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Analysis, adaptive control and synchronization of a
novel 4-D hyperchaotic hyperjerk system via

backstepping control method

SUNDARAPANDIAN VAIDYANATHAN

A hyperjerk system is a dynamical system, which is modelled by an nth order ordinary
differential equation with n­ 4 describing the time evolution of a single scalar variable. Equiv-
alently, using a chain of integrators, a hyperjerk system can be modelled as a system of n first
order ordinary differential equations with n­ 4. In this research work, a 4-D novel hyperchaotic
hyperjerk system with two nonlinearities has been proposed, and its qualitative properties have
been detailed. The novel hyperjerk system has a unique equilibrium at the origin, which is a
saddle-focus and unstable. The Lyapunov exponents of the novel hyperjerk system are obtained
as L1 = 0.14219, L2 = 0.04605, L3 = 0 and L4 = −1.39267. The Kaplan-Yorke dimension of
the novel hyperjerk system is obtained as DKY = 3.1348. Next, an adaptive controller is de-
signed via backstepping control method to stabilize the novel hyperjerk chaotic system with
three unknown parameters. Moreover, an adaptive controller is designed via backstepping con-
trol method to achieve global synchronization of the identical novel hyperjerk systems with
three unknown parameters. MATLAB simulations are shown to illustrate all the main results
derived in this research work on a novel hyperjerk system.

Key words: hyperchaos, hyperjerk system, adaptive control, backstepping control, syn-
chronization.

1. Introduction

Chaos theory describes the qualitative study of unstable aperiodic behaviour in de-
terministic nonlinear dynamical systems. For the motion of a dynamical system to be
chaotic, the system variables should contain nonlinear terms and it must satisfy three
properties: boundedness, infinite recurrence and sensitive dependence on initial condi-
tions [1, 2].

The first famous chaotic system was accidentally discovered by Lorenz, when he was
designing a 3-D model for atmospheric convection in 1963 [3]. Subsequently, Rössler
discovered a 3-D chaotic system in 1976 [4], which is algebraically simpler than the
Lorenz system.
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Some well-known paradigms of 3-D chaotic systems are Arneodo system [5], Sprott
systems [6], Chen system [7], Lü-Chen system [8], Liu system [9], Cai system [10], T-
system [11], etc. Many new chaotic systems have been also discovered like Li system
[12], Sundarapandian systems [13, 14], Vaidyanathan systems [15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], Pehlivan system [35], Jafari system [36],
Pham systems [37, 38, 39, 40], Sampath system [41], Akgul system [42], etc.

A hyperchaotic system is generally defined as a chaotic system with at least two
positive Lyapunov exponents [43]. Thus, the dynamics of a hyperchaotic system are ex-
pended in several different directions simultaneously. Thus, the hyperchaotic systems
have more complex dynamical behaviour and hence they have miscellaneous applica-
tions in engineering such as secure communications [44, 45], cryptosystems [46, 47],
encryption [48, 49], electrical circuits [50, 51], etc.

The minimum dimension for an autonomous, continuous-time, hyperchaotic system
is four. Since the discovery of a first 4-D hyperchaotic system by Rössler in 1979 [52],
many 4-D hyperchaotic systems have been found in the literature such as hyperchaotic
Lorenz system [53], hyperchaotic Lü system [54], hyperchaotic Chen system [55], hy-
perchaotic Wang system [56], hyperchaotic Newton-Leipnik system [57], hyperchaotic
Jia system [58], hyperchaotic Vaidyanathan systems [59, 60, 61, 62, 63, 64, 65, 66, 67,
68], hyperchaotic Pham system [69], hyperchaotic Sampath system [70], etc.

In this paper, we propose a 4-D novel hyperchaotic hyperjerk system by adding a
hyperbolic sinusoidal nonlinearity to the Chlouverakis-Sprott hyperjerk system [71].

First, we detail the fundamental qualitative properties of the novel hyperchaotic hy-
perjerk system. We show that the Lyapunov exponents of the novel hyperjerk system are
given by L1 = 0.14219, L2 = 0.04605, L3 = 0 and L4 =−1.39267. Since the sum of the
Lyapunov exponents is negative, we deduce that the novel hyperjerk system is dissipa-
tive. Also, we show that the Kaplan-Yorke dimension of the novel hyperjerk system is
obtained as DKY = 3.1348.

The study of control of a chaotic system investigates methods for designing feedback
control laws that globally or locally asymptotically stabilize or regulate the outputs of a
chaotic system.

