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Sensitivity analysis of signaling pathway models based
on discrete-time measurements

MALGORZATA KARDYNSKA and JAROSLAW SMIEJA

The paper is focused on sensitivity analysis of large-scale models of biological systems that
describe dynamics of the so called signaling pathways. These systems are continuous in time but
their models are based on discrete-time measurements. Therefore, if sensitivity analysis is used
as a tool supporting model development and evaluation of its quality, it should take this fact into
account. Such models are usually very complex and include many parameters difficult to esti-
mate in an experimental way. Changes of many of those parameters have little effect on model
dynamics, and therefore they are called sloppy. In contrast, other parameters, when changed,
lead to substantial changes in model responses and these are called stiff parameters. While this
is a well-known fact, and there are methods to discern sloppy parameters from the stiff ones,
they have not been utilized, so far, to create parameter rankings and quantify the influence of
single parameter changes on system time responses. These single parameter changes are par-
ticularly important in analysis of signalling pathways, because they may pinpoint parameters,
associated with the processes to be targeted at the molecular level in laboratory experiments.
In the paper we present a new, original method of creating parameter rankings, based on an
Hessian of a cost function which describes the fit of the model to a discrete experimental data.
Its application is explained with simple dynamical systems, representing two typical dynamics
exhibited by the signaling pathways.

Key words: sensitivity analysis, signaling pathways, measurement uncertainty, discrete-
time measurements.

1. Introduction

Signaling pathways (or regulatory pathways) are cascades of biochemical processes
involving creation, degradation and modification of various molecules, specific for a
given pathway, as well as their transport between cellular compartments such as cyto-
plasm, nucleus, mitochondrium, etc. These processes are activated by events taking place
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inside a cell (such as, e.g., DNA damage), changes in extracellular environment (e.g. in
its chemical content or temperature), direct interactions with other cells (following their
binding) or physical stresses (radiation, mechanical stress). They are regulated by posi-
tive and negative feedback loops that in many cases are not fully understood. Therefore,
use of methods that have their origins in automatic control may help in learning these
mechanisms, through formulating hypotheses about the structure of regulatory networks
governing intracellular processes. Ultimately, such knowledge will support development
of the protocols of external regulation of cell behavior.

There are many methods that can be used to describe the dynamics of signaling
pathways. In this paper we are focused on deterministic models described by ordinary
differential equations, in which variables denote concentrations of molecules involved
in a given pathway. Each parameter (or, in case of Michaelis-Menten kinetics, a pair of
parameters) correspond to a single biochemical process.

Due to rapid advances in experimental techniques, our knowledge about biochemi-
cal processes occurring in living cells is continuously expanding. In the literature there
is a growing number of highly dimensional models, which describe the dynamics of sig-
naling pathways components [1]. The more processes are taken into account, the more
complex models arise with a large number of parameters. However, methods of measur-
ing biochemical parameters are limited and often inaccurate [2]. Therefore, any mathe-
matical model should be checked with respect to its sensitivity to parameter changes. In
general, such model should be robust with respect to small parameter changes. Neverthe-
less, some parameters are always more important than others. The sensitivity analysis is
the tool to be used to determine how a change of parameters influences the system behav-
ior. It provides information about the most important parameters that have the greatest
impact on the system output [3]. In the particular application that is considered in this
paper, each parameter is associated with a particular biochemical process. Hence, sensi-
tivity analysis may provide insights into how biological experiments should be planned
to gain maximum information. Moreover, parameters with the highest ranking indicate
prospective molecular drug targets affecting a pathway that is involved in a given disease.

Sensitivity analysis have been developed for over half a century, initially for applica-
tions in engineering [4, 5, 6]. While sensitivity methods proved to be helpful in analysis
of various pathways [7, 8, 9, 10, 11], they were focused on simulation results whose
units were clearly determined (as concentration units). However, in most cases biologi-
cal experiments provide data about the fold increase of the number of molecules or of the
concentration, while their absolute values are not known. In that case the same methods
of sensitivity analysis may lead to false conclusions [12]. Furthermore, measurements
are discrete in time with irregular and sparse sampling periods. Even if live microscopy
is used, data is collected every couple of minutes. For these reasons it is necessary to
develop methods which take into account specific properties of biological systems and
experimental data.

