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Abstract The paper presents investigations related to solving of a di-
rect and inverse problem of a non-stationary heat conduction equation for
a cylinder. The solution of the inverse problem in the form of tempera-
ture distributions has been obtained through minimization of a functional
being the measure of the difference between the values of measured and
calculated temperatures in M points of the heated cylinder. The solution
of the conduction equation was presented in the convolutional form and
then numerically integrated approximating one of the integrand with a step
function described with parameter Θ ∈ (0, 1]. The influence of the integra-
tion parameter Θ on the obtained solution of the inverse problem (including
a number of temperature measurement points inside the heated body) has
been analyzed. The influence of the parameter Θ on the sensitivity of the
obtained temperature distributions has been investigated.

Keywords: Inverse problem; Nonstationary heat conduction equation; Solution sensi-
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Nomenclature

c – specific heat, J/kgK
f – temperature at the cylinder edge
I – functional
J0, J1 – Bessel functions of the first kind
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m – values calculated with the thermocouples installation error δr∗ towards the
cylinder axis

p – values calculated with the thermocouples installation error δr∗ towards the
cylinder edge

r – radius, m
ran – values calculated with the stochastic distortion of temperature measure-

ment
t – time, s
T – temperature, ◦C
dp – values calculated with the direct problem
ip – values calculated with the inverse problem

Greek symbols

δ – absolute error
ϑ – dimensionless temperature
Θ – coefficient used during integration Θ ∈ (0, 1]
λ – thermal conductivity, W/mK
ξ – radius in the dimensionless coordinates
ρ – density, kg/m3

τ – dimensionless time (Fourier number)

Subscripts and superscripts

0 – starting time, for t = 0
max – maximum during heating
c – calculated
m – measured
w – assuming constant temperature at the cylinder edge
z – cylinder outer surface
∗ – measurement

1 Introduction

In many high-temperature heating processes the measurement of temper-
ature on the edge of a heated element may be difficult to perform with
satisfactory accuracy [19]. The temperature distribution on the edge of the
area can be obtained by measuring the temperature inside the heated object
and solving the inverse problem [2,5,19,20]. Then, a very important issue is
the analysis of the sensitivity of obtained solution to inaccurate installation
of thermocouples, random error of temperature measurement [2,3,11,12] as
well as the analysis of its stability [8,14,15]. The influence of the tempera-
ture measurement error and thermocouples installation error on the deter-
mination of temperature distribution on the edge of the object and on the
heat transfer coefficient have been analyzed in [2,11,12,19]. Determination
of the temperature distributions with the inverse problem method has been
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applied in analyses of boiler operation [9,19], heat exchangers [21], turbine
blade [6] and thermal and thermal-chemical processing [1,10,16]. In [9],
the exchange of heat in a cylinder was analyzed using the control volume
method, energy equation and the inverse problem method. Heat transfer
coefficient was determined in the investigations. Investigations were a ba-
sis for the analysis of heat exchange in the thermometer used in boilers.
In [13] results of calculations related to the determination of temperature
distributions in a steel pipe of a heat exchanger with mineral deposits have
been presented. In [17], heat conduction of a material as a multinomial
dependent on temperature was sought by solving the conduction equation
for a 2D model in a stationary state using the inverse method. In [16], the
flow of heat in high temperature industrial furnaces has been described.

This paper analyzes the direct and inverse problem using the conjugate
gradients for the changes of phase of the solidifying metal. Thus far, in-
vestigations of phase transformations during tempering have been carried
out using the inverse problem method [1]. Some of the methods of solving
a one-dimensional inverse problem of temperature fields distribution for
a cylinder have been shown in [4] and for the cylindrical layer in [3]. The
inverse problem for the heat conduction equation has been solved with the
sequential method, which was described in [3,10–12,22]. This paper de-
scribes the sequential solution of the inverse problem for a non-stationary
heat conduction equation for a cylinder considering the temperature mea-
surement at M points. The influence of thermocouples installation errors
and stochastic temperature measurement errors on the obtained results
have also been analyzed. The developed calculation methods will serve to
analyze the heating in thermal processing.

