∈ F(Rn), µXD (x) = sup
A∈A[α],b∈b[α],x∈Rn

{α : A · x ≤ b}, supp(XD) 6= ∅ –

fuzzy feasible set.

The fuzzy sets are able to represent the non-point-like expressions. For example, the
fuzzy set b ∈ F(R), µb(b) = max

(
0, 1− |5− 1

2 · b|
)
, represents the value – about

10 – the maximal post-paid minute charge in the telecommunication problem. The
interpretation is as follows – the decision maker regards the value of 0,10 PLN as the
limit with the full confidence, but she also considers the value of 0,11 PLN with the
confidence smaller by a half.

Definition 2. The task of finding the set Y N – the C-mappings maximal in the
relation "≤" in the set Y D = C · XD – is called a fuzzy multiobjective linear
programming (fMOLP) problem. The seventuple σFAbC = 〈n,m, k,A, b, C,≤〉 is called
the set of structural elements in the fMOLP problem. Every admissible solution
xE ∈ XD with C-mapping yN = C · xE in the set Y N is called the efficient solution
of the fMOLP problem.

The fMOLP problem is introduced to formulate the non-point-like description for the
decision problems. As an example let us consider the typical problem of tariff setting
in the telecom industry.

Problem 1 The board of directors wants to maximize the earnings, both in the prepaid
and postpaid market.

The postpaid clients sign the time-limited contract and they pay the fixed amount of
money for the network access and some variable amount – for the voice connections,
where the minute charge is rather low. The postpaid clients are tied by the contract
and thus they assure some fixed income for the company.
The pre-paid customers do not sign the contract and they can leave the company
at any moment. Moreover, they do not pay any fixed but the variable amount
only. Generally, comparing to the postpaid customer the prepaid customer are less
profitable and more risky. However, the prepaid clients are usually younger and more
dynamic and they are expected to grow in the future and to be more apt to up- and
cross-selling.
Although the Problem 1 sounds clear in terms of economic phrases but the
introduction of the mathematical MOLP model is troublesome, because the point-
like characterization of the decision situation is required. In particular, the precise
numeric specification of competition decisions, unit costs or the demand reaction to
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the price changes does not include the element of expectation and uncertainty that is
present in expert opinions. First of all, it is impossible to determine whether 0,1 PLN
or 0,09999 PLN should be used for the average minute cost. Second, describing the
influence of the price on the demand we can not be sure as to the functional form of the
dependency. As a result the telecom problem requires the non-point-like description
and the fMOLP problem introduces such description. Whilst the formulation of
the fuzzy parameters, especially the fuzzy matrix, seems to be a complex task, we
introduce the reduced fuzzy matrix.

Definition 3. The fuzzy matrix A ∈ F(Rm×n) is called a fuzzy matrix of reduced
support, or simply – reduced fuzzy matrix – if the membership function is given by:

µA(A) =

{
f(t) forA = (1− t) ·AL + t ·AU , t ∈ [0, 1]
0 in other case

,

where AL,AU ∈ Rm×n, the function f : [0, 1] → [0, 1] is quasi-concave, f(0) = 0,
f(1) = 0, and sup

t∈R
f(t) = 1. The reduced fuzzy matrix A is given by the triplet(

AL,AU , f
)
.

The reduced fuzzy matrices are only a class of fuzzy matrices, but there are situations
where the reduced form is sufficient. The situations are defined by linear dependency
of the parameter values resulting from technology limitations (e.g. carbon to iron
proportion in machine steel) or law regulations (e.g. earnings and taxes).
In the following we present the properties of reduced fuzzy matrices exploited in fBIP
procedure.
Every α-cut of the reduced fuzzy matrix A ∈ F(Rm×n) given by triplet

(
AL,AU , f

)
is a section (−A[α],−A[α]), where

−A[α] = AL +
(
AU −AL

)
·min f−1(α)

and
−A[α] = AL +

(
AU −AL

)
·max f−1(α).

The reduced fuzzy matrix Ar ∈ F(Rm×n) defined by the triple
(
AL,AU , f

)
fuzzifies

the point-like matrix A ∈ Rm×n only in the direction d = AL − AU , while the fuzzy
matrix A ∈ F(Rm×n) – in any direction d ∈ Rm×n. However, the reduced fuzzy
matrices in some situations perform in the same way as the fully fuzzified matrices,
see Theorem 1.

