
A R C H I V E O F M E C H A N I C A L E N G I N E E R I N G

VOL. LXIII 2016 Number 4

DOI: 10.1515/meceng-2016-0027
Key words: model order reduction, elastic multibody systems, high performance computing, parallel reduction, Trilinos,
Anasazi, iterative solver

THOMAS VOLZER1, PETER EBERHARD1

MODEL ORDER REDUCTION OF LARGE-SCALE FINITE ELEMENT
SYSTEMS IN AN MPI PARALLELIZED ENVIRONMENT FOR USAGE

IN MULTIBODY SIMULATION

The use of elastic bodies within a multibody simulation became more and more
important within the last years. To include the elastic bodies, described as a finite
element model in multibody simulations, the dimension of the system of ordinary dif-
ferential equations must be reduced by projection. For this purpose, in this work, the
modal reduction method, a component mode synthesis based method and a moment-
matching method are used. Due to the always increasing size of the non-reduced
systems, the calculation of the projection matrix leads to a large demand of com-
putational resources and cannot be done on usual serial computers with available
memory. In this paper, the model reduction software Morembs++ is presented using
a parallelization concept based on the message passing interface to satisfy the need
of memory and reduce the runtime of the model reduction process. Additionally, the
behaviour of the Block-Krylov-Schur eigensolver, implemented in the Anasazi pack-
age of the Trilinos project, is analysed with regard to the choice of the size of the
Krylov base, the blocksize and the number of blocks. Besides, an iterative solver is
considered within the CMS-based method.

1. Introduction

Lately, the use of elastic bodies within multibody simulations (MBS) found
increasing application in scientific and industrial projects. The elastic bodies de-
scribed as finite element (FE) models result in a system of ordinary differential
equations (ODE). The dimension of these ODE became huge due to ever increasing
refinements of models and simulation quality demands. The tremendous develop-
ment of the computational resources with respect to the amount of memory and

1 Institute of Engineering and Computational Mechanics, University of Stuttgart, Pfaffenwaldring
9, 70569 Stuttgart, Germany. Emails: thomas.volzer@itm.uni-stuttgart.de, peter.eberhard@itm.uni-
stuttgart.de

mailto:thomas.volzer@itm.uni-stuttgart.de
mailto:peter.eberhard@itm.uni-stuttgart.de
mailto:peter.eberhard@itm.uni-stuttgart.de

476 THOMAS VOLZER, PETER EBERHARD

the speed of the central processing unit (CPU) made such demanding applications
possible but are still restricting a general use. Before these ODE can be included
in an MBS, their dimension must be reduced to a much smaller size which is ac-
complished by the projection-based model reduction. Thereby, the central issue is
the calculation of a projection matrix by the use of different reduction methods. In
this work, the modal reduction method, a component mode synthesis (CMS) based
method, and a moment-matching method [1] are used to calculate the projection
matrix. While the first two mentioned method classes are well established in in-
dustry and science, the latter has been a subject of research in science just for the
past years. Within each reduction method, the most expensive step, with respect to
the need of memory as well as to the runtime, is often solving a sparse system of
linear equations. With the projection matrix, a reduced system of linear equations
can be calculated and included into the MBS according to the theory described in
[2, 3].

At the Institute of Engineering and Computational Mechanics (ITM) the two
program systems Morembs++ and MatMorembs [4] have been developed within
the last years. While MatMorembs is written in the programming language Matlab
and aims primarily at small to medium sized FEmodels, Morembs++ is specifically
developed with regard to large scale FE models and written in the programming
language C++. To mention typical numbers, MatMorembs can usually be used for
systems with several millions degrees of freedom (DOF) while Morembs++ must
certainly be used once 5 million DOF or more must be considered. MatMorembs
contains also more specific model order reduction methods, like parametric model
reduction techniques [5]. Morembs++ functions as a preprocessor tool between the
FEM and the MBS software. The process chain is divided into an import from the
FE data, the reduction in Morembs++ and the export into a data format used by
the external MBS software. Additionally, the transfer function of the full-sized and
reduced model as well as the relative error between both models can be calculated
in Morembs++. Morembs++ is used on a single, usual workstation, on multiple
workstations, connected in a local area network (LAN) as well as on cluster and
supercomputers. To make use of distributed systems, Morembs++ is parallelized
based on the message passing interface (MPI) and makes heavily use of libraries
from the Trilinos project [6]. The Trilinos project is divided into packages, each
with different applications. One of these packages is named Anasazi and contains
an implementation of the Block-Krylov-Schur (BKS) eigensolver [7]. Except for
the CMS based method, only direct methods can currently be used in Morembs++
due to the properties of the coefficient matrix.

When dealing with large-scale finite element systems in a parallelized envi-
ronment, domain decomposition methods are often used [8]. Thereby, the global
domain is separated into smaller domains which are then treated independently.
These independent subdomains can be assigned to different processes in an MPI-
parallelized system. By the way the interfaces between these separated domains are
defined, domain decomposition methods are categorized in overlapping and non-

MODEL ORDER REDUCTION OF LARGE-SCALE FINITE ELEMENT SYSTEMS . . . 477

overlapping methods [9]. The latter can be classified further into balancing domain
decomposition (BDD) methods [10] and finite element tearing and interconnect
(FETI) methods [11] depending on the description of the interface domain. In [8]
non-overlapping methods in the context of structural mechanics are considered.

As a preconditioner, the use of domain decompositioning can be easily included
into Morembs++ as part of the iterative solution process. Within the Ifpack2 [12]
package of the Trilinos project overlapping and non-overlapping Additive-Schwarz
methods are available. On a subdomain level different solution methods can be
used.

In an elastic multibody system many different elastic bodies are interacting
only on the interface DOF. This substructuring also can be interpreted as a decom-
positionmethod in amechanical sense. Domain decompositionmethods from finite
elements as described above also can be used on a substructural level. However,
this is not considered here because in this contribution the focus is on the memory
consumption during the reduction within one substructure.