2 Direct problem

The solution of the inverse problem is done based on the solution of the
direct problem, which is most frequently expressed as a function dependent
in an explicit form on the given and sought courses of temperature. The
calculations have been made for a linear non-stationary heat conduction
equation [2,7,18]:

∂ϑ

∂τ
=

∂2ϑ

∂ξ2
+

1

ξ

∂ϑ

∂ξ
, ξ ∈ (0, 1) , τ > 0 (1)
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in the dimensionless coordinates

ξ =
r

rz
, ϑ =

T − T0

Tmax
, τ =

λ

ρc

t

r2
z

, (2)

with the following conditions

• initial condition

ϑ (ξ, τ = 0) = 0 , (3)

• boundary conditions

ϑ (ξ = 1, τ) = ϑz (τ) , τ > 0 , (4)

• condition of solution boundedness at point ξ = 0

|ϑ (ξ = 0, τ)| <∞ . (5)

The solution of the direct problem for the temperature field in a cylinder
can be expressed in the form of a function convolution [7,11,12,18], and for
Eq. (1) it has the form

ϑ (ξ, τ) =
∂ϑ (ξ = 1, τ)

∂τ
∗
[
1− 2

∞∑

n=1

J0 (pnξ) e−p2
nτ

pnJ1 (pn)

]
=

∂ϑ (ξ = 1, τ)

∂τ
∗ϑw (ξ, τ)

= ϑ (ξ = 1, τ) ∗
[
2

∞∑

n=1

J0 (pnξ) pne−p2
nτ

J1 (pn)

]
= ϑ (ξ = 1, τ) ∗ ∂ϑw (ξ, τ)

∂τ
, (6)

where function ϑw (ξ, τ) is the solution of Eq. (1) with the initial condi-
tions (3) and boundary condition ϑz = 1, symbol ∗ denotes convolution of
functions.

3 Inverse problem for the measurement performed
with M thermocouples

We shall seek an unknown temperature distribution on boundary ξ = 1
based on the temperature measurement at the interior points of the cylin-
der. For M thermocouples the measurement points ξ∗

1 , ξ∗

2 , ξ∗

3 , . . . , ξ∗

M−1, ξ∗

M

have been marked in Fig. 1. For the kth measuring point based on (6) we
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Figure 1: Measuring points.

can express the equality

ϑ (ξ∗

k, τi) =

∫ τi

0
ϑ′ (ξ = 1, u) ϑw (ξ∗

k, τi − u) du (7)

and by discretizing the interval 〈0, τi〉 =
⋃i

j=1 〈τj−1, τj〉 we have

ϑ (ξ∗

k, τi) =
i∑

j=1

∫ τj

τj−1

ϑ′ (ξ = 1, u) ϑw (ξ∗

k, τi − u) du . (8)

Approximating the integrand function ϑw (ξ∗

k, τi − u) with a step function
ϑw (ξ∗

k, τi − τj−1) Θ + ϑw (ξ∗

k, τi − τj) (1−Θ) with parameter 0 < Θ < 1 we
obtain

ϑ (ξ∗

k, τi) =
i∑

j=1

∫ τj

τj−1

ϑ′ (ξ = 1, u)
[
ϑw (ξ∗

k, τi − τj−1) Θ

+ϑw (ξ∗

k, τi − τj) (1−Θ)
]
du . (9)

Since ϑw (ξ∗

k, τi − τj−1), ϑw (ξ∗

k, τi − τj) and Θ are independent from u,
hence

ϑ (ξ∗

k, τi) =
i∑

j=1

[ϑw (ξ∗

k, τi − τj−1) Θ + ϑw (ξ∗

k, τi − τj) (1−Θ)]
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×
∫ τj

τj−1

ϑ′ (ξ =1, u) du=
i∑

j=1

[
ϑw (ξ∗

k, τi − τj−1) Θ+ϑw (ξ∗

k, τi−τj) (1−Θ)
]

×
[
ϑ (ξ = 1, τj)− ϑ (ξ = 1, τj−1)

]
(τj − τj−1) (10)

and for the constant time step τj − τj−1 = ∆τ

ϑ (ξ∗

k, τi) =
i∑

j=1

[
ϑw (ξ∗

k, τi − τj−1) Θ + ϑw (ξ∗

k, τi − τj) (1−Θ)
]

×
[
ϑ (ξ = 1, τj)− ϑ (ξ = 1, τj−1)

]
∆τ . (11)

The above relation can be written in the form of a product of two vectors

ϑ (ξ∗

k, τi) =




∆τ [ϑw (ξ∗

k, τi − τ0) Θ + ϑw (ξ∗

k, τi − τ1) (1−Θ)]
∆τ [ϑw (ξ∗

k, τi − τ1) Θ + ϑw (ξ∗

k, τi − τ2) (1−Θ)]
...