In this paper we present a new method for creating parameter rankings. It is based
on the Hessian of a cost function describing the fit of the model to discrete measurement
data [13]. The rankings allow not only to identify the most important parameters of the
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model, which is facilitated by the methods developed in earlier works [14], but allows to
quantify and rank the importance of single parameters. These parameters should be de-
termined with the highest accuracy when developing a biologically relevant model and
may provide hints to indicate prospective molecular targets for new drugs [15]. In ad-
dition, the proposed method takes into account the measurement uncertainty at specific
sampling times, which is also an improvement over standard sensitivity analysis meth-
ods. Most of these methods assume that the model perfectly describes the biological
process, which is not true - mathematical models are built on the basis of experimental
measurements that are subject to uncertainty and in the case of biological experiments
may be very high.

In the following section the concept of stiff and sloppy parameters and the method to
find them are introduced, followed by the definition of the proposed ranking. Then, the
rankings obtained with the proposed method are shown and compared with those given
by standard sensitivity analysis for two models, each representing particular dynamics
exhibited by signaling pathways. Both examples show that the presented method allows
to create reliable parameter rankings that helps to identify parameters substantially af-
fecting the fit of the model to experimental data.

2. Stiff and sloppy parameters

Sensitivity analysis is usually divided into two major categories: local and global.
Local sensitivity analysis describes how the system output changes when parameters
deviate in a close neighborhood of their nominal values. Global sensitivity, in turn, de-
scribes how the system output changes when multiple parameters are allowed to change
in a relatively wide range [16, 17]. The method presented in this work may be classified
as a local one.

Let the model be described by the state equation:

dX
E = F(X7U7e)7 X(IO) = X07 (1)

where X is a vector of state variables, representing concentrations or the average number
of molecules of proteins, enzymes or transcripts involved in the signaling pathway, U
denotes control vector, which is usually a scalar in biological systems, 0 is a vector of
parameters. A solution of the described model is defined by:

X(0,1). (2)

Model quality can be evaluated using the least-squares cost function [13] that de-
scribes the difference between the variable values obtained from simulation and quanti-
fied experimental data:

1 S 6,t —As,n 2
Cs(8) :Zzw =2 5% 3)

n
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where x; , is the value of s-th state variable in the n-th sample measured with the un-
certainty Oy ,, x4(0,7) is a solution of the model at corresponding time ¢, while ry; is
the residual describing the deviation of a dynamical variable x(0,¢) from its measured
values. If the model perfectly fits to measurement data the cost function C; is equal to 0,
and the vector of parameters 0, giving a perfect fit, is denoted as 0*.

To analyze model sensitivity to parameter variation, let us consider the Hessian ma-
trix corresponding to the cost function Cy calculated at 6*. Since the value of one bio-
chemical parameter may vary in the range of several orders or more from another, to
eliminate the impact of relative changes in parameter values the derivatives with respect
to log O are taken [14]:

9°C;
dlog0;01og By’
where j and k denotes j—th and k-th parameter, respectively.

Instead of (4), the Hessian approximation H can be used - the so called Fisher
information matrix J7J [18]:

H = “)

J

ars,n

J= .
dlogo

(&)

The Hessian matrix HS is positive definite and symmetric, so it has real eigenvalues
A and eigenvectors v [19]. It describes the surface of deviations of the model from mea-
sured data. For a model with N, parameters the surface is an N,-dimensional ellipsoid in
parameter space. The principal axes of the ellipsoids are the eigenvectors of HS, while
the width (denoted by d;) of the ellipsoids along each principal axis is given by:

di=——. (6)

The narrowest axes are called stiff and they define directions in the parameter space,
leading to large changes in the model response. The broadest axes, called sloppy, repre-
sent the directions along which parameters changes, even in a wide range, do not result
in a worse fitting of the model to experimental data [20]. The meaning of eigenvalues
and eigenvectors of Hessian H® is illustrated with a simple example of a hypothetical
model with two parameters: 0; and 0, (Fig. 1), where Hessian describes an ellipse in the
0,/6, parameter space, d; and d, denote the width of the ellipse along each principal
axis, corresponding to eigenvalues A; and A, respectively, while v; and v, denote the
eigenvectors of HS and define the position of the ellipse. In this example, the eigenvec-
tors v; and v; are associated with a large value d; and small value d;, respectively. Since
vy eigenvector depends mostly on 0, this parameter is stiff, i.e. the change in its value
leads to much greater change in system response than in the case 0, was changed.