Theorem 1 (on the decomposition of fuzzy conditions with reduced parameters).
The singleton S(x, α) ∈ X ⊂ F(Rn+) solves the inequality

A · x ≤ b,
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if and only if it solves the set of inequalities:
aT1 · x ≤ b1

...
aTk · x ≤ bk

,

where the reduced fuzzy vectors aj ∈ F(Rn) are given by the triplets(
aLj , a

U
j ∈ Rn, fA : [0, 1]→ [0, 1]

)
, aLj ≤ aUj , the fuzzy numbers bj ∈ F(R)

– by the triplets
(
bLi ,b

U
i ∈ R, fb : [0, 1]→ [0, 1]

)
, j = 1, . . . , k, and the

reduced fuzzy matrix A ∈ F(Rk×n) and the reduced fuzzy vector b ∈
F(Rk) – respectively by the triplets

(
AL = [aLij ],A

U = [aUij ], fA : [0, 1]→ [0, 1]
)
and(

bL = [bLi ],bU = [bUi ], fb : [0, 1]→ [0, 1]
)
.

From the Theorem 1 we can conclude that the set of inequalities, aTj · x ≤ bj ,
j = 1, . . . , k, parametrized by the fuzzy numbers of the same membership functions
(fA : [0, 1] → [0, 1] for aj , j = 1, . . . , k, and fb : [0, 1] → [0, 1] for bj , j = 1, . . . , k,
e.g. triangular, Gaussian, trapezoidal, linear splines) has the solution set equal to the
solution set of inequality, A · x ≤ b, given by the reduced fuzzy matrices.
Let us consider two fMOLP problems given by fuzzy and reduced fuzzy matrices.
To define the first fMOLP the user has to introduce nm + nk + k membership
functions (or three multiattribute functions fA : Rn×k → [0, 1], fb : Rk → [0, 1],
fC : Rn×m → [0, 1]). To define the second fMOLP the user has to introduce three
membership functions only: fA : [0, 1] → [0, 1], fb : [0, 1] → [0, 1], fC : [0, 1] → [0, 1].
Thus the reduced form of the model is much easier tractable than the fully fuzzified
optimization problem. Moreover, the solution of the reduced model is decomposable
into the set of solutions from the point-like models, see Theorem 2.

Theorem 2. On the decomposition of the fMOLP problem. Assumptions
Let us consider the fMOLP problem given by the seventuple
σFAbC = 〈n,m, k,A, b, C,≤〉, where n,m, k ≥ 1 are integers, the reduced fuzzy matrix
A ∈ F(Rk×n) is given by the triplet

(
AL,AU ∈ Rk×n, f : [0, 1]→ [0, 1]

)
, AL ≤ AU ,

the reduced fuzzy vector b ∈ F(Rk) - by the triplet
(
bL,bU ∈ Rk×n, g : [0, 1]→ [0, 1]

)
,

bL ≤ bU , and the reduced fuzzy matrix C ∈ F(Rm×n) - by the triplet(
CL,CU ∈ Rm×n, h : [0, 1]→ [0, 1]

)
.

Thesis
(T1) For the fMOLPAbC problem given by the seventuple σFAbC = 〈n,m, k,A, b, C,≤〉
there exist a series of the sharpened fMOLPAbC, C ∈ supp(C), problems given by
the seventuples σFAbC = 〈n,m, k,A, b,C,≤〉, that the set of efficient solutions XE

AbC

is a sum of the sets
{
XE
AbC

}
C∈supp(C)

:

µXEAbC (x) = max
C∈C[ε]

(
min

(
µXEAbC(x), ε

))
.

(T2) For the fMOLPAbC problem given by the seventuple σFAbC = 〈n,m, k,A, b, C,≤〉
there exist a series of the sharpened fMOLP−A[ε]bC , ε ∈ (0, 1], problems given by the
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seventuples σFAbC = 〈n,m, k,−A[ε], b, C,≤〉, that the set of efficient solutions XE
AbC is

a sum of the sets
{
XE
−A[ε]bC

}
ε∈(0,1]

:

µXEAbC (x) = max
ε∈(0,1]

(
min

(
µXE

−A[ε]bC
(x), ε

))
.