∆τ [ϑw (ξ∗

k, τi − τi−1) Θ + ϑw (ξ∗

k, τi − τi) (1−Θ)]




T

×




ϑ (ξ = 1, τ1)− ϑ (ξ = 1, τ0)
ϑ (ξ = 1, τ2)− ϑ (ξ = 1, τ1)

...
ϑ (ξ = 1, τi)− ϑ (ξ = 1, τi−1)




. (12)

Introducing symbols ϑ (ξ = 1, τ) = ϑz (τ), and considering the relation τj−
τk = τj−k for a constant time step and notating the vector containing the
temperature values on the cylinder boundary as a difference of vectors we
obtain

ϑ (ξ∗

k, τi) = {W}T




ϑz (τ1)
ϑz (τ2)

...
ϑz (τi)



− [W ]T




ϑz (τ0)
ϑz (τ1)

...
ϑz (τi−1)




, (13)

where j – the element of vector [W ] is determined by the formula Wj =
∆τ [ϑw (ξ∗

k, τi−j+1) Θ + ϑw (ξ∗

k, τi−j) (1−Θ)] for each j = 1, 2, K, i. Hence,
the dimensionless temperature at kth measuring point can be written as
follows

ϑ (ξ∗

k, τi) = akϑz (τi) + bk , (14)
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where
ak = ∆τ

[
ϑw (ξ∗

k, τ1) Θ + ϑw (ξ∗

k, τ0) (1−Θ)
]

, (15)

bk =




W1

W2
...

Wi−1




T 


ϑz (τ1)
ϑz (τ2)

...
ϑz (τi−1)



−




W1

W2
...

Wi




T 


ϑz (τ0)
ϑz (τ1)

...
ϑz (τi−1)




. (16)

In order to determine the temperature at the boundary for ith unit of time
we minimize the functional

I (ϑz (τi)) =
M∑

k=1

(
ϑm

(
ξ∗

k, τi

)
− ϑc (ξ∗

k, τi)
)2

= min , (17)

where ϑm denotes the measured temperature and ϑc the calculated tem-
perature, described with the formula (14). The functional dependent on
the temperature at the boundary ϑz (τi) based on (14) can be written as
follows:

I (ϑz (τi)) =
M∑

k=1

[
ϑm (ξ∗

k, τi)− (akϑz (τi) + bk)
]2

= min . (18)

The functional reaches the minimum when its derivative with respect to
temperature at the edge is zero. Thus,

∂I (ϑz (τi))

∂ϑz (τi)
=

M∑

k=1

2
[
ϑm (ξ∗

k, τi)− (akϑz (τi) + bk)
]

(−ak) = 0 , (19)

hence
M∑

k=1

[
− a2

kϑz (τi) + ak (ϑm (ξ∗

k, τi)− bk)
]

= 0 . (20)

Expression (20) can be written as two sums, the first of which containing the
sought for temperature at the boundary ϑz (τi) and the other is dependent
on the measurement values

M∑

k=1

(
−a2

kϑz (τi)
)

+
M∑

k=1

[
ak (ϑm (ξ∗

k, τi)− bk)
]

= 0 . (21)

The temperature distribution on the boundary is thus

ϑz (τi) =

∑M
k=1

[
ak (ϑm (ξ∗

k, τi)− bk)
]

∑M
k=1 a2

k

. (22)
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4 Sensitivity of the solution of the inverse
problem to measurement errors for the

measurement performed with M thermocouples

Analyzing the sensitivity of the inverse problem to a distortion of the mea-
surement data, the thermocouples installation error by δξk and random
temperature measurement errors δϑmk for kth thermocouple (k = 1, 2, K, M)
were considered. Then the sought temperature at the boundary is

ϑz (τi, [δξ] , [δϑ]) =

∑M
k=1 ak

[
ϑm (ξ∗

k + δξk, τi) + δϑmk − bk

]

∑M
k=1 a2

k

. (23)

Hence

δϑz = ϑz (τi, [δξ] , [δϑ])− ϑz (τi, [0] , [0]) =

∑M
k=1 ak

[
ϑm (ξ∗

k + δξk, τi) + δϑmk − ϑm (ξ∗

k, τi)
]

∑M
k=1 a2

k

. (24)

5 Numerical example for M = 2 thermocouples

The analysis of the sensitivity of the inverse problem to the measurement
errors was performed for a cylinder of the radius of rz = 50 mm made
from steel of the density of ρ = 7841 kg/m3, specific heat c = 456 J/(kgK)
and thermal conductivity λ = 50.3 W/(mK). The assumed temperatures
distribution at the boundary in the direct problem is f (τ) = 1 − e−1.5τ .
Such a course of temperature corresponds to some processes of nitriding.
The heating lasted for t = 680 s (τ = 3.826) from 0 ◦C to 500 ◦C. It was
assumed that the temperature measurement had been performed with two
thermocouples placed on the radius r∗

1 = 48 mm (2 mm from the edge of
the cylinder) and on the radius r∗

2 = 46 mm (4 mm from the edge of the
cylinder). The measurement accuracy was 2.2 oC and the thermocouple
installation error – δξ∗ = ± 0.5 mm. The calculations were made for Θ =
0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. For Θ < 0.5 the solution of the inverse
problem was unstable.