The novel contribution of thiswork is the investigation ofmodel order reduction
of large-scale FE models using the alternative reduction method moment-matching
in an MPI-based, high performance computing (HPC) environment.

In this work, three different sized FEmodels are imported from the FE software
PERMAS [13] and reduced in Morembs++. Thereby, the computational resources
needed for the calculation of the projection matrix are examined and the results of
the different reduction methods are compared to each other. The reduction process
is carried out on single computers as well as on distributed systems within a
LAN and on the Cray supercomputer at the High-Performance Computing Center
Stuttgart (HLRS) where the scalability of the different parts of the model reduction
is examined in detail.

Also, the BKS eigensolver is examined with regard to the size of the Krylov
base, the blocksize, the number of blocks and the runtime. Besides, the usage of
iterative solvers is examined within the CMS based method.

2. Background

The system of second order ordinary differential equations

Mq̈ + Kq = Bu (1)

with the mass matrix M ∈ RN×N , the stiffness matrix K ∈ RN×N , the input matrix
B ∈ RN×p, the vector q ∈ RN of elastic DOF, the number N of all DOF and
the number p of input DOF describes the FE model of an elastic body. Before the
inclusion into the MBS can happen, the dimension N of the matrices in Equation
(1) must be reduced by the approximation

q ≈ V q̃ (2)

478 THOMAS VOLZER, PETER EBERHARD

with the projection matrix V ∈ RN×n, the vector of the reduced elastic DOF
q̃ ∈ Rn and the dimension n of the reduced elastic system. In this work, the modal
reduction method, a CMS based method and a moment-matching method are used
to calculate the projection matrixV . The usage of a moment-matching basedmodel
order reduction method has been shown in [14]. A possible combination of a CMS
and a moment-matching based method has also been presented in [15].

The modal reduction method mainly involves solving the generalized eigen-
value problem

Kφi = ω
2
i Mφi (3)

with the eigenvector φi, the angular eigenfrequency ωi = 2π f i and the eigenfre-
quency f i of the undamped system. The BKS eigensolver, implemented in the
package Anasazi of the Trilinos project, is only capable of solving the simple
eigenvalue problem. Therefore, the transformation of the generalized eigenvalue
problem into the simple eigenvalue problem is done using the shift-and-invert
strategy [16]

1
ω2
i − σ

φi = A−1Mφi (4)

with thematrix A = K−σM and the shift parameterσ. The number of eigenvectors,
respectively eigenvalues, to be calculated depends on the dimension n of the reduced
system which leads to the projection matrix

V = [φ1 · · · φn]. (5)

The calculation of a Krylov base of the form

K =
{
V0, (A−1M)V0, ..., (A−1M)nK−1V0

}
, (6)

with the size nK of the Krylov base, the normalized starting vectorV0 ∈ R
N×nBS and

the blocksize nBS is the most expensive part while solving the eigenvalue problem
in Morembs++. The blocksize determines how many base vectors are computed in
each iteration while the number nB of blocks stands for the number of iterations.
Both, the blocksize and the number of blocks define the size of the Krylov base
by nK = nBS nB. In each iteration, a sparse system of linear equations with the
coefficient matrix A has to be solved for each newly calculated base vector. The
frequency shift parameter σ defines the part of the wanted spectrum and usually
leads to an indefinite coefficient matrix. The choice of the blocksize and the number
of blocks are discussed in this work.

The CMS method used here is based on the substructuring

Mii = T
ᵀ
i MTi, (7)

Kii = T
ᵀ
i KTi, (8)

Kib = T
ᵀ
i KTb (9)

MODEL ORDER REDUCTION OF LARGE-SCALE FINITE ELEMENT SYSTEMS . . . 479

described in [17], where the index i describes the inner and the index b the bounded
DOF. ThematricesMii, Kii and Kib represent submatrices of the appropriate system
matrices while the transformation matrices Ti and Tb are used to calculate these
submatrices. The constraint modes can be calculated by

Ψc =



−K−1
ii Kib

Ibb


, (10)

where Ibb is the nb × nb identity matrix and nb the number of bounded DOF. The
normal modes φn,i of the undamped inner system are the solution of the generalized
eigenvalue problem

Kiiφn,i = ω
2
i Miiφn,i (11)

and summarized in

Φn =



φn,1 · · · φn,ni
0 · · · 0


(12)

with the number ni of inner eigenmodes. The projection matrix

V =
[
Ψc Φn

]
(13)

consists of both the constraint modes and the normal modes of the inner system.
Within the CMSmethod, two sparse systems of linear equations with the coefficient
matrices Kii and Kii − σMii have to be solved. While the first coefficient matrix
is part of the calculation of the constraint modes, the second one is used within
the BKS eigensolver when normal modes are needed. Both the inner mass matrix
Mii and the inner stiffness matrix Kii are positive definite. Therefore, even if the
coefficient matrix Kii is positive definite, the coefficient matrix Kii − σMii can be
indefinite depending on the frequency shift parameter σ.

The moment-matching method is based on the approximation of the transfer
function

G = Bᵀ
(
K − 4π2 f 2

i M
)−1

B. (14)

Thereby, the values and optionally higher-order derivatives of the moments of this
function are matched at specific frequency points f i. The input matrix B depends
on the interface DOFwhich are usually the points where the elastic body is included
into theMBS. The number of columns of the projectionmatrixV increases with the
number of frequency points and whether higher-order derivatives are considered
or not. The calculation of the projection matrix V is done mainly by the Arnoldi
algorithm [14]. Similar to the solution of the generalized eigenvalue problemwithin
the BKS solver, a sparse system of linear equations with the indefinite coefficient

480 THOMAS VOLZER, PETER EBERHARD

matrix A has to be solved at each frequency point f i and optionally multiple times
if higher-order derivatives are desired.

With the calculated projection matrix V the equation of motion of the reduced
elastic body can be described by

M̃ ¨̃q + K̃ q̃ = B̃u (15)

with the reduced mass matrix M̃ = V ᵀMV , the reduced stiffness matrix K̃ =
V ᵀKV as well as the reduced input matrix B̃ = V ᵀB. These reduced systems are
then included into the multibody formulation.