Next, this paper derives an adaptive backstepping control law that stabilizes the novel
hyperjerk system, when the system parameters are unknown. The backstepping control
method is a recursive procedure that links the choice of a Lyapunov function with the
design of a controller and guarantees global asymptotic stability of strict feedback sys-
tems [72, 73, 74, 75].

This paper also derives an adaptive backstepping control law that achieves global
chaos synchronization of the identical 4-D novel hyperchaotic hyperjerk systems with
unknown parameters.

Chaos synchronization problem deals with the synchronization of a couple of sys-
tems called the master or drive system and the slave or response system. To solve this
problem, control laws are designed so that the output of the slave system tracks the out-
put of the master system asymptotically with time.



ANALYSIS, ADAPTIVE CONTROL AND SYNCHRONIZATION OF A NOVEL 4-D HYPERCHAOTIC
HYPERJERK SYSTEM VIA BACKSTEPPING CONTROL METHOD 313

In the chaos literature, an impressive variety of techniques have been proposed to
solve the problem of chaos synchronization such as active control method [76, 77], adap-
tive control method [78, 79], backstepping control method [80, 81, 82, 83], sliding mode
control method [84, 85, 86, 87, 88, 89], etc.

All the main adaptive results in this paper are derived using backstepping control
method and proved using Lyapunov stability theory [90]. MATLAB simulations are de-
picted to illustrate the phase portraits of the novel hyperchaotic hyperjerk system with
two positive Lyapunov exponents, adaptive stabilization and synchronization results for
the novel 4-D hyperchaotic hyperjerk system.

2. A 4-D novel hyperchaotic hyperjerk system

In mechanics, a jerk system is described by an explicit third order ordinary differen-
tial equation describing the time evolution of a single scalar variable x according to the
dynamics

d3x
dt3 = f

(
d2x
dt2 ,

dx
dt

,x
)

(1)

The differential equation(1) is called a jerk system because the successive derivatives
of the displacement in a mechanical system are the velocity, acceleration, and jerk.

A generalization of the jerk dynamics is given by the dynamics

d(n)x
dtn = f

(
d(n−1)x
dtn−1 , . . . ,

dx
dt

,x

)
, (n­ 4) (2)

An ordinary differential equation of the form (2) is called a hyperjerk system since
it involves time derivatives of a jerk function.

In [71], Chlouverakis and Sprott discovered a simple hyperchaotic hyperjerk system
given by the dynamics

d4x
dt4 +

d3x
dt3 x4 +A

d2x
dt2 +

dx
dt

+ x = 0 (3)

In system form, the differential equation (3) can be expressed as

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = −x1 − x2 −Ax3 − x4
1x4

(4)

When A = 3.6, the hyperjerk system (4) exhibits hyperchaos with Lyapunov expo-
nent spectrum (0.132,0.035,0,−1.25). Thus, the maximum Lyapunov exponent (MLE)
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of the Chlouverakis-Sprott hyperchaotic hyperjerk system (4) is L1 = 0.132 and the
Kaplan-Yorke dimension of this hyperjerk system is easily calculated a DKY = 3.13.

In this work, we propose a novel hyperjerk system by adding a hyperbolic sinusoidal
nonlinearity to the Chlouverakis-Sprott hyperjerk system (4) and with a different set of
values for the system parameters.

Our novel hyperjerk system is given in system form as
ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = −x1 − x2 −ax3 −bsinh(x2)− cx4
1x4

(5)

where a,b and c are positive parameters.
In this paper, we shall show that the system (5) is hyperchaotic when the parameters

a,b and c take the values

a = 3.7, b = 0.05, c = 1.3 (6)

For the parameter values in (6), the Lyapunov exponents of the novel hyperjerk sys-
tem (5) are obtained as

L1 = 0.14219, L2 = 0.04605, L3 = 0, L4 =−1.39267 (7)

From the LE spectrum given in (7), it is easily seen that the maximal Lyapunov
exponent (MLE) of our novel hyperchaotic hyperjerk system (5) is L1 = 0.14219, which
is greater than the MLE of the Chlouverakis-Sprott hyperchaotic hyperjerk system (4).
Also, the Kaplan-Yorke dimension of the novel hyperjerk system (5) is calculated as
DKY = 3.1348, which is greater than the Kaplan-Yorke dimension of the Chlouverakis-
Sprott hyperjerk system (4). This shows that the novel hyperchaotic hyperjerk system (5)
exhibits more complex behaviour than the Chlouverakis-Sprott hyperchaotic hyperjerk
system (4).

