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ELASTIC AND VISCOELASTIC STRESSES OF NONLINEAR
ROTATING FUNCTIONALLY GRADED SOLID AND ANNULAR

DISKS WITH GRADUALLY VARYING THICKNESS

Analytical and numerical nonlinear solutions for rotating variable-thickness func-
tionally graded solid and annular disks with viscoelastic orthotropic material proper-
ties are presented by using themethod of successive approximations. Variablematerial
properties such as Young’s moduli, density and thickness of the disk, are first intro-
duced to obtain the governing equation. As a second step, the method of successive
approximations is proposed to get the nonlinear solution of the problem. In the third
step, the method of effective moduli is deduced to reduce the problem to the corre-
sponding one of a homogeneous but anisotropic material. The results of viscoelastic
stresses and radial displacement are obtained for annular and solid disks of different
profiles and graphically illustrated. The calculated results are compared and the effects
due to many parameters are discussed.

Nomeclature

r radial direction
u radial displacement
σr , σθ radial and circumferential stresses
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εr , εθ radial and circumferential strains
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Er Young’s modulus in radial direction
Eθ Young’s modulus in circumferential direction
νrθ Poisson’s ratio in circumferential direction when stressed in radial direction
νθr Poisson’s ratio in radial direction when stressed in circumferential direction
E0
r , E0

θ Young’s moduli of homogeneous disk
ρ0 material density of homogeneous disk
a, b internal and external radii of the disk
h variable thickness of the disk
q approximation order number
δ0q Kronecker’s delta symbol
h0 thickness at middle of the disk
n, k, k1 geometric parameters of the disk
K bulk modulus of viscoelastic material
ω(t) dimensionless kernel of relaxation of viscoelastic material
E Young’s modulus of coaxial circular elastic fibers
ν Poisson’s ratio of coaxial circular elastic fibers
γ volume fraction of the reinforcement
η material parameter

1. Introduction

Rotation of solid and annular disks are of practical concern in many aerospace
industries including gas turbines, aircraft parts, rockets, and in many fields of engi-
neering such as marine and mechanical applications. One of the famous examples
of rotating solid disks is the brake disk in which only body forces are involved.
Most applications of the solid and annular disk are concerned with their rotation,
the thermal or thermomechanical loads applied, and their linearity or nonlinearity
forms. In the linear case, investigators mainly used infinitesimal elasticity the-
ory to study the isotropic or anisotropic disks of uniform-thickness profiles [1].
However, in nonlinear analysis, the scientific literature mainly focused on material
and analysis as well as the nonlinear geometry. The applications of non-uniform,
variable-thickness disks are rapidly increasing due to economic considerations and
to improve themechanical performances [2]. Eraslan andOrcan [3] and Eraslan and
Argeso [4] dealt with deformation of rotating variable-thickness disks. They found
that, at the same angular velocity, the stresses for both rotating variable-thickness
solid and annular disks have the smallest values in comparison with those of the
uniform-thickness disks.

Timoshenko and Goodier [5] dealt with different problems of the deforma-
tion of rotating disks. These disks may be made of linear elastic, isotropic and
homogeneous materials. However, Horgan and Chan [6] studied the behavior of
disks which were composed of functionally graded materials. They assumed that
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Young’s modulus E is functionally graded (FG) in the radial direction as a power-
law function of the radius r of the disk. Jahed et al. [7] and Hojjati and Hassani [8]
took into consideration the temperature-dependent material properties to present a
procedure for minimum mass design of rotating disks. They dealt with the rotating
disks with variable material properties at a high temperature. Eraslan and Akis [9]
assumed that Young’s modulus E may change in the radial direction as an exponen-
tial or a parabolic function of r . They obtained closed-form solutions for rotating
FG solid shafts and disks. Kordkheili and Naghdabadi [10] studied the axisym-
metric thermoelastic deformations of rotating FG hollow and solid disks by using
a semi-analytical approach. They assumed that the thermomechanical properties
are changed according to a power-law function of r in the radial direction. You et
al. [11] assumed that Young’s modulus, thermal expansion coefficient, and mass
density are all varying in the radial direction of the disk according to power-law
functions of r . They considered the disk is to be subjected to a uniform temperature
change to derive the closed-form solutions of such rotating FG disks. Hojjati and
Jafari [12] assumed that the rotating annular elastic disks may be of uniform or vari-
able thicknesses andmass densities. They used both the homotopy perturbation and
Adomian’s decomposition analytical methods to find stresses and displacements in
such disks. Vullo and Vivio [13, 14] discussed the rotating annular and solid disks
with variable thickness and density. They investigated the constitutive relations of
stresses and strains in the thermally loaded rotating variable-thickness elastic disks.
Bayat et al. [15–18] dealt with two problems, the elastic and thermoelastic for rotat-
ing FG disks at steady temperature. They assumed that the material properties and
thickness of the disk are considered according power-law functions of r . Zenkour
[19, 20] studied the stress distribution in rotating sandwich solid disks with a FG
core and isotropic face sheets. Nie and Batra [21] presented the axisymmetric de-
formations of rotating variable thickness disk. Beside the variable-thickness, they
assumed that the mass density, thermal expansion coefficient, and shear modulus
of the disk are varying in the radial direction.