3. Process Chain

The model reduction software Morembs++ has been written in the program-
ming language C++ and provided specifically to treat large-scale FE models. In
Fig. 1 the process chain of Morembs++ is shown. All model reduction settings
are given within an XML configuration file. Morembs++ is separated into four
different parts. First, the FE data must be imported from the FEM software and the
results are saved in an HDF5 file [18]. Afterwards, the model reduction process can
be executed and the resulting projection matrix V as well as the reduced system
matrices M̃ , K̃ , and B̃ are saved in a separate HDF5 file. The last step is the prepa-
ration of the data of the reduced elastic body, so that it can be included in the MBS
simulation. The transfer function calculator (TFC) is not directly connected to the
model reduction process but rather an optional step to estimate the quality of the
reduced elastic body. Within the transfer function calculator, the transfer function

Morembs++

import reduction export

TFC

configuration

FE data MBS data

transfer function

XML file

Fig. 1. Process chain of the model order reduction software Morembs++

MODEL ORDER REDUCTION OF LARGE-SCALE FINITE ELEMENT SYSTEMS . . . 481

of the unreduced elastic body, of the reduced body, and the relative error between
both can be calculated. The results are saved in a separated HDF5 file, too.

Due to the ill-conditioned system matrices and the possible indefiniteness of
the coefficient matrix, in general only direct solvers can be used in Morembs++
currently. There aremany libraries available, in which different sparse direct solvers
have been implemented. During the development ofMorembs++ theMUMPS [19],
SuperLU_Dist [20] and the Pardiso [21] solver were considered for application.
At the time of the development of Morembs++ the Pardiso solver did not support
MPI-based parallelism and the SuperLU_Dist solver lacked an out-of-core (OOC)
functionality. Therefore, the direct solver implemented in the library MUMPS is
applied in Morembs++. Within the calculation of the constraint modes, the sparse
coefficient matrix of the system of linear equations to be solved is positive definite
and can be solved iteratively using the preconditioned conjugate gradient (CG)
method. To satisfy the huge demands of memory, Morembs++ makes use of MPI-
based parallelism. Thereby, the data is distributed to different computers to obtain
the agglomerated amount ofmemory of all participating computers. To simplify the
development process, Morembs++ makes heavy use of the Trilinos project which
is separated in different packages each focusing on a specific topic. The Tpetra
package, for instance, contains linear algebra objects while the Teuchos package
offers software tools like smart pointers or an XML parser. Within the Anasazi
package different eigensolvers are implemented where one of them is the already
mentioned BKS eigensolver.

4. Numerical Examples

Three different sized FE models are examined here. The first is a model of a
crankshaft, the second FE model originates from an automotive gear and the third
FE model describes a complete carriage of an automotive. Some key numbers of
these FE models being important to the model order reduction process, are given in
Table 1. These are the dimension nnodes of nodes, the dimension nels of elements, the
number N of DOF of the unreduced model, the number nnz of non-zero elements
of the sparse coefficient matrix A and the number p of input and output DOF.

Additionally, in Fig. 2 the FE models of the crankshaft, the gear and the
carriage are shown. The white marks show the interface nodes at which the models
are included in the flexible multibody system. The crankshaft has four the gear 29,

Table 1.
Important information of the examined FE models related to the model order reduction in

Morembs++
nnodes nels N nnz p

Crankshaft 158 782 101 542 444 837 34 841 153 24
Gear 1 336 209 837 027 3 988 122 332 930 880 156
Carriage 2 039 638 1 804 778 9 242 089 715 664 213 246

482 THOMAS VOLZER, PETER EBERHARD

Fig. 2. Figures of the FE model of the crankshaft, the gear and the carriage. The white marks show
the interface nodes at which the models are included into the flexible multibody system

and the carriage 41 interface nodes. Each of this interface nodes owns six DOF
which lead to the number of interface DOF shown in Table 1.

Independent of the reduction method used, the solution of a sparse system of
linear equations is the most expensive part regarding the consumption of memory.
The worst case scenario, concerning the memory consumption, occurs when the
sparse coefficient matrix A is indefinite which is true when the transfer function
at an arbitrary frequency point greater than zero is calculated. Because of this, the
calculation of the transfer function at one frequency point is representative for all
reduction methods with respect to the consumption of memory.

In Table 2, the computer systems used in this work are listed. It is assumed
that usually multiple personal computers (type I) are available while only one
workstation (type II) can be used at a time. Here, these systems are chosen to
describe the methods in conjunction with the model size in the best way. Of course,
there could be used computerswith evenmorememory butwith a further increasing
size of the FE models the same type of limits would occur, only at a higher level.
The Cray supercomputer at the HLRS (type III) consists of 7712 compute nodes
where each one of them has two CPUs and 128 GB of memory. This leads to 15424
CPUs and an agglomerated size of memory of 964 TB.

Table 2.
Computer systems used here

type description CPU RAM
I PC Core i7-3770 32 GB
II workstation Xeon E5-1650 v3 128 GB
III Cray HLRS Xeon E5-2680 v3 128 GB

In Fig. 3 the memory consumption during the calculation of the transfer func-
tion of the crankshaft at one frequency point is shown on the left. For better
comparison of different runs, the time is scaled from zero to one. At first, the
memory consumption increases due to the import of the system matrices M and

MODEL ORDER REDUCTION OF LARGE-SCALE FINITE ELEMENT SYSTEMS . . . 483

0 0.5 1

normalized time tn [-]

0

1

2

3

m
em

o
ry

co
n
su
m
p
ti
o
n
[G

B
] crankshaft

0 0.5 1

normalized time tn [-]

0

20

40

60

80

gear
gear OOC
carriage
carriage OOC

Fig. 3. Memory consumption during the solution of the sparse system of linear equalities

K which is followed by the calculation of the coefficient matrix A. Afterwards, the
memory consumed by M and K can be freed which becomes visible at the decline
of the memory consumption left of the 0.4 time mark. The coefficient matrix must
be transformed to the format used within the direct solver MUMPS [19] and an
ordering is necessary to minimize the memory consumption during the numerical
factorization. These operations lead to a fluctuation of the memory consumption
shortly before and after the 0.4 time mark. The subsequently executed numerical
factorization consumes the largest part of memory during the solution of the sparse
system of linear equations. This procedure ends shortly after the 0.7 time mark and
is followed by the forward and backward substitution process which is character-
ized by the constant consumption of memory until the end of the shown timeframe.
The maximum memory consumption of a little less than 3 GB is reached after the
numerical factorization.