For numerical simulations, we take the initial values of the novel hyperjerk system
(5) as x1(0) = 0.5,x2(0) = 0.5,x3(0) = 0.5 and x4(0) = 0.5.

Figs. 1-4 depict the 3-D projections of the 4-D novel hyperjerk system (5) on
(x1,x2,x3), (x1,x2,x4), (x1,x3,x4) and (x2,x3,x4) spaces respectively.
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Figure 1: 3-D projection of the 4-D novel hyperjerk system on (x1,x2,x3) space
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Figure 2: 3-D projection of the 4-D novel hyperjerk system on (x1,x2,x4) space



316 SUNDARAPANDIAN VAIDYANATHAN

−2

−1

0

1

2

−4

−2

0

2

4

6
−10

−5

0

5

10

x
1

x
3

x
4

Figure 3: 3-D projection of the 4-D novel hyperjerk system on (x1,x3,x4) space
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Figure 4: 3-D projection of the 4-D novel hyperjerk system on (x2,x3,x4) space
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3. Analysis of the 4-D novel hyperjerk system

3.1. Equilibrium points

The equilibrium points of the 4-D novel hyperjerk system (5) are obtained by solving
the equations

f1(x1,x2,x3,x4) = x2 = 0

f2(x1,x2,x3,x4) = x3 = 0

f3(x1,x2,x3,x4) = x4 = 0

f4(x1,x2,x3,x4) = −x1 − x2 −ax3 −bsinh(x2)− cx4
1x4 = 0

 (8)

We take the parameter values as in the hyperchaotic case (6).
Thus, the equilibrium points of the system (5) are characterized by the equations

x1 = 0, x2 = 0, x3 = 0, x4 = 0 (9)

Solving the system (9), we note that the 4-D novel hyperjerk system (5) has a unique
equilibrium at the origin, i.e.

E0 =


0

0

0

0

 (10)

To test the stability type of the equilibrium points E0, we calculate the Jacobian
matrix of the novel hyperjerk system (5) at E0 as

J0 = J (E0) =


0 1 0 0

0 0 1 0

0 0 0 1

−1 −1−b −a 0

=


0 1 0 0

0 0 1 0

0 0 0 1

−1 −1.05 −3.7 0

 (11)

The matrix J0 has the eigenvalues

λ1,2 = 0.1622±1.8695i, λ3,4 =−0.1662±0.5076i (12)

This shows that the equilibrium point E0 is a saddle-focus point, which is unstable.
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3.2. Lyapunov exponents and Kaplan-Yorke dimension

For the parameter values a = 3.7, b = 0.05 and c = 1.3, the Lyapunov exponents of
the novel hyperjerk system (5) are numerically obtained using MATLAB as

L1 = 0.14219, L2 = 0.04605, L3 = 0 and L4 =−1.39627 (13)

Since the LE spectrum in (13) has two positive Lyapunov exponents, the novel hy-
perjerk system (5) is hyperchaotic.

Since L1 +L2 +L3 +L4 = −1.2080 < 0, it follows that the novel hyperjerk system
(5) is dissipative.

Also, the Kaplan-Yorke dimension of the novel hyperchaotic hyperjerk system (5)is
obtained as

DKY = 3+
L1 +L2 +L3

|L4|
= 3.1348, (14)

which is fractional.

4. Adaptive control of the 4-D novel hyperjerk system with unknown parameters

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the 4-D novel hyperjerk system with unknown pa-
rameters.

Thus, we consider the 4-D novel jerk chaotic system given by

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = −x1 − x2 −ax3 −bsinh(x2)− cx4
1x4 +u

(15)

where a,b and c are unknown constant parameters, and u is a backstepping control law
to be determined using estimates â(t), b̂(t) and ĉ(t) for a,b and c, respectively.

The parameter estimation errors are defined as:
ea(t) = a− â(t)

eb(t) = b− b̂(t)

ec(t) = c− ĉ(t)

(16)
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Differentiating (16) with respect to t, we obtain the following equations:
ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t)

ėc(t) = − ˙̂c(t)

(17)

Next, we shall state and prove the main result of this section.