The rotating viscoelastic solid and annular disks is of interest in the design
of many applications. Gears, pulleys and computer storage disks are considered
as examples of viscoelastic components. Feng [22] presented either elastic or vis-
coelastic deformations of a rotating disk. He obtained the governing equations
in terms of two coupled first-order ordinary differential-integral equations with
explicit derivatives. Zenkour and Allam [23] developed analytical elastic and vis-
coelastic solutions for the deformation of elastic rotating variable-thickness disks.
They assumed that the disks are made of orthotropic fiber-reinforced viscoelastic
composite materials with equal or different Young’s moduli. Allam et al. [24] dis-
cussed the viscoelastic deformation of rotating variable thickness solid and annular
disks. They dealt with the analytical solutions and assumed that the disks are made
of inhomogeneous viscoelastic orthotropic materials. Zenkour [25–29] dealt with
different problems of thermoelastic analysis of annular and solid sandwich or FGM
disks with arbitrary variable thickness.
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The aim of this article is to discuss different problems of rotating FG disks. It
presents different solutions for fully elastic or viscoelastic inhomogeneous defor-
mation of rotating FG nonlinear circular solid and annular disks with various forms
of variable-thickness variations. The thickness, density and moduli of elasticity are
considered as functions of the radial direction according to different power-laws.
Radial displacement and hoop and radial stresses of the rotating disks are graphi-
cally illustrated. A comparison between the behavior of solid and annular disk is
presented and discussions about the results are made.

2. Basic equations

Figure 1 shows a circular diskwith internal and external radii a and b, its profile
varies in the radial direction in arbitrary law h(r), where r is the radial coordinate.
It is assumed that plane stress assumption is justified since the thickness of the
disk is much smaller than its diameter. The effect of thickness variation of rotating
disks is taken under consideration to get reliable results as in the case of uniform-
thickness disks. That is because the theory of the variable-thickness disks gives
excellent results as long as it meets the assumptions of plane stress. So, the equation
of motion of rotating variable thickness and density is expressed as

1
r

d
dr

(hrσr ) −
hσθ

r
+ hρΩ2r = 0. (1)

The nonlinear Cauchy’s relations are written as

εr =
du
dr
+

1
2

(
du
dr

)2
, εθ =

u
r
. (2)

The constitutive relations of an orthotropic disk can be described in forms of the
elastic deformation as

εr =
1
Er
σr −

νθr
Eθ

σθ, εθ = −
νrθ
Er

σr +
1

Eθ
σθ . (3)

Substitution of Eq. (2) into Eq. (3) gives the constitutive equations for the
radial and circumferential stresses as:

σr =
Er

1 − νrθνθr



du
dr
+

1
2

(
du
dr

)2
+ νθr

u
r


,

σθ =
Eθ

1 − νrθνθr


νrθ *

,

du
dr
+

1
2

(
du
dr

)2
+
-
+

u
r


.