In Fig. 3, the memory consumption during the calculation of the transfer
function of the gear and the carriage at one frequency point are shown on the right.
Again, the time is scaled from zero to one for better comparison of the different
runs. The sectors can be classified in an equal way as it is done above with the
crankshaft. Thememory consumption using the gear is shown as a dashdotted graph
in Fig. 3. The maximum consumption of memory is approximately 40GB which is
more than the capacity of a computer of type I. One solution is to use a system of
type II but the maximum capacity of memory is always limited due to technological
standards and so this is just pushing the limits a bit further. Another possibility is
to use the out-of-core (OOC) functionality of the direct solver MUMPS. Thereby,
during the numerical factorization, a part of the accumulated data is written to the
hard disk and imported again when necessary as part of the forward and backward
substitution process. Due to this approach, the maximum memory consumption
drops to approximately 10GB which is shown by the solid line in Fig. 3 and a type
I system can be used.

484 THOMAS VOLZER, PETER EBERHARD

Considering the FE model of the carriage the serial, in-core solution process
leads to a maximum consumption of memory of approximately 80GB which is
shown by the dotted graph in Fig. 3. By using the OOC functionality, the maximum
memory consumption can be reduced to about 40GB as it can be seen by the
dashed graph in Fig. 3 which still exceeds the memory limit of a type I computer.
To summarize the result, the OOC functionality can reduce the maximum amount
of memory needed during the solution of the sparse system of linear equations, but
with an increasing size of the FE model, a type I computer with 32 GB of memory
cannot be used anymore. Instead, a stronger equipped computer, regarding the
amount of available memory, is necessary. Even if such a computer is available,
the limit can be reached quickly when even larger FE models are required.

Another approach to solve thismemory related issue is to distribute the incurred
data tomultiple computers usingMPI-based parallelism. In Fig. 4 the upper left plot
shows the memory consumption during the calculation of the transfer function of
the FE model of the gear at one frequency point. Again, the dotted graph shows the
memory consumption in the serial case while the two solid lines show the memory
consumption on each MPI process when two MPI processes are used. Instead of
40GB of maximummemory consumption, each MPI process needs approximately
20GB. Given that each MPI process is assigned to a different computer with a
memory capacity of 32GB, this approach makes it possible to use usual multiple
type I computers.

0 0.5 1

normalized time tn [-]

0

10

20

30

40

50

m
em

o
ry

co
n
su
m
p
ti
o
n
[G

B
] gear

0 0.5 1

normalized time tn [-]

0

20

40

60

80

m
em

o
ry

co
n
su
m
p
ti
o
n
[G

B
] carriage

0 0.5 1

normalized time tn [-]

0

10

20

30

40

50

m
em

o
ry

co
n
su
m
p
ti
o
n
[G

B
] carriage

serial

2 MPI processes

4 MPI processes

2 MPI processes + OOC

Fig. 4. Memory consumption using the FE models of the gear and the carriage in an
MPI-parallelized environment

MODEL ORDER REDUCTION OF LARGE-SCALE FINITE ELEMENT SYSTEMS . . . 485

In Fig. 4, the upper right plot shows the memory consumption during the
calculation of the transfer function of the FEmodel of the carriage at one frequency
point in the serial as well as in the MPI-parallelized case. The dotted drawn graph
shows the memory consumption in the serial case while the dashed graphs show
the memory consumption using two MPI processes. Each MPI process consumes
between 38GB and 45GB of memory which still exceeds the limit of 32GB. There
are two possibilities to decrease the memory needed per MPI process. Either more
MPI processes, and with it more computers, are used to increase the agglomerated
amount of memory or the OOC functionality is used on each MPI process. In
Fig. 4 the solid graph in the upper right plot shows the latter case when the OOC
functionality is activated. The memory consumption per MPI process drops to
approximately 20GB, so that two type I computers can be used again. The solid
line in the lower left plot in Fig. 4 shows the case when four MPI processes are
used. Equally to the case when the OOC functionality is applied, the maximum
amount of memory is about 20GB and, therefore, four type I computers are needed
to perform the calculation of the transfer function in-core.

The conclusion of the examination of the maximum needed memory in the
context of the model reduction of large FE systems is that the large amount of
memory during the solution of a sparse linear system of equations can be faced by
three approaches. One possibility is to increase the amount of available memory
due to hardware upgrades but of course this possibility is limited. Another way is
to use the OOC functionality to reduce the memory consumption, which works but
only moves the limit temporarily until a larger model is used. The third option is to
use MPI-based parallelism, optionally in conjunction with the OOC functionality.
Here, the amount of memory needed is distributed to different computers and
the agglomerated amount of memory depends on the number of participating
computers. By doing this, the available memory can be made very large and is
sufficient in the context of the model reduction, even if very large models are used.

So far, only the memory consumption during the model reduction has been
considered. Besides that, the runtime is also a very important issue. In Fig. 5
the most time consuming parts during the calculation of the transfer function
at one frequency point are shown. These are the runtime needed to import the
data of the system matrices M , K and the RHS B as well as the duration of the
symbolic and numeric factorization and the forward and backward substitution. The
runtimes, shown in Fig. 5, are normalized to the complete runtime of Morembs++
to allow a better comparison between the different runs. When the FE model of the
crankshaft is used, the most time consuming parts are the numerical factorization
and the forward and backward substitution with both around 40% percent of the
complete runtime. The HDF5 import needs approximately 2% and the symbolic
factorization roughly 7%.