(T3) For the fMOLPAbC problem given by the seventuple σFAbC = 〈n,m, k,A, b, C,≤〉
there exist a series of the sharpened fMOLPA−b[ε]C , ε ∈ (0, 1], problems given by the
seventuples σFAbC = 〈n,m, k,A,− b[ε], C,≤〉, that the set of efficient solutions XE

AbC is

a sum of the sets
{
XE
A−b[ε]C

}
ε∈(0,1]

:

µXEAbC (x) = max
ε∈(0,1]

(
min

(
µXE

A−b[ε]C
(x), ε

))
.

From Theorem 2 we can conclude, that the solution of the fMOLP problem can
be found by summing up the solutions of sharpened fMOLP problems, see Figure
3. The Theorems 1-2 enable decomposition of the fMOLP problem into a series of

Figure 3: Decomposition of the efficient solutions set for reduced fuzzy parameters
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Figure 3.  The symbol XAbC
E denotes the set of efficient solutions in the 

fMOLP problem with fuzzy AbC. The arrow from XAbC
E to XAbC

E means that 

it is possible to find series of fMOLP problems with fuzzy AC that the 

efficient solutions XAbC
E are the sum of XAbC

E solutions, see Theorem 2. 

X E 

XA
E 

Xb
E 

XAb
E 

XbC
E 

XAbC
E 

XC
E 

XAC
E 

Decomposition of the efficient solutions set  
for red ced f parameters

Notes: The symbol XEAbC denotes the set of efficient solutions in the fMOLP problem with fuzzy AbC.
The arrow from XEAbC to XEAbC means that it is possible to find series of fMOLP problems with fuzzy
AC that the efficient solutions XEAbC are the sum of XEAbC solutions, see Theorem 2.

computationally tractable MOLP problems. Therefore it is possible to exploit the
properties of the point-like models in the fuzzy formulation.
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3 Fuzzy bireference procedure

The process of problem structurization leads to better understanding of the decision
situation. If the problem is restructurized a few times, then the insight of the decision
maker is even deeper. The fact is exploited in the interactive decision support
methods. One recognizes two phases of mathematical support: (1) formulation of
the optimization model by the decision maker, (2) identification of the optimization
model solution by the analyst. In the interactive decision support the phases are
performed alternately, the decision maker has the opportunity to observe the results
of the problem structure changes and to modify the model accordingly. In this paper
we extend the interactive bireference procedure by Michalowski and Szapiro (1992)
to find the efficient solutions in the fMOLP problem.
The fuzzy bireference procedure follows the seven steps presented in Figure 4. In the

Figure 4: Fuzzy bireference procedure
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Figure 4.  For =1 in step 3 the bireference procedure BIP by Michalowski 

and Szapiro (1992) is used interactively with the decision maker, while for 

<1 in step 5 – it is used automatically. 

2. fMOLP problem edition

1. START - Decision 
problem structurization

Fuzzy bireference procedure 

3. Interactive solving of MOLP 
problem (=1) with BIP method 

4. Decision path identification

5. Automatic solving of MOLP 
problems (<1) with BIP method 

6. Fuzzy recommendation

7. END -
Implementation

Notes: For α = 1 in step 3 the bireference procedure BIP by Michalowski and Szapiro (1992) is used
interactively with the decision maker, while for α < 1 in step 5 - it is used automatically.

phase START – Decision problem structurization the decision maker identifies and
describes the decision problem by linguistic formulation of structural elements like:
the goals, decisions, constraints, the evaluation methods etc.
Following, in the step fMOLP problem edition the decision maker supported by the
analyst constructs structural elements of the fuzzy multiobjective linear programming
problem fMOLPABC , σFAbC = 〈n,m, k,A, b, C,≤〉, as the representation of the
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decision problem, and especially the admissible decisions, decision evaluations and
the evaluations ordering.
Next, in the step Interactive solving the MOLP problem (α = 1) with BIP method
the analyst identifies the point-like matrices and vectors of the membership α = 1:

−A[1] = AL +
(
AU −AL

)
·min f−1(1),

−b[1] = bL +
(
bU − bL

)
·max g−1(1).