(4)

Here, the FG material properties of the disk are classified as

{Er, Eθ, ρ} = F (r)
{
E0
r , E

0
θ, ρ

0
}
. (5)
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It is to be noted that for orthotropic, homogeneous disks the following relation
between ratios and moduli should be satisfied:

νrθE0
θ = νθrE0

r . (6)

3. Formulation of elastic solution

The stress components appearing in Eq. (4) may be used in the Eq. (1) with the
help of the material properties appearing in Eq. (5) to get the following nonlinear
differential equation:

d2u
dr2 + G(r)

du
dr
+ νθr

[
G(r) −

1
νrθ
− 1

]
u
r2 + H (r) = 0, (7)

where

H (r) =
d2u
dr2

du
dr
+

G(r) − νθr
2r

(
du
dr

)2
+
ρΩ2(1 − νrθνθr )r

2E0
r

,

G(r) =
1

h(r)F (r)
d
dr

[rh(r)F (r)] .
(8)

Now, we consider the boundary conditions for annular disk as

σr |r=a = σr |r=b = 0, (9a)

while those for solid disk are considered to be

σr at r = 0 is finite and σr |r=b = 0. (9b)

Inwhat follows, wewill introduce the dimensionless r̄ = r/b in the above equations,
and drop the bar for simplicity.

3.1. Successive approximation method

The nonlinear differential equation appearing in Eq. (7)may be constructed as a
system of linear differential equations. Successive approximationmethod is applied
to solve the corresponding linear problem (a system of differential equations) as
follows:

Let us construct the following system of linear differential equations for q =
0, 1, 2, 3, . . .

d2uq
dr2 + G(r)

duq
dr
+
νθr

r2

[
G(r) −

1
νrθ
− 1

]
uq + Hq (r) = 0, (10)

where q is the approximation order number, and the boundary conditions become

Annular disk: σq
r

���r=s = σ
q
r

���r=1
= 0, s =

a
b
,

Solid disk: σq
r at r = 0 is finite and σ

q
r

���r=1
= 0.

(11)
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Also

Hq (r) = H0(r) +


d2uq−1

dr2
duq−1

dr
+

G(r) − νθr
2r

(duq−1

dr

)2
(1 − δ0q), (12)

in which δ0q is the Kronecker’s delta symbol and

H0(r) =
ρ0Ω2(1 − νrθνθr )r

2E0
r

. (13)

We notice that when q = 0 (the zero solution), we have the same solution as the
well-known in the linear case [5].

The general solutions for linear differential equations appearing in Eq. (10)
can be expressed in the form:

uq (r) = P(r)Cq
1 +Q(r)Cq

2 + Rq (r), q = 0, 1, 2, . . . , (14)

whereCq
1 andCq

2 are arbitrary constants and P(r) and Q(r) are the complementary
functions, and

Rq (r) = P(r)
∫

Q(r)Hq (r)
∆

dr −Q(r)
∫

P(r)Hq (r)
∆

dr, (15)

where
∆ = P(r)

dQ(r)
dr

−Q(r)
dP(r)

dr
. (16)

The nonlinear radial and hoop stresses for each case are

σ
q
r =

E0
r

1 − νrθνθr



duq
dr
+

1 − δ0q

2

(duq−1

dr

)2
+ νθr

uq
r


, (17)

σ
q
θ =

E0
θ

1 − νrθνθr



νrθ



duq
dr
+

1 − δ0q

2

(duq−1

dr

)2
+

uq
r



. (18)

3.2. Linear solution for some special cases

Consider the following five cases according to the disk profiles h(r) and the
FG function F (r). The complementary functions P(r) and Q(r) appearing in the
solution are in the form of hypergeometric functions F1,1 or F1,2 in all cases. The
expressions for all functions can be simplified as:
Case 1:

h = h0e−nr
k

, F (r) = e−mrk , P(r) = rµF1,1
(
[L11], [L12], (m + n)rk

)
,

Q(r) = r−µF1,1
(
[L11 − L12], [2 − L12], (m + n)rk

)
,

(19)
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Case 2:

h = h0e−nr
k

, F (r) = rm, P(r) = r (µ1−m)/2F1,1
(
[L21], [L22], nrk

)
,

Q(r) = r−(µ1−m)/2F1,1
(
[L21 − L22 + 1], [2 − L22], nrk

)
,

(20)