Using the FEmodel of the gear, the relative runtimes are different.With around
72%, the forward and backward substitution is clearly the most time consuming
part, followed by the numerical factorization with 22%. The HDF5 import and

486 THOMAS VOLZER, PETER EBERHARD

HDF5 symbolic
factorization

numeric
factorization

forward and backward
substitution

0

10

20

30

40

50

60

70

80

90

re
la
ti
v
e
ti
m
e
t
re
l
[-
]

crankshaft
gear
carriage
carriage OOC

Fig. 5. Most time consuming parts during the calculation of the transfer function at one frequency
point

the symbolic factorization are quite small with each below 3%. Based on the FE
model of the carriage, the relative runtime needed for the forward and backward
substitution makes up nearby 80% of the complete runtime while the relative
runtime for the numerical factorization is around 14%. Both the relative runtime
needed for the HDF5 import and the symbolic factorization are below 4%. The
increasing relative time of the forward and backward substitution can be traced back
to the increasing number p of input DOF leading to the number of RHS to solve.
The value of p of the different FEmodels of the crankshaft, the gear and the carriage
is shown in Table 1. The conclusion of this examination is, that depending on the
number of RHS, either the numerical factorization or the forward and backward
substitution makes up the most time consuming part during the calculation of the
transfer function at one frequency point considering only serial runs.

Additionally, the relative runtimes with an activated OOC functionality using
the FE model of the carriage are shown in Fig. 5. With around 82%, the relative
runtime needed for the forward and backward substitution process is slightly higher
due to the activation of the OOC functionality. In contrast, the relative runtime of
the numerical factorization is reduced by 2% to approximately 12%. The relative
runtimes of the remaining operations are all below 4%.

The absolute runtimes for the calculations described in Fig. 5 are 54 s, 39min,
74min and 91min based on the FE models of the crankshaft, the gear, and the
carriage. These numbers show that the activation of the OOC functionality leads
to an increase of the runtime of approximately 22%. While the primary reason to
parallelizeMorembs++ usingMPI is to obtain a very large capacity of agglomerated
memory, the reduction of the runtime is also of great interest. Therefore, the
scalability is examined using the FE model of the carriage on the supercomputer

MODEL ORDER REDUCTION OF LARGE-SCALE FINITE ELEMENT SYSTEMS . . . 487

Hazelhen at the HLRS. In Fig. 6 the runtimes of the most time consuming parts
during the calculation of the transfer function at one frequency point are shown as
a function of the number of MPI processes.

4 16 32 64 96 128 160 192

number of MPI processes

0

200

400

600

800

1000

1200
ru
n
ti
m
e
t
[s
]

HDF5
symbolic factorization
numeric factorization
forward and backward substitution

Fig. 6. Scalability of the most time consuming parts during the calculation of the transfer function at
one frequency point

The runtimes of the HDF5 input and output (IO) and of the symbolic factor-
ization form only a small part of the complete runtime. Between 4 and 16 MPI
processes the runtime of the HDF5 IO drops but increases afterwards. The runtime
of the symbolic factorization is independent of the number of processes used. This
is because the ordering is done by applying the non-parallelized METIS library
[22]. There are MPI parallelized libraries available, like ParMETIS [22], but the
runtime of the symbolic factorization is relatively small, compared to the runtime
of the numerical factorization as well as to the forward and backward substitution.
The runtime of the numerical factorization depends strongly on the number of MPI
processes used which is shown in Fig. 6. With four MPI processes, the numer-
ical factorization needs 267 s while using 192 MPI processes it takes only 31 s.
However, the runtimes of the forward and backward substitution behave differently.
The bars in Fig. 6 show that using more than 96 MPI processes even increase the
runtime. The conclusion of this examination is that there is a good scalability of
both the numerical factorization as well as the forward and backward substitution
process until roughly 96 MPI processes. This is an important result because, as it
is shown in Fig. 5, these are the most time consuming parts during the examined
calculations. The presented results of the calculation of the transfer function at
one frequency point can be transferred to all model reduction methods because the
solution of the sparse system of linear equations is always the dominant operation.

In Fig. 7, the transfer functions of differently reduced models are shown in
a frequency range between 55Hz and 65Hz. The transfer function based on the
modal reduction method is shown as a solid line and the peaks describe the eigen-
frequencies of the free, undamped system. The transfer function based on the CMS

488 THOMAS VOLZER, PETER EBERHARD

55 56 57 58 59 60 61 62 63 64 65

10−2

10−1

frequency f [Hz]

tr
an

sf
er

fu
n
ct
io
n

modal
CMS
MM

original

55 56 57 58 59 60 61 62 63 64 65

10−2

10−1

frequency f [Hz]

tr
a
n
sf
er

fu
n
ct
io
n

modal
CMS
MM

originalFig. 7. Transfer functions of the reduced systems using the modal reduction method, the CMS-based
method, the moment-matching method, and the original, non-reduced system at one frequency point

reductionmethod is drawn as a dashed line and shows a similar behaviour within the
complete frequency range as the solid graph. The slight difference appears because,
due to the substructuring within the CMS reduction method, the dynamics of the
inner system is altered. The transfer function drawn as a dotted line originates from
a model reduced with the moment-matching method. Thereby, the moments of the
transfer function are matched at 61Hz and no higher-order derivatives are matched.
Outside the frequency range around 61Hz there are big differences to the trans-
fer functions reduced with the other reduction methods. Additionally, the transfer
function of the unreduced system is calculated at a frequency point of 61Hz and
marked by a star in Fig. 7. As expected, it can be seen that the moment-matching
based transfer function matches the value of the frequency point of 61Hz.