It should be stressed, however, that models of signaling pathways are much more
complex and often include dozens of parameters. Therefore graphical presentation of
results illustrating deviations of the model from measured data is not possible. In this
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Figure 1: An ellipse illustrating deviations of the model from measured data in a 2-
dimensional parameter space.

case, plots showing parameter rankings are the preferred way of presenting the results.
The method of creating parameter rankings, proposed in this paper, is based on eigen-
vectors and eigenvalues of the Hessian HS. R ;j» denoting the ranking value for the j-th
parameter, can be defined as:

Ri=)

i

Vji

d: |’ (7)

where d; is the width of the ellipsoid along i-th principal axis, and v;; is the element of
the i-th eigenvector corresponding to the j-th parameter.

3. Ranking examples

To show applicability of the proposed method, two examples are presented in this
section. Both represent typical dynamics exhibited by signaling pathways - with and
without oscillations. For each model its step response have been simulated and the mea-
surements have been sampled for arbitrarily chosen time points, shown in the figures,
with 10% uncertainty.

The results obtained are compared to standard rankings based on the area under the
curve (AUC) of sensitivity functions with L! norm [21] as a metric. While other methods
can be found in the literature [22], sensitivity functions constitute the most often used
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base for the rankings in local analysis of signaling pathways [7, 8, 10, 11, 23], unless it
is qualitative behavior of the pathway that is under consideration [24].

3.1. Transcription-translation pathway

As the first example, let us consider a simple pathway, in which gene transcription
is activated, leading to production of mRINA and, subsequently, protein, whose concen-
trations are denoted by x,, and k,, respectively. These molecules are degraded in a first-
order process. In the simplest case such system is described by linear state equations:

dx,,

7 = kit — kgmXm, 3)
dx

7: = KpXm — kdpxpa )

where u represents the system input (induction of transcription), ky,, kp, kg and kg, are
mRNA and protein production and degradation rates, respectively.

Let us also assume that only the protein levels are observed in the experiment, i.e. x,
is the output variable.

Then, the system may be alternatively represented by the transfer function

X(s) k
K(s)= = , 10
(s) U(s) (1+sT)(1+sT) (10

whose parameters have been arbitrarily chosen as 7} = 1 /kg,, = 0.1, T, =1/ kap =1 and
k = kpky/ (kamkap) =1 (in this system only three parameters are identifiable).

The model step response with sampled measurements is shown in Fig. 2.

057

measurement data|
= model response

0 2 4 6
time [s]

Figure 2: The step response of a second-order inertial system with parameters 77 = 0.1,
T» = 1 and k = 1 and the standard deviation of measurement data.

Parameter rankings, obtained with the procedure described in the previous section
are shown in Fig. 3a.
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Figure 3: Parameter rankings for the second-order system based on: (a) the proposed
method and (b) sensitivity functions.

The order of parameters importance is the same for both rankings. However, in the
ranking based on sensitivity functions, the change in system response caused by change
of T, value is similar to the one caused by 77 change. The ranking created with the
method proposed in this paper assigns much greater importance to 75, which is a greater
time constant and determines transient system response. These differences result from
taking into account the measurement uncertainty in the cost function C; (3). As men-
tioned before, uncertainty of measurement, defined as the standard deviation o, has been
assumed to be 10% of measurement value. Fig. 2 shows that the absolute standard devi-
ation of measurements made at time-points: 1s and 2s (before reaching the steady state)
is smaller than the standard deviation of measurements in steady state. As a result, devi-
ation of the model response at points with a lower ¢ will be treated as more important
than deviation at points with a higher 6. This explains the higher position of parame-
ter 7> in our ranking, compared to the parameter k, which is responsible for the steady
state system response and according to Fig. 2 cannot be precisely determined due to
measurement uncertainty.