Then the MOLP1,C problem of the elements σ1,C = 〈n,m, k,−A[1],
− b[1],C,≤〉, where

C ∈ C[1], is constructed. The decision maker identifies in the MOLP1,C problem
the most preferred solution using the interactive bireference procedure BIP, see
Michalowski and Szapiro (1992).
In the fourth phase, Decision path identification, the analyst (or computer system)
acquires the indescernibility value ε and the series of decisions

(
I+, I−, I0

)
[1]

formulated by the decision maker on the evaluations (I+ – to make better, I− –
to worsen, I0 – to leave unchanged the particular criterion) during the MOLP1,C

problem solving with BIP method.
Next, in the step Automatic solving of MOLP problems (α 6= 1) with
BIP method, the series of MOLP problems with the structural elements
σα,C = 〈n,m, k,A[α],

− b[α],C,≤〉, C ∈ C[α], α ∈ (0, 1), is identified and the analyst
employs the decision path

(
I+, I−, I0

)
[1]

to find efficient solutions evaluated at the
level [yT ]α,C ∈ Rm.
In the sixth phase the Fuzzy recommendation is formulated, where the analyst merges
the solutions of the MOLP problems into fuzzy set with C-mapping yE , where

µyE (y) = sup
{
α|∃C∈C[α] y = [yT ]α,C

}
.

The final step END - Implementation includes deployment of the recommendation
obtained by the decision maker.
If the reduced fuzzy matrices A ∈ F(Rk×n), b ∈ F(Rk), C ∈ F(Rm×n) have
continuous membership functions f, g, h : R → [0, 1], then, in general, the number
of MOLP problems is infinite. We propose to use the linear splines as membership
functions, because the limited number of points is sufficient to represent the functions.
The membership function of the solution in the fMOLP problem is interpolated
between the results of MOLP problems.
If the fMOLP problem represents the decision problem, then the fuzzy bireference
procedure helps the decision maker to interactively identify the recommended solution.
The procedure does not require high mathematical competence but still it operates
according to the preferences of the decision maker. In the following paragraph we will
present the practical telecommunication problem and solve it with fuzzy bireference
procedure.
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4 Pricing the telecommunication services with fuzzy
decision support

To give an overview of the procedure functioning let us consider the Problem 1 -
pricing the telecommunication services. In particular market situation (including the
competitive companies, service cost, price elasticity of the demand etc.) the total
criteria for the best choice is the maximizing of joint post paid and pre-paid earnings.
Let us assume 3 million postpaid customers are contracted for 100 PLN fixed payment
and 0,8 PLN per minute over the agreed 100 minutes (usually the clients need circa
120 minutes). As a result of contract termination and the non-payment churn about
6,6% of these people leave the company every year, while 200 000 will come as effect
of marketing campaigns. The new clients will obtain the conditions at least as good
as the old ones.
In the prepaid market the company does not posses any clients at the moment, but
it starts the new product and expects about 100 000 people. Each client will present
a demand for voice connection of 20 minutes at 0,8 PLN per minute. Whereas, the
minute cost exceeds the technical and administrative cost of minute – 0,2 PLN.
To perform as a cheap brand the operator wants to keep the expenses of typical family
(one postpaid and two prepaids) under 120 PLN. The general cost of operations in
the following quarter of the year is more or less constant at: 20 millions PLN for
administration, 100 millions PLN for physical network maintenance and development
and 80 millions PLN for the advertising, product development and client service.
Presented description does not reveal a few limitations existent in real
telecommunication companies: financial operations, various payment plans for private
and business, seasonal sales, price elasticity of talk duration and the other products of
the company (e.g. short message system, data transfer). However, these features do
not reveal any additional properties of the fuzzy bireference procedure and therefore
they are not considered in this paper.
Let us assume the follwoing interpretation:
x1 – fixed payment in postpaid contracts, x2 – one minute charge in postpaid
considerations, x3 – one minute charge in prepaid considerations.
If the average number of new postpaid clients is 100k ( 1

2 from 200k ), the average
number of new prepaid clients is 50k (1

2 from 100k ), and the average number of old
postpaid clients is 2,9M (100%- 126,6% from 3M) with the avarage earnings of 50 PLN
per client, then the maximization of Total Earnings of the company TE might be
represented by the criterion:

TE = 100k · x1 + 100k · 20 · x2 + 50k · 20 · x3 + 2.9M · 50PLN → max

or

TE′ = 0, 1 · x1 + 2 · x2 + 1 · x3 → max .
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In the same manner we might introduce the criterion describing the fixed earnings
from the new postpaid clients:

0, 1 · x1 → max,

and the criterion describing the earnings from the new prepaid clients:

1 · x3 → max .