The BKS eigensolver is an important part of the modal reduction method
and the CMS-based method. There are four parameters controlling the eigenvalue
solution process. These are the convergence tolerance, the number of eigenvalues
to be calculated, the blocksize and the number of blocks. Examinations have shown
that a convergence tolerance of τ = 10−5 leads to a sufficient accuracy here. The
number of eigenvalues is given by the user and directly affects the blocksize as
well as the number of blocks. Both, the blocksize and the number of blocks define
the size of the Krylov base by nK = nBS nB. Initially, the blocksize is set nBS = 1
to examine the necessary size of the Krylov base. Within the Anasazi package of
the Trilinos project, the default size of the Krylov base is nK = 3 nEV assuming
a blocksize of nBS = 1. By reducing the size of the Krylov base successively, the
convergence behaviour is examined. In the following, the number of times a linear
system of equalities has to be solved during the eigenvalue computation is named
by number nsol of solutions. In Fig. 8 the influence of the size of the Krylov base on
the number of solutions and on the number of times the iteration has to be restarted
during the eigenvalue computation of the FE model of the crankshaft is shown.

At first, the computation of nEV = 40 eigenvalues is considered. The reduction
of the size of the Krylov base leads to a reduction of the number of solutions until

MODEL ORDER REDUCTION OF LARGE-SCALE FINITE ELEMENT SYSTEMS . . . 489

20406080100120

size of the Krylov base nK

20

40

60

80

100

120

n
u
m
b
er

o
f
so
lu
ti
o
n
s
n
so
l

nEV = 40

nEV = 30

nEV = 20

nEV = 10

20406080100120

size of the Krylov base nK

0

2

4

6

8

10

12

n
u
m
b
er

o
f
re
st
a
rt
s
n
r

nEV = 40

nEV = 30

nEV = 20

nEV = 10

Fig. 8. Influence of the size of the Krylov base on the number of solutions and on the number of
times the iterations has to be restarted during the calculation of the eigenvalues of the FE model of

the crank

a Krylov base of size nK = 72 enforces a restart of the iteration. Restarting the
iteration increases the number of solutions instantly from nsol = 73 to nsol = 104.
By further reducing the size of the Krylov base, the number of solutions decreases
coming from nsol = 104. This continues until a Krylov base of size nK = 56, when
a second restart is necessary. Again, the number of solutions increases instantly
from nsol = 74 to nsol = 88. Even smaller sizes of Krylov bases lead to more
restarts, which is shown on the right in Fig. 8. Within the computations shown
here, the optimal size of the Krylov base is the lowest possible which doesn’t lead
to a restart. Depending on the number of wanted eigenvalues, the optimal sizes of
the Krylov bases are nK(nEV = 40) = 73, nK(nEV = 30) = 64, nK(nEV = 20) = 42
and nK(nEV = 10) = 25. The optimal size of the Krylov base depends on multiple
parameters, like the condition of the system matrices, the convergence tolerance
and the number of eigenvalues, and cannot be determined before the computation
is done.

The blocksize is examined based on the computation of nEV = 40 eigenvalues
of the FE models of the crankshaft and of nEV = 50 eigenvalues of the FE model of
the gear. Considering the FEmodels of the crankshaft, a constant size of the Krylov
base of nK = 80 is used. In Table 3 all possible combinations of the blocksize and the
number of blocks which lead to a size of the Krylov base of nK = 80 are listed. The
eigenvalue computation with a blocksize of nBS = 1 and nB = 80 of blocks needs
nsol = 80 solutions to converge within t = 33 s. Increasing the blocksize to nBS = 2
with nB = 40 blocks enforces one restart of the iteration which leads to nsol = 120
solutions and a runtime of t = 42 s. A blocksize of nBS = 4 leads to nB = 20 blocks
and also converges with one restart of the iteration and 120 solutions. The runtime
of t = 42 s is also roughly the same. Further increasing the blocksize leads to
additional restarts, many more solutions and longer runtimes. Here, the maximum
number of restarts is set to 20. Using a blocksize of nBS = 20 and nB = 4 blocks,

490 THOMAS VOLZER, PETER EBERHARD

the required convergence tolerance is not reached within this maximum number of
restarts. However, it is possible to obtain a converged solution either by increasing
the maximum number of iterations or by decreasing the convergence tolerance.
Within the Anasazi package of the Trilinos project, a minimum number of nB = 3
blocks is necessary which is why a blocksize of nBS = 80 and nBS = 40 cannot be
chosen.

Table 3.
Influence of the blocksize on the number of solutions and the runtime during the calculation of 40
eigenvalues of the FE model of the crankshaft and 50 eigenvalues of the FE model of the carriage

crankshaft gear
nBS 1 2 4 5 8 10 16 1 4 6
nB 80 40 20 16 10 8 5 120 30 20
nr 0 1 1 2 3 6 15 0 0 1

nsol 80 120 120 160 200 320 560 120 120 186
t [s] 33 42 41 51 61 91 159 665 626 846

Considering the FE model of the gear, a Krylov base of size nK = 120 is
used. In Table 3 three combinations of the blocksize and the number of blocks
are listed. With a blocksize of nBS = 1 and nB = 120 blocks, the iteration needs
nsol = 120 solutions and no restart to converge within t = 665 s. Increasing the
blocksize to nBS = 4 leads to nB = 30 blocks and the iteration needs nsol = 120
solutions to converge without a restart within t = 626 s. This is a shortening of the
runtime by ∆t = 39 s or roughly 6%. Using a blocksize of nBS = 6 and nB = 20
blocks, the iterations needs to be restarted once whereby the number of solutions is
increased to nsol = 186 and a runtime by t = 846 s. This is a growth of the runtime
of ∆t = 181 s or roughly 27% compared to the computation using a blocksize of
nBS = 1. To summarize, within the computations shown here, an increase of the
blocksize can lead to a slight reduction of the runtime as long as a restart of the
iteration is prevented. If a restart has to be done, the runtime increases heavily.
Because there is no possibility to determine the largest blocksize which leads not
to a restart and the small potential reduction of the runtime, in Morembs++ it is
recommended to use a blocksize of nBS = 1.