Case 3:

h=h0(1−nrk )k1, F (r)=rm, P(r)=r (µ1−m)/2F1,2
(
[L31, L32], [L33], nrk

)
,

Q(r) = r−(µ1−m)/2F1,2
(
[L31 − L33 + 1, L32 − L33 + 1], [2 − L33], nrk

)
,

(21)

Case 4:

h = h0rn, F (r) = e−mrk , P(r) = r (µ2−n)/2F1,1
(
[L41], [L42], nrk

)
,

Q(r) = r−(µ2−n)/2F1,1
(
[L41 − L42 + 1], [2 − L42],mrk

)
,

(22)

Case 5:

h = h0rn, F (r) = rm, P(r) = r (µ3+n+m)/2, Q(r) = r (µ3+n+m)/2. (23)

It is to be noted that the expressions µ , Li j and µi are given by

µ =

√
νθr
νrθ

, L11 =
1
k
µ(1 + µ), L12 =

1
k

(k + 2µ), L21 =
1

2k
(−km + µ1 + 2µ),

L22 = L33 =
1
k

(k + µ1), L31 =
1

2k
(kk1 + µ1 + µ4), (24)

L32 =
1

2k
(kk1 + µ1 − µ4), L41 =

1
2k

(−n + µ2 + 2µ1), L42 =
1
k

(k + µ2),

µi =

√
yi (yi − 4νθr ) + 4µ2, y1 = m, y2 = n, y3 = m + n, y4 = m + kk1. (25)

In addition, the forms of the free term Hq (r) for the first four cases are given by

Hq (r) =
ρ0Ω2

2E0
r

(1 − νrθνθr )r, (26)

while for the fifth case, it is given by

Hq (r) =
−r3νθr

3νθr (m + n + 3)[1 − (m + n)νrθ]
. (27)

The radial and circumferential stresses for each casewill be given by the substitution
of Er , Eθ , P(r), Q(r) and R(r) in the corresponding equations.
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4. Applications

Here, we restrict our attention to the problem according to any of the above
cases, namely for example the third case. The profile of the rotating disk is given
in Fig. 1. In what follows, we will firstly derive the analytical elastic solution of
orthotropic solid and annular disks. Moreover, the viscoelastic deformations of
these disks under different conditions will be investigated.

 

b 

r 

z 

a 

h0 

z 

Fig. 1. Configuration of a variable-thickness annular disk of inner radius a and outer radius b

The complementary functions P(r) and Q(r) appear in Eq. (21) while the free
term Hq (r) appear in Eq. (26). In these equations, Fi, j (·) are confluent hypergeo-
metric functions. Moreover, the function Rq (r) should appear in terms of P(r) and
Q(r) as

Rq (r) = η(1 − νrθνθr )
(
P(r)

∫
rQ(r)
∆

dr −Q(r)
∫

rP(r)
∆

dr
)
, η =

ρ0Ω2

2E0
r

, (28)

where η is a new parameter called the material parameter. From the above relation,
the solutions of the displacementuq may consist of powers of thematerial parameter
η depending on q, i.e., it may take the form

uq (r) =
q∑
i=0

ai (r)ηi+1. (29)

Suppose that ūq = uq/η, then one gets, after dropping the bar, the displacement
and stress components as

uq =
q∑
i=0

ai (r)ηi, (30)

σ
q
r =

E0
r

1 − νrθνθr

q∑
i=0

ηi


dai
dr
+

1 − δ0q

2

(
dai
dr

)2
+
νθr
r

ai

, (31)

σ
q
θ =

E0
θ

1 − νrθνθr

q∑
i=0

ηi

νrθ *

,

dai
dr
+

1 − δ0q
2

(
dai
dr

)2
+
-
+

ai
r


. (32)
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4.1. Rotating annular disk

The substitution of Eq. (14) with the aid of Eqs. (21) and (26) gives the radial
and circumferential stresses in the following form:

σ
q
r =

E0
r rm

1−νrθνθr

[
Cq

1Φ1(P, r)+Cq
2Φ1(Q, r)+Φ1(Rq, r)+ χq (r)(1−δ0q)