Assuming ambiguity as to the price elasticity, we might expect the parameters
standing in the criteria functions at x2 and x3 to be the subject of non-point
description. To describe them we will use the fuzzy sets in the following.
The presented problem enables also formulation of the admissible range for every
decision variable. The fixed postpaid amount should be in the range [0; 100 PLN]
and the postpaid and prepaid minute charge – in [0; 0,8PLN], whereas the upper
bounds are subject to non-point descritpion and therefore will be characterized with
fuzzy matrices. The least condition covers aspect of cheap, family pricing, e.g.:

1 · x1 + 20 · x2 + 40 · x3 ≤ 130,

where the upper bounds is also subject to fuzzy descritpion.
The following fMOLP model might represent the tariff setting problem, if the
structural elements σFAbC = 〈3, 7, 3, A, b, C,≤〉 are defined with the reduced fuzzy
matrices A ∈ F(R7×3), b ∈ F(R7), C ∈ F(R3×3):

CL =

 0, 1 1, 8 0, 9
0, 1 0 0
0 0 0, 9

 , CU =

 0, 1 2, 2 1, 1
0, 1 0 0
0 0 1, 1

 ,
(
AL
)T

=

 −1 0 0 1 0 0 1
0 −1 0 0 1 0 18
0 0 −1 0 0 1 36

 ,
(
AU
)T

=

 −1 0 0 1 0 0 1
0 −1 0 0 1 0 22
0 0 −1 0 0 1 44

 ,
(
bL
)T

=
[

0 0 0 90 0, 75 0, 75 120
]
,(

bU
)T

=
[

0 0 0 110 0, 85 0, 85 140
]
,

and the membership functions are linear splines. The fuzzyfied elements are c1,2, c1,3,
c2,3, c3,3, a7,1, a7,2, a7,3, b4, b5, b6, b7.
The process of solving the fMOLP problem starts with formulation of the fuzzy
parameter values – for the fuzzy criteria matrix see Figure 5. Next, the
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Figure 5: Parameter formulation - printscreen
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Parameter formulation – printscreen  

 

Figure 5. To define the fuzzy C matrix the decision maker inputs the left and 

the right edge of the fuzzy set support CL, CU, and the membership function 

C:R[0,1].  

  

 

Notes: To define the fuzzy C matrix the decision maker inputs the left and the right edge of the fuzzy set
support CL, CU , and the membership function µC : R→ [0, 1].

system identifies the point-like matrices of the highest membership value, α = 1,
and uses them to construct the point-like MOLP1,C problem of the elements
σ1,C = 〈n,m, k,−A[1],− b[1],C,≤〉, where C ∈ C[1], where

C[1] =

 0, 1 2 1
0, 1 0 0
0 0 1

 ,
(
−A[1]

)T =

 −1 0 0 1 0 0 1
0 −1 0 0 1 0 20
0 0 −1 0 0 1 40

 ,
(−b[1])T =

[
0 0 0 100 0, 8 0, 8 120

]
.

For the problem the reference points are identified, see Figure 6:

yU (1) =
[

11, 4 10 0, 8
]T
, yW (1) =

[
0, 6 0 0, 2

]T
,

what means, that for the first criterion the extreme admissible values (no matter on
other criteria) are 11,4 and 0,6. While yW (1) is feasible, then the admissible worst
evaluation is yAW (1) = yW (1), and the improvement direction is given by, see Figure
6:

d(1) = yU (1)− yAW (1) =
[

10, 8 10 0, 6
]T
.