In Fig. 9, the influence of the number of eigenvalues on the total runtime as
well as on the runtime of the orthogonalization, the numerical factorization and the
forward and backward substitution process is shown. Independent of the number of
eigenvalues, the numerical factorization has to be done only once. Here, the default
size nK = 3 nEV of the Krylov base is used which leads to nsol = 3 nEV assuming
the iteration doesn’t need to be restarted. This results to an average gradient of the
runtime of the forward and backward substitution process of 2.6 s.

During each iteration, one vector is calculated which has to be orthogonalized
to all previously calculated vectors. Because of that, there is a quadratic dependency
between the runtime of the orthogonalization and the number of eigenvalues.

MODEL ORDER REDUCTION OF LARGE-SCALE FINITE ELEMENT SYSTEMS . . . 491

10 20 30 40 50 60 70 80 90 100

number of eigenvalues nEV [-]

0

50

100

150

200

250

300

350

400

ru
n
ti
m
e
t
[s
]

total
orthogonalization
numerical factorization
forward and backward substitution

Fig. 9. Dependency between the number of eigenvalues and the runtime using the FE model of the
crank

The most time consuming part of the eigenvalue computation is the forward and
backward substitution process. Therefore, the total runtime behaviour is dominated
by the linear behaviour of the runtime of the forward and backward substitution
process and the quadratic behaviour of the runtime of the orthogonalization has
only a minor influence.

The calculation of the constraint modes within the CMS based method can be
done iteratively using the preconditioned CG solver [23] because the coefficient
matrix is symmetric and positive definite. Here, a multigrid preconditioner from
the MueLu package [24] and the CG solver from the Belos package of the Trilinos
project are used. Due the positive definiteness of the symmetric matrix Kii, the
smoothed aggregation algorithm can be chosen as an optimal multigrid algorithm
[25]. On the coarsest level the direct solver implemented in the MUMPS library
is used. As a smoother the symmetric Gauss-Seidel relaxation method is applied
with a damping factor of 0.6 and 3 sweeps. The calculation of the constraint modes
using the FE model of the crankshaft leads to the solution of the system of linear
equations

KiiΨib = Kib (16)

with Kii ∈ R
444 813×444 813 and Ψib, Kib ∈ R

444 813×24. In Fig. 10 the norm of the
residual | |r | | for each column is shown on the left at each iteration. Numerical
examinations have shown that a convergence tolerance of 10−8 has to be reached
on order to obtain an accurate result.

It can be seen that some columns need only 40 iterations until the conver-
gence tolerance is reached while others need up to 150 iterations. The runtime of

492 THOMAS VOLZER, PETER EBERHARD

0 50 100 150

10−8

10−2

iterations [−]

re
si
d
u
al
||r
||
[−

]

0 0.2 0.4 0.6 0.8 1
0

1

2

3

time [s]

m
em

or
y
co
n
su
m
p
ti
on

[M
B
]

direct
iterative

Fig. 10. The residual of each right-hand-side and the memory consumption during the iterative
solution process

Morembs++ needed for this calculation of the constraint modes is 1476 s. Using
the direct solver MUMPS only 56 s are needed. By applying larger FE models,
like these of the gear and the carriage, the differences in the runtime are even
larger. In Fig. 10 the memory consumption during the calculation of the constraint
modes using the direct and iterative solver is shown on the right. The runtimes
are normalized to make the comparison between the direct and iterative methods
possible. The memory consumption using the direct method shows the characteris-
tics described above. When the iterative solver is applied, only the system matrices
need to be stored. There is no symbolic and numerical factorization necessary and,
therefore, the memory consumption is much lower compared to when the direct
solver is used. Unfortunately, the runtime using iterative methods in Morembs++
is currently too large to make the memory consumption advantage attractive.

5. Conclusion

In this work, three model reduction methods, implemented in Morembs++,
have been presented as well as the process chain of Morembs++. It has been shown
that, independently of the used reduction method, the most expensive step during
the calculation of the projection matrix is the solution of a sparse system of linear
equations. Due to the properties of the system matrices, in general only direct
methods can be used in Morembs++ currently. It has been shown that the MPI
parallelization is currently the only way to satisfy the huge demand memory op-
tionally with the out-of-core functionality. Thereby, multiple computers connected
in a LAN as well as in a cluster or in a supercomputer can be used. Besides that,
the MPI parallelization also impacts the runtime of Morembs++. In a LAN the
numerical factorization and the forward and backward substitution are the most
time consuming parts and the runtime can be reduced effectively due to the MPI
parallelization. On the supercomputer Hazelhen at the HLRS, it has been shown
that the runtime of the numerical factorization and the forward and backward sub-

MODEL ORDER REDUCTION OF LARGE-SCALE FINITE ELEMENT SYSTEMS . . . 493

stitution can be reduced heavily by using up to 96 MPI processes. At this point,
the runtime is dominated by the forward and backward substitution process. Us-
ing more than 96 MPI processes even increases the runtime of the forward and
backward substitution.

Also, the size of the Krylov base as well as the blocksize within the BKS
eigensolver have been examined. Coming from the default settings within the
Anasazi package of the Trilinos project, the size of the Krylov base can be reduced
slightlywhenmany eigenvalues are computed. However, inMorembs++ a blocksize
nBS > 1 can reduce the runtime only slightly while increasing the risk of a restart
of the iteration which leads to longer runtime. Because of that, in Morembs++ the
choice of a blocksize of nBS = 1 is recommended. It has also been shown that
the use of iterative methods within the CMS based method is possible. Here, a
preconditioned CG method was applied using a multigrid preconditioner. Thereby,
the memory consumption can be decreased but the runtime is increased heavily
which is why the iterative methods are currently not recommended to be used in
Morembs++.

Manuscript received by Editorial Board, June 10, 2016;
final version, September 12, 2016.