]
, (33)

σ
q
θ =

E0
θrm

1−νrθνθr

[
Cq

1Φ2(P, r)+Cq
2Φ2(Q, r)+Φ2(Rq, r)+νθr χq (r)(1−δ0q)

]
. (34)

Using the boundary conditions appearing in Eq. (11), and solving the dual algebraic
equations for Cq

1 and Cq
2 gives

Cq
1 =
Φ1(Rq, b)Φ1(Q, a)−Φ1(Rq, a)Φ1(Q, b)+

[
χq (b)Φ1(Q, a)− χq (a)Φ1(Q, b)

]
(1−δ0q)

Φ1(P, b)Φ1(Q, a) − Φ1(P, a)Φ1(Q, b)
,

(35)

Cq
2 =
Φ1(Rq, a)Φ1(P, a)−Φ1(Rq, b)Φ1(P, a)+

[
χq (a)Φ1(P, b)− χq (b)Φ1(P, a)

]
(1−δ0q)

Φ1(P, b)Φ1(Q, a) − Φ1(P, a)Φ1(Q, b)
,

(36)
where

Φ1(ψ, r) =
dψ
dr
+ νθr

ψ

r
, Φ2(ψ, r) = νθr

dψ
dr
+
ψ

r
,

ψ ≡
{
P(r),Q(r), Rq (r)

}
, χq (r) =

1
2

(duq−1

dr

)2
.

(37)

4.2. Rotating solid disk

In the solid disk, the radial and hoop stresses should be finite at the center
of the disk and the radial displacement should vanish. So, the constant Cq

2 should
vanish. The edge of the disk is traction-free and the displacement becomes

uq (r) = P(r)Cq
1 + Rq (r), q = 0, 1, 2, . . . , (38)

in which
Cq

1 =
Φ1(Rq, b) + χq (b)(1 − δ0q)

Φ1(P, b)
. (39)

The components of radial and circumferential stresses become

σ
q
r =

E0
r rm

1 − νrθνθr

[
Cq

1Φ1(P, r) + Φ1(Rq, r) + χq (r)(1 − δ0q)
]
, (40)

σ
q
θ =

E0
θrm

1 − νrθνθr

[
Cq

1Φ2(P, r) + Φ2(Rq, r) + νθr χq (r)(1 − δ0q)
]
. (41)

Then, the successive elastic nonlinear solutions for FGM solid and annular disks
of arbitrary variable thickness are completed by the application of the boundary
conditions.
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4.3. Fiber-reinforced viscoelastic disks

To deal with the viscoelastic solution, we consider a disk with viscoelastic
material properties reinforced by coaxial circular elastic fibers. The method of
effective moduli is used to reduce this problem to that of a FG anisotropic material
with elastic coefficients E0

r , E0
θ , νθr and νrθ . Then, one obtains (see Pobedrya [30]):

E0
r =

9Eζω
2(1 − γ) + (1 − γ + 9γζ )ω

=
9Eζ

2(1 − γ) β2

[
1 − gβ2 (ω)

]
, (42)

E0
θ = E

[
γ + 9ζ (1 − γ)

ω

2 + ω

]
= E

{
γ + 9ζ (1 − γ)

[
1 − gβ1 (ω)

] }
, (43)

νθr = γν + (1 − γ)
1 − ω
2 + ω

= γν − (1 − γ)
[
1 −

3
2
gβ1 (ω)

]
, (44)

and

ζ =
K
E
, β1 =

1
2
, β2 =

1
2

(
1 +

9γζ
1 − γ

)
, gβi (ω) =

1
1 + βiω

, i = 1, 2. (45)

The other Poisson’s ratio νrθ may be easily obtained using Eqs. (42)–(44) such that
Eq. (6) should be satisfied.