3.2. A closed-loop regulatory module

As a second example a model of p53/Mdm?2 regulatory module has been consid-
ered. It is one of the simplest oscillatory systems that can be fitted to experimental data,
described by the following equations [25]:

d(p53
(Zt ) sy — kar - (p53) - (Mddm2pue ). (11)
d(Mdm2.y,) s3-(p53)3 MdM?2,.,
di:n' 2 373 TRIR2 T AN (12)
t 53+ (p53) ky + (p53)
d(Mdm2ue)  kiky - (Mdm2ey,)
— — kg - (Md 2nu07 13
dt ky+ (p53) az- (Mdm2pc) (13)

where the variables p53, Mdm2.,, and Mdm2,,. denote concentrations of total p53 pro-
tein, cytoplasmic Mdm2 and nuclear Mdm2, respectively. It is a minimal model reflect-
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ing oscillatory response of p53 protein to system excitation, e.g., DNA damage. The
parameters m and n are the numbers of p53 and Mdm?2 gene copies, respectively, sy, s2,
s3 and s4 are the production rates per gene copy, k;; and k4 are p53 and Mdm?2 degrada-
tion rates and &y, ko are Mdm?2-mediated nuclear import rates. Nominal parameter values
are given in Table 1.

Table 1: p53/Mdm?2 model parameters.

Parameter S1 52 53 54 ka1
Value 16 8 80 1-10° [ 1-10713
Unit 5! 5! 5! — st

Parameter ko ki ko m n
Value |2.2-107%]3.5-1073 | 2.3.10° 2 2
Unit 5! 5! — — —

Let the system output be the p53 concentration, measured, e.g., with an experimental
technique called Western Blotting. A characteristic feature of biological measurements,
including the one mentioned in the preceding sentence, is their large uncertainty, affected
by many different factors. As a result, the standard deviation of measurements may vary
significantly, as shown in Figure 4 (measurement points are marked for illustration only
- their values have been calculated in simulation, with the random error superimposed
on the results).

2 x10
%)
% measurement datal
& 1571 —— model response
©
E 1
)
205 N
IS
2

0 : ‘

0 5 10 15
time [h]

Figure 4: p53 model responses against the measurement data.

As in the previous example, two different sensitivity rankings have been calculated.
The results are shown in Fig. 5.

Methods used for rankings calculation produced different results. In the case of sig-
naling pathways, it may be more difficult to determine the impact of individual param-
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Figure 5: Parameter rankings for p53/Mdm2 model based on: our method (a) and sensi-
tivity functions (b).

eters since they may affect many characteristics of the system response. For example,
both parameter rankings indicate the high position of parameter k>, which affects the
amplitude of p53 oscillations and introduces a small phase shift. In the parameter rank-
ing based on sensitivity functions the parameter k,; is indicated as the most important,
while in the ranking taking into account the measurement uncertainty its position is
slightly lower. On the other hand, the parameter s4 has been found to be more relevant
according to our method. In order to determine which of these two parameters has more
significance on the fit of the model to experimental data, we performed simulations with
parameters k4> and s4 changed by 15%. On Fig. 6 we compared received time courses
with the model response for the nominal parameter set and measurement data. When we
analyze Fig. 6 we find that despite the significant change in the model response caused
by change of the parameter k;», the model may still quite good fit to the experimen-
tal data due to measurements uncertainty. Therefore, in the ranking taking into account
the measurement uncertainty the position of parameter k;, is lower. Similarly, we can
explain the differences for parameter s4, which also significantly changes the model re-
sponse, however, the model response after changing the parameter s4 by 15% slightly
worse fits to the experimental data.

5
2 x10
7]
% = nominal values
§ 15¢ $,+15%
g kd2+15%
Y 1
o
3
g 05 M
=
c
0 L
0 5 10 15

time [h]

Figure 6: A comparison of p53 model responses after the change of selected parameters.
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4. Conclusion

The new method for creating parameter rankings based on the known method called
sloppy / stiff sensitivity analysis has been proposed. It facilitates taking into account the
impact of measurement uncertainty, which is a major problem in analysis of any kind of
biological experimental data.

Two simple examples have been used to show that the presented method allows to
create reliable parameter rankings that helps to identify parameters substantially affect-
ing the fit of the model to experimental data. This allows to choose parameters that
should be determined with the highest accuracy in the experimental research and, as a
consequence, the method can be used to plan biological experiments and helps to use the
funds for experimental research in the most efficient way.
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