Maximization of:

yAT (1) = max{yAW (1) + t · d(1)|t > 0, yAW (1) + t · d(1) ∈ Y(1)},

where
Y(1) = {y ∈ Rm|y = C[1] · x, −A[1] · x ≤− b[1]}
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gives the first trial solution xT (1) =
[

87, 43 0, 2 0, 71
]T

evaluated at

yAT (1) =
[

9, 86 8, 74 0, 71
]T

, see Figure 6. The trial solution is presented to
the decision maker and she chooses the second criterion to be bettered, and the first
and third criterion – to be worsened, thus I+(1) = {2}, I−(1) = {1, 3}, I0(1) = ∅, see
Figure 6. The information supplied by the decision maker enables system to change

Figure 6: DM evaluates the trial solution – printscreen

Notes: For the trial solution of MOLP problem – vector xT – the evaluation is calculated – vector
yT = C · xT – and decision maker chooses the elements to be bettered (+), worsened (-) or left unchanged
(0).

the problem structure (the reference points) to:

yU (2) =
[

11, 4 10 0, 8
]T
, yW (2) =

[
0, 6 10 0, 2

]T
,

and to identify the subsequent trial solution in the same way. The decision maker
accepts the proposal or once again chooses the criteria to change.
Let us assume, that the decision maker accepts the third trial solution
xT (3) =

[
95, 2 0, 2 0, 52

]T
, where yAT (3) =

[
10, 44 9, 52 0, 52

]T
following

the path I+ = ({2}, {1, 2}), I− = ({1, 3}, {3}) and I0 = ({∅}, {∅}). Then the
system solves the other point-like subproblems MOLPα<1. For example, basing
on the fuzzy matirces we can identify the MOLPα=0,9 problem of the elements
σ0,9,C = 〈n,m, k,−A[1],− b[1],C[0,9],≤〉, where:

C[0,9] =

 0, 1 1, 86 0, 92
0, 1 0 0
0 0 0, 92

 ,
(
−A[1]

)T =

 −1 0 0 1 0 0 1
0 −1 0 0 1 0 20
0 0 −1 0 0 1 40

 ,
(−b[1])T =

[
0 0 0 100 0, 8 0, 8 120

]
.
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Automatic application of the path I+, I−, I0 to the problem MOLPα=0,9 gives the
solution xT (0, 9) =

[
82 0, 8 0, 55

]T
accepted by the decision maker at the level

of α = 0, 9, accordingly we can find the vector
[

88, 54 0, 84 0, 57
]T

with the
membership 0,7.
The final solution – set of vectors resulting from the series of MOLP problems – is
presented to the decision maker, see Figure 7. At the membership α = 1 there is a
unique solution of fixed postpaid payment 95,2 PLN, one minute charge in postpaid
– 0,20 PLN, and in prepaid – 0,52 PLN. At lower membership values there is a few
points and the decision maker might observe their distribution.

The problem of telecommunication services pricing is formulated as the fuzzy

Figure 7: Final solution of fBIP – printscreen

Notes: The final solution is mapped into two-dimensional spaces spanned by the decision variable and the
membership value. The color depth is correlated with the membership value. In the picture the singleton
of membership α = 1 is depicted, x =

[
95, 2 0, 2 0, 55

]T .