In what follows, we consider the radial and hoop stresses and radial displace-
ment to be functions of the parameters ω, E, ν, γ and ζ in elastic composite disks
and may be operators of time t in viscoelastic composite disks. Generally, the ra-
dial displacement u(r) can be represented according to Illyushin’s approximation
method of unified form (Allam and Pobedrya [31] and Illyushin and Pobedrya
[32]):

u(r, ω) =
5∑
i=1

Ai (r)φi (ω), (46)

where

φ1 = 1, φ2 = ω, φ3 = π =
1
ω
, φ4 = gβ1 (ω), φ5 = gβ2 (ω), (47)

in which β j and gβ j (ω), j = 1, 2, have appeared in Eq. (45).
Equation (46) contain the coefficients Ai, i = 1, 2, . . . , 5 as functions of r , ω,

ν, γ, and ζ . These coefficients may be found from the system of algebraic linear
equations

5∑
j=1

ψi j Aj = Bi, (48)

in which

ψi j =

1∫
0

φi (ω)φ j (ω)dω, Bi =

1∫
0

u(r, ω)φi (ω)dω, i, j = 1, 2, . . . , 5. (49)
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The relaxation function ω(t) may be considered in the form

ω(t) = b1 + b2e−αt, (50)

where b1, b2 and α are constants. We use Laplace-Carson transformation to deter-
mine the functions π(t) and gβ j (t). Setting their transformations by π∗ = 1/ω∗ and
g∗β j

, we get

ω∗(s) = b1 +
s

s + 1
α

b2. (51)

Thus
π(t) =

1
b1

[
1 − b2eb1 (b1+b2)τ

]
, τ = αt,

gβ j (t) =
1

1 + β jb1


1 −

β jb2e−
( (1+β j b1 )τ

1+β j (b1+b2 )

)
1 + β j (b1 + b2)


, j = 1, 2.

(52)

Equation (46) for a viscoelastic composite disk may be decoded to obtain explicit
formulae for field quantities in terms of the time parameter t. First, we have for the
radial displacement

u(r, t) =A1(r)Ω2(t) + A2(r)

t∫
0

ω(t − τ)dΩ2(τ) + A3(r)

t∫
0

π(t − τ)dΩ2(τ)

+ A4(r)

1∫
0

gβ1 (t − τ)dΩ2(τ) + A5(r)

1∫
0

gβ2 (t − τ)dΩ2(τ). (53)

Putting
Ω

2(t) = Ω2
0H (t), (54)

where H (t) is Heaviside’s unit step function

H (t) =



0 t < 0,
1 t > 0.

(55)

Then

u(r, t) = Ω2
0

[
A1H (t) + A2ω(t) + A3π(t) + A4gβ1 (t) + A5gβ2 (t)

]
, (56)

where ω(t), π(t) and gβi (t) are given in Eqs. (50) and (52). Using the same
technique as mentioned in Eq. (56) with the aid of Eqs. (4), we can obtain the
radial and hoop stresses for the rotating viscoelastic FG variable-thickness solid
and annular disks.



434 M.N.M. ALLAM, R. TANTAWY, A. YOUSOF, A.M. ZENKOUR

5. Numerical examples and discussions

The numerical examples for the rotating FG fiber-reinforced viscoelastic disks
with gradually varying thickness will be discussed. The results of the present disks
are plotted in Figs. 2-7. The values of coefficients b1 and b2 (firstly appearing in Eq.
(50)) were taken to be 0.1 and 0.9, respectively, and ν = 0.3 while the coefficient
α depends on the scale of measuring the time, the time parameter τ(≡ αt) is given
in terms of it.

The constitutive parameter is chosen to be ζ ≡ (K/E) = 0.5. Also, the
geometric parameters n, k, k1 are considered such that n = 0.4, k = 0.7, and
k1 = 1.2 and the FG coefficient m = 0.3. Also, the parameters ω and η are fixed,
except otherwise stated, as ω = 0.5 and η = 0.4. In addition, the inner radius to
outer radius ratio is fixed to be s ≡ (a/b) = 0.1.