References

[1] A. Antoulas. Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia, 2005.
[2] W. Schiehlen and P. Eberhard. Applied Dynamics. Springer, Heidelberg, 1 edition, 2014.
[3] A.A. Shabana. Dynamics of Multibody Systems. Cambridge University Press, New York, 4

edition, 2013.
[4] P. Holzwarth, M. Baumann, T. Volzer, I. Iroz, P. Bestle, J. Fehr, and P. Eberhard. Software

Morembs. University of Stuttgart, Institute of Engineering and Computational Mechanics,
Stuttgart, Germany, 2016. Last accessed April, 24, 2016.

[5] M. Fischer and P. Eberhard. Simulation of moving loads in elastic multibody systems with
parametric model reduction techniques. Archive of Mechanical Engineering, 61(2):209–226,
2014.

[6] M.A. Heroux, R.A. Bartless, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G. Kolda, R.B. Lehoucq,
K.R. Long, R.P. Pawlowski, E.T. Phipps, A.G. Salinger, H.K. Thornquist, R.S. Tuminaro, J.M.
Willenbring, A. Williams, and K.S. Stanley. An overview of the Trilinos Project. ACM
Transactions on Mathematical Software, 31(3):397–423, 2005.

[7] Y. Zhou and Y. Saad. Block Krylov–Schur method for large symmetric eigenvalue problems.
Numerical Algorithms, 47(4):341–359, 2008.

[8] P. Gosselet and C. Rey. Non-overlapping domain decomposition methods in structural mechan-
ics. Archives of Computational Methods in Engineering, 13(4):515–572, 2006.

[9] A. Toselli and O.B. Widlund. Domain Decomposition Methods: Algorithms and Theory.
Springer, Heidelberg, 2005.

[10] J. Mandel. Balancing domain decomposition. Communications in Numerical Methods in
Engineering, 9(3):233–241, 1993.

[11] C. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting and its
parallel solution algorithm. International Journal for Numerical Methods in Engineering,
32(6):1205–1227, 1991.

494 THOMAS VOLZER, PETER EBERHARD

[12] A. Prokopenko, C.M. Siefert, J.J. Hu, M. Hoemmen, and A. Klinvex. Ifpack2 Users Guide 1.0.
Technical Report SAND2016-5338, Sandia National Labs, 2016.

[13] PERMAS, User’s Reference Manual, PERMAS Version 11.00.445. INTES Publication No. 450.
INTES GmbH, Stuttgart, 2006.

[14] M. Lehner and P. Eberhard. On the use of moment-matching to build reduced order models in
flexible multibody dynamics. Multibody System Dynamics, 16(2):191–211, 2006.

[15] P. Holzwarth and P. Eberhard. SVD-based improvements for component mode synthesis in
elastic multibody systems. European Journal of Mechanics – A/Solids, 49:408–418, 2015.

[16] Y. Saad. Numerical Methods for Large Eigenvalue Problems. SIAM, Philadelphia, 2 edition,
2011.

[17] R. Craig. Coupling of substructures for dynamic analyses: An overview. In Proceedings of the
AIAA Dynamics Specialists Conference, Atlanta, April 5, 2000. Paper-ID 2000-1573.

[18] HDF Group: Hierarchical Data Format 5. http://www.hdfgroup.org/hdf5/. Last accessed April,
24, 2016.

[19] MUMPS: A MUltifrontal Massively Parallel Sparse Direct Solver. http://graal.ens-
lyon.fr/MUMPS, 2016. Last accessed April 24, 2016.

[20] X.S. Li and J.W. Demmel. SuperLU_DIST: A scalable distributed-memory sparse direct solver
for unsymmetric linear systems. ACM Transactions on Mathematical Software, 29(2):110–140,
2003.

[21] O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equations with
PARDISO. Future Generation Computer Systems, 20(3):475–487, 2004.

[22] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

[23] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2 edition, 2003.
[24] J.J. Hu, A. Prokopenko, C.M. Siefert, R.S. Tuminaro, and T.A. Wiesner. MueLu Multigrid

Framework. http://trilinos.org/packages/muelu, 2014. Last accessed June, 8, 2016.
[25] A. Prokopenko, J.J. Hu, T.A. Wiesner, C.M. Siefert, and R.S. Tuminaro. MueLu Users Guide

1.0. Technical Report SAND2014-18874, Sandia National Labs, 2014.

Redukcja rzędu modelu w układach elementów skończonych wielkiej skali, w środowisku
równoległym z intefejsem (MPI), w zastosowaniu do symulacji układów wieloczłonowych

S t r e s z c z e n i e

W ostatnich latach w symulacji układów wieloczłonowych coraz ważniejsze staje się uwzględ-
nianie odkształcalności członów. By w symulacji układu wieloczłonowego można było wykorzystać
człony odkształcalne, modelowane metodą elementów skończonych, rozmiar układu równań róż-
niczkowych zwyczajnych musi być zredukowany drogą projekcji. W tym celu w prezentowanej pracy
zastosowano metodę redukcji modalnej, metodę opartą na syntezie składowych postaciowych (CMS)
oraz metodę dopasowania momentów. Wobec wciąż rosnącego rozmiaru układów niezredukowa-
nych, obliczanie macierzy projekcji prowadzi do wielkiego zapotrzebowania na moce obliczeniowe
i nie może być wykonane na zwykłych, szeregowych komputerach. W pracy zaprezentowano opro-
gramowanie do redukcji modelu Morembs++, w którym wykorzystuje się obliczenia równoległe
z interfejsem transmisji wiadomości (MPI), co zaspokaja zapotrzebowanie na pamięć i zmniej-
sza czas wykonania niezbędnych obliczeń. Ponadto działanie blokowego solvera wartości własnych
Kryłowa-Schura, zaimplementowanego w pakiecie oprogramowania Anasazi z projektu Trilinos, zo-
stało przeanalizowane pod kątem wyboru rozmiaru bazy Kryłowa, rozmiaru bloku i liczby bloków.
Rozważono także użycie solvera iteracyjnego w ramach metody opartej na syntezie składowych
postaciowych (CMS).

	Introduction
	Background
	Process Chain
	Numerical Examples
	Conclusion