multiobjective linear programming problem, bacause its primary charactrization
includes non-point elements. It is solved with fuzzy bireference procedure, where
the decision maker qualitatively evaluates the subsequent trial solutions choosing the
criteria to be bettered, worsened or left unchanged - for details see the bireference
procedure by Michalowski and Szapiro (1992). These questions seem to be natural
and easy to answer even for the users without any mathematical background. On
the other hand the final solution is efficient and consistent with the decision maker
preferences.
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5 Discussion
To analyse the properties of presented method let us review the fuzzy interactive
methods. Baptistella and Ollero (1980) introduced fuzzy procedure for decision
support with point-like admissible set. The optimization problem is formulated with
point-like matrices, but the procedure applies linguistic variables for changing the
parameter values. Thus the decision maker preferences have fuzzy representation.
Sakawa and Yano (1985) just like Baptistella and Ollero (1980) consider the point-like
admissible set, but they assume existence of the reference point yU in the evaluation
space. Moreover, they assume for every trial evaluation the decision maker is able to
present the section [−ηj ,+ ηj ]j=1...m describing the minimal and maximal membership
of the recommendation to the reference ideal point. Manipulation with the section
[−ηj ,+ ηj ]j=1...m influences the criteria weights in the Chebysheff function scalarizing
the criteria values.
The point-like set of admissible solutions is also considered by Sasaki, Gen, Ida (1990),
Hwang, Lai, Ko (1993) and Selim and Ozkarahan (2008). Selim and Ozkarahan
(2008) assume that the reference point is fuzzy and the interaction is performed by
the modification of the membership function in the reference point. Sasaki, Gen, Ida
(1990) and Hwang, Lai, Ko (1993) assume, there is a point-like reference evaluation
and a fuzzy divergence between the reference point and the evaluation of the current
trial solution. If the decision maker modifies the reference point, then new trial
solution is found. The other important feature expanding the application field of the
optimization model employed by Sasaki, Gen, Ida (1990) and Hwang, Lai, Ko (1993)
is the linear structure to describe the decision problem.
The presented procedures employ the point-like linear structure and the fuzzy
reference. In the following we describe procedures using also fuzzy parameters of the
optimization model. Werners (1987) and Lai and Hwang (1992) consider the fuzzy
constraints and assume the decision maker to manipulate it and the fuzzy reference
point. Mohan and Nguyen (1998) extend the fuzziness on the criterion matrix. In this
approach the interaction is completed by the manipulation of reference membership
grade. Choosing of the grade reduces the fMOLP problem to the MOLP problem and
enables application of the point-like procedure by Korhonen and Laakso (1986).
The third group of the interactive optimization procedures employs linear structure
but all the parameters: the technological matrix, the constraint, the criteria matrix,
and the reference point, remain fuzzy. In particular, Slowinski (1986), Rommelfanger
(1989) and Sasaki and Gen (1993) assume the parameters to be LR fuzzy numbers.
During the optimization process Rommelfanger (1989) proposes to manipulate all
the parameters but gives some rules for these operations. Sasaki and Gen (1993)
introduce a procedure where only the reference point is manipulated (extension
of the Zionts-Wallenius method II, 1983). Slowinski (1986) proposes interaction
with the decision maker only at the level of acceptance or rejection of some trial
solutions (extension of the procedure by Choo and Atkins, 1980). The result of the
interactive optimization methods review is presented in Figure 8. The methods are
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Figure 8: Fuzzy interactive decision support

Notes: Map of the interactive fuzzy optimization methods considering number of fuzzified parameters and
the interaction type.

divided according to two criteria: type of interaction and type of fuzzification. The
quantitative interaction means using the numeric values to restructurize the decision
problem by DM, see D,E,F in Figure 8. The qualitative interaction is performed
through acceptance/rejection of the recommendations or choosing the most preferred
between presented trial solutions, see A,B,C in Figure 8. Three types of fuzzification
are considered here. The first class of models exploits point-like feasible set and only
the reference point is fuzzy, see A,D in Figure 8. The second class next to the fuzzy
reference admits also the fuzzy feasible set, see B,E in Figure 8. The third class
expands the fuzzy model from B,E by application of fuzzy evaluation matrix, see C,F
in Figure 8.
Basing on the two criteria – type of interaction and type of fuzzification – the
procedure by Slowinski (1986) and fBIP have the most interesting properties, because
the fuzzy admissible set and fuzzy evaluation matrix are the most flexible structure
from the application point of view and the qualitative interaction style is available even
for the decision makers with introductory mathematical competences. The methods
differ significantly in the interaction style. In every iteration of the optimization
procedure Slowinski (1986) assumes the DM will choose the most preferred solution
between the presented trial points, where the number of points depends on the number
of criteria. In fBIP procedure the DM for single trial solution chooses the criteria to be
bettered, worsened or left unchanged. The second important difference between the
methods is in the form of final solution. The procedure by Slowinski (1986) provides
only one singleton, while fBIP procedure leads to fuzzy set of plenty singletons at
various levels of membership function.
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6 Concluding remarks
In this paper we considered a problem of revealing the rationality in situations
requiring the non-point-like and subjective description. The motivations for
introduction of non point-like description are: physiological, psychological and
economical, and they are generally associated with inertness of human senses.
Moreover, there are decision situations, where various decision makers choose different
recommendations. Therefore, next to some objective information we also considered
some subjective perspective of the problem, especially in goal formulation.
For the decision problems requiring the non-point-like and subjective description we
used the fuzzy multiobjective linear programming. The fuzzy set theory considers
the non-point-like representation, while the multiobjective framework regards the
subjective evaluation of the decisions.
We proposed to apply the reduced fuzzy matrices where the support is reduced to
single line in Rn space but it retains the economical interpretation and has interesting
theoretical properties. In particular, for the fuzzy vectors [ai] and the reduced fuzzy
matrix A of the same membership function and nadir-zenit points the result of
multiplication by fuzzy vector x is equal. Moreover, the solution of fMOLP problem
defined by reduced fuzzy matrices A,b,C is equal to sum of solution in the series of
fMOLP problems with fuzzy A,b and point-like matrix C, and even it is equal to sum
of MOLP problems solutions.
The decomposability of the fMOLP problem enables application of the methods and
theorems formulated for point-like problems. In particular, we proposed employing
the bireference procedure to solve the fuzzy multiobjective linear problems. The
method requires the standard linear structure of the optimization model and it
operates with qualitative opinions in the interactive phase.
The functioning of the fuzzy bireference procedure was presented on the problem of
pricing the telecommunication services. The practical example shows it is quite easy
to formulate the fMOLP problem with reduced parameters. Moreover, we observed
that the linear splines are flexible enough to represent a wide range of membership
functions.
In this paper we did not consider the numerical complexity of the optimization
algorithm, but we claim it is polynomial, because the complexity of point-like
bireference procedure is about O(k3) and it is calculated only in the spline points.
We also did not present the method for the membership functions elicitation. This
phase is crucial for practical problem solving, but we purposely left it for detailed
studies of human cognition. We expect here the growing role of dynamic animations
and voice recognition systems.
In future works the authors are going to analyze the sensitivity of the procedure result
to the membership function shape and eventually identification of the class broader
then the reduced fuzzy numbers, where the decomposition principle holds.
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Appendix
The Appendix includes the proofs of theorems introduced in the paper.