Fig. 2(a,b) is performed for viscoelastic FG annular and solid disks with
gradually varying thickness. For annular disk, the radial stress σr has its minimal
zero value at the edges to coincide with the boundary conditions. The maximum
value of σr may occur at r = 0.4. The hoop stress σθ decreases as r increases along
the radial direction. It starts with a maximum value at the inner edge and ends with
a smallest value at the outer edge. However, the radial displacement u decreases as
r increases along the radial direction of the disk. It starts with a smallest value at
the inner edge and ends with a maximum value at the outer edge of the disk. For
solid disk, the radial stress σr starts with a constant value at the inner edge. It is no
longer increasing and has its maximum value at r = 0.4. Then, it decreases rapidly
to get zero value at the outer edge. The circumferential stress σθ starts with a small
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Fig. 2. Displacement u, radial stress σr and circumferential stress σθ in the variable-thickness
annular and solid disks
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value at the inner edge. It is no longer increasing and has its maximum at r = 0.55.
The radial displacement u vanish at the inner edge and gives its highest value at
the outer edge. It may be linearly increases along the radial direction.

Figs. 3-5 show the displacements and stresses versus r with different values
of the approximation order number q. Fig. 3 shows that for the annular disk the
displacement u is slightly sensitive to the variation of q. It just increases as r
increases. The values of u for q , 0 may be less than the corresponding one
when q = 0 and this occurs at outer edge of the disk. This is not the same for
the solid disk in which the displacement u is very sensitive to the variation of the
approximation order number q. In fact, the higher values of q gives appropriate
radial displacement.
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Fig. 3. Distribution of radial displacement u along the radial direction of the variable-thickness
annular and solid disks

Fig. 4 shows that for the annular disk the radial stress σr is lightly sensitive to
the variation of q. It has its maximum value at r = 0.4 and satisfies the boundary
conditions. Also, this is not the same for the solid disk in which the radial stress
σr is very sensitive to the variation of the approximation order number q. In fact,
q = 0 and q = 1 are not suitable to give accurate radial stresses.

Fig. 5 shows that for the annular disk the circumferential stress σθ is lightly
sensitive to the variation of q. It is decreasing as r increases. The values of σθ
due to q , 0 may be less than the corresponding one when q = 0 and this occurs
when r > 0.3. This is not the same for the solid disk in which the circumferential
stress σθ is very sensitive to the variation of the approximation order number
q. As mentioned above, the higher values of q gives appropriate circumferential
stress.
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Fig. 4. Distribution of radial stress σr along the radial direction of the variable-thickness annular
and solid disks
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Fig. 5. Distribution of circumferential stress σθ along the radial direction of the variable-thickness
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Fig. 6 shows the plots of the radial displacement and radial and hoop stresses of
the rotating annular and solid disks at different positions. The influence played by
the time parameter on the field quantities is investigated. For annular disk, the radial
displacement u increases as the time parameter τ increases while it decreases as τ
increases for the solid disk. Also, bothσr andσθ are decreasing with the increasing
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Fig. 6. Displacement u, radial stress σr and circumferential stress σθ versus τ in the
variable-thickness annular and solid disks

of τ for the solid disk. However, for the annular disk, the two stresses are no longer
increasing and have their maximum value at the same time parameter τ = 1.7. All
displacement and stresses still unchanged for τ > 10.

Finally, the effect of the material parameter η which appears in Eq.(28) on
the distribution of u, σr and σθ is investigated in Fig. 7. For the annular disk are
plotted versus η at the same position r = 0.385 while for the solid disk they plotted
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at r = 0.4. For both disks the displacement and stresses are linearly changed wilt
the material parameter η. The values of all fields for the annular disk are the highest
ones.

6. Conclusions

Rotating viscoelastic inhomogeneous composite disks with gradually varying
thickness, density and material properties is treated herein. This problem is firstly
solved by using the method of successive approximation then by using the methods
of effective moduli and Illyushin’s approximation. It is of interest to select some
examples that illustrate the essential features of the present problem. Five solutions
for five problemsmay be treated in this work. The analytical elastic and viscoelastic
solution have been obtained for the rotating FG solid and annular disks with
gradually varying thickness. In addition, the analytical elastic solution of rotating
uniform-thickness disks is obtained as special case of the present problem. For the
sake of completeness and comparison, some examples are illustrated. The effects
due to approximation order number, material parameter and time parameter on the
displacement and stresses are investigated.

Manuscript received by Editorial Board, July 07, 2017;
final version, November 06, 2017.
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