Temperature distribution assumed in the direct problem (dp) and that
calculated with the inverse problem (ip) considering the thermocouple in-
stallation errors and the stochastic temperature error (ran) have been shown
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a) b)

c) d)

e) f)

g) h)

Figure 2: Temperature at the boundary of the cylinder assumed in the direct problem
(dp) and calculated using the inverse problem (ip) considering the thermo-
couples installation errors (pp, mm) and stochastic temperature measurement
error (ran) for Θ = 0.5 and time: a) 0–680 s, b) 0–100 s, c) 100–200 s, d)
200–300 s, e) 300–400 s, f) 400–500 s, g) 500–600 s, h) 600–680 s.
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in Fig. 2. The symbol pp denotes that both thermocouples are placed closer
to the edge of the cylinder, i.e., r∗

1 = 48.5 mm and r∗

2 = 46.5 mm while mm
denotes that both thermocouples are closer to the axis of the cylinder, i.e.,
r∗

1 = 47.5 mm and r∗

2 = 45.5 mm. Symbol pm indicates that the first ther-
mocouple is placed closer to the edge of the cylinder with the thermocouple
installation error ∂r∗ = 0.5 mm and second thermocouple is closer to the
axis of the cylinder with the thermocouple installation error ∂r∗ = −0.5 mm
(r∗

1 = 48.5 mm, r∗

2 = 45.5 mm). Symbol mp indicates that the first ther-
mocouple is placed closer to the axis of the cylinder with the thermocouple
installation error ∂r∗ = −0.5 mm and second thermocouple is closer to the
edge of the cylinder with the thermocouple installation error ∂r∗ = 0.5 mm
(r∗

1 = 47.5 mm and r∗

2 = 46.5 mm).
For the analyzed heating process, the maximum differences between the

temperature assumed at the boundary of the cylinder and that calculated
with the inverse problem have been determined, considering the tempera-
ture measurement error for Θ = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 (Fig. 3).
These differences decrease as the Θ parameter grows and they fall in the
temperature range from 9 ◦C to 3 ◦C. The greatest temperature distribution
errors at the boundary of the cylinder occur if we have a stochastic error
of temperature measurement and both thermocouples installation negative
error (r∗

1 = 47.5 mm and 45.5 mm). These range from 5.5 ◦C to 9 ◦C.
When both thermocouples are closer to the edge than assumed, the maxi-
mum error varies from 3.5 ◦C to 9 ◦C. If one of the thermocouples is shifted
towards the edge and the other towards the axis of the cylinder the error
at the edge is 7 ◦C for Θ = 0.5 and as Θ grows it decreases to reach 3.5 ◦C
for Θ = 1. The selection of parameter Θ for the two measurement ther-
mocouples influences the sensitivity of the solution of the inverse problem,
yet, the errors occurring in the solution are much smaller than in the case
when the measurement is carried out with just one thermocouple [11]. The
solution for Θ < 0.5, similarly to the measurement with only one thermo-
couple, is unstable [11]. The smallest values of temperature distribution
error at the boundary of the cylinder were obtained for Θ = 1 (this denotes
excess integration).

6 Conclusions

In the paper the inverse problem has been solved for a transient heat con-
duction equation, allowing for calculation of the temperature in the cross-
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Figure 3: Maximum from the absolute value of difference of temperature at the boundary
of the cylinder assumed in the direct problem and that calculated with the
inverse problem (ip) considering the thermocouples installation error (pp, pm,
mp, mm) and stochastic temperature measurement error (ran) for Θ ∈ [0, 5, 1].

section of the cylinder. For this research, a calculation model based on
the inverse problem was developed. The sensitivity of the solution of the
inverse problem to temperature measurement errors and thermocouple in-
stallation errors has been analyzed. In these calculations, the thermocouple
installation error of 0.5 mm and random temperature measurement error of
maximum 2.2 ◦C have been taken into account. The sensitivity tests have
been performed for the exponential function f (τ) = 1− e−1.5τ . The sensi-
tivity of the solution of the inverse problem has been analyzed by changing
the integral parameter Θ. For two thermocouples a maximum difference be-
tween the assumed temperature at the edge and the temperature calculated
below 6 ◦C (for Θ = 1) was obtained using the inverse problem. It has been
ascertained that a proper selection of Θ during numerical integration leads
to a solution that is much less sensitive to measurement data distortions.
The calculation model provides convergent solutions of low sensitivity to
distortions for Θ ≥ 0.5. Parameter Θ has the properties that regularize
the inverse problem. Taking into account the non-linearity of the thermal
conductivity, specific heat and density (as a function of temperature) leads
to a numerical solution of the conduction equation.

Received 30 December 2015, in revised form 25 May 2017
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