A Proof of Theorem 1
Let us consider the singleton S(x, α) ∈ F(Rn+) solving the set of inequalities. Then

∀j=1...k ∃aj∈aj[α], bj∈bj[α] aTj · x ≤ bj ⇔

∀j=1...k −aTj · x ≤− bj[α] ⇔− A[α] · x ≤− b[α] ⇔ A · S(x, α) ≤ b.
2

B Proof of Theorem 2
(T1) If the singleton S(x∗, γ) is efficient in fMOLPAbC , then it is member of the
admissible set XAb at the level of α, α ≥ γ, and there exist a criteria matrix C of
the membership ε, ε ≥ γ, that the solution x∗ has nondominated evaluation and
γ = min(α, ε). Then the singleton S(x∗, α) is efficient also in fMOLPAbC problem.
The inference holds in both directions, that ends the proof:

(x∗, γ) ∈ XE
AbC ⇔

γ = min(α, ε) ∧ x∗ ∈ XAb[α] ∧ ∃C∈C[ε] ¬∃x∈XAb[α],x 6=x∗ C · x∗ ≤ C · x⇔

∃C∈C[ε] (x∗, α) ∈ XE
AbC.

(T2) If the singleton S(x∗, γ) is efficient in fMOLPAbC , then there exist the matrix
A ∈− A[ε] and the vector b ∈ b[α], that γ = min(α, ε) and A · x ≤ b. Therefore
the singleton S(x∗, γ) is efficient in the fMOLP problem ZFAbC , A ∈ supp(−A[ε]).
The inference holds in both directions, and the admissible sets of fMOLPAbC and
{fMOLPAbC}A∈supp(−A[ε]) include respective elements, what at the same criteria
matrix C ∈ F(Rm×n) ends the proof:

(x∗, γ) ∈ XAb ⇔ γ = min(α, ε) ∧ x∗ ∈ XAb[α] ∧A ∈− A[ε].

(T3) If the singleton S(x∗, γ) is efficient in fMOLPAbC , then there exist the matrix
A ∈ A[α] and the vector b ∈− b[ε], that γ = min(α, ε) and A · x ≤ b. Therefore
the singleton S(x∗, γ) is efficient in the fMOLP problem ZFAbC , b ∈ supp(−b[ε]).
The inference holds in both directions, and the admissible sets of fMOLPAbC and
{fMOLPAbC}b∈supp(−b[ε]) include respective elements, what at the same criteria
matrix C ∈ F(Rm×n) ends the proof:

(x∗, γ) ∈ XAb ⇔ γ = min(α, ε) ∧ x∗ ∈ XAb[ε] ∧ b ∈− b[α].

2
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