Theorem 1 The 4-D novel hyperjerk system (15), with unknown parameters a,b and c,
is globally and exponentially stabilized by the adaptive feedback control law,

u(t) =−4x1 −9x2 − [9− â(t)]x3 −4x4 + b̂(t)sinh(x2)+ ĉ(t)x4
1x4 − kz4, (18)

where k > 0 is a gain constant,

z4 = 3x1 +5x2 +3x3 + x4 (19)

and the update law for the parameter estimates â(t), b̂(t), ĉ(t) is given by
˙̂a(t) = −x3z4

˙̂b(t) = −sinh(x2)z4

˙̂c(t) = −x4
1x4z4

(20)

Proof We prove this result via backstepping control and Lyapunov stability theory
[90].

First, we define a quadratic Lyapunov function

V1(z1) =
1
2

z2
1 (21)

where
z1 = x1 (22)

Differentiating V1 along the dynamics (15), we get

V̇1 = z1ż1 = x1x2 =−z2
1 + z1(x1 + x2) (23)

Now, we define
z2 = x1 + x2 (24)

Using (24), we can simplify the equation (23) as

V̇1 =−z2
1 + z1z2 (25)
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Secondly, we define a quadratic Lyapunov function

V2(z1,z2) =V1(z1)+
1
2

z2
2 =

1
2
(
z2

1 + z2
2
)

(26)

Differentiating V2 along the dynamics (15), we get

V̇2 =−z2
1 − z2

2 + z2(2x1 +2x2 + x3) (27)

Now, we define
z3 = 2x1 +2x2 + x3 (28)

Using (28), we can simplify the equation (27) as

V̇2 =−z2
1 − z2

2 + z2z3 (29)

Thirdly, we define a quadratic Lyapunov function

V3(z1,z2,x3) =V2(z1,z2)+
1
2

z2
3 =

1
2
(
z2

1 + z2
2 + z2

3
)

(30)

Differentiating V3 along the dynamics (15), we get

V̇3 =−z2
1 − z2

2 − z2
3 + z3(3x1 +5x2 +3x3 + x4) (31)

Now, we define
z4 = 3x1 +5x2 +3x3 + x4 (32)

Using (32), we can simplify the equation (31) as

V̇2 =−z2
1 − z2

2 − z2
3 + z3z4 (33)

Finally, we define a quadratic Lyapunov function

V (z1,z2,z3,z4,ea,eb,ec) =V3(z1,z2,z3)+
1
2

z2
4 +

1
2

e2
a +

1
2

e2
b +

1
2

e2
c (34)

which is a positive definite function on ℜ7.
Differentiating V along the dynamics (15), we get

V̇ =−z2
1 − z2

2 − z2
3 − z2

4 + z4(z4 + z3 + ż4)− ea ˙̂a− eb
˙̂b− ec ˙̂c (35)

Eq. (35) can be written compactly as

V̇ =−z2
1 − z2

2 − z2
3 − z2

4 + z4S− ea ˙̂a− eb
˙̂b− ec ˙̂c (36)

where
S = z4 + z3 + ż4 = z4 + z3 +3ẋ1 +5ẋ2 +3ẋ3 + ẋ4 (37)
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A simple calculation gives

S = 4x1 +9x2 +(9−a)x3 +4x4 −bsinh(x2)− cx4
1x4 +u (38)

Substituting the adaptive control law (18) into (38), we obtain

S =−[a− â(t)]x3 − [b− b̂(t)]sinh(x2)− [c− ĉ(t)]x4
1x4 − kz4 (39)

Using the definitions (17), we can simplify (39) as

S =−eax3 − eb sinh(x2)− ecx4
1x4 − kz4 (40)

Substituting the value of S from (40) into (36), we obtain V̇ = −z2
1 − z2

2 − z2
3 − (1+ k)z2

4 + ea(−x3z4 − ˙̂a)

+eb(−sinh(x2)z4 − ˙̂b)+ ec(−x4
1x4z4 − ˙̂c)

(41)

Substituting the update law (20) into (41), we get

V̇ =−z2
1 − z2

2 − z2
3 − (1+ k)z2

4, (42)

which is a negative semi-definite function on ℜ7.
From (42), it follows that the vector zzz(t) = (z1(t),z2(t),z3(t),z4(t)) and the param-

eter estimation error (ea(t),eb(t),ec(t)) are globally bounded, i.e.[
z1(t) z2(t) z3(t) z4(t) ea(t) eb(t) ec(t)

]
∈ LLL∞ (43)

Also, it follows from (42) that

V̇ ¬−z2
1 − z2

2 − z2
3 − z2

4 =−∥z∥2 (44)

That is,
∥z∥2 ¬−V̇ (45)

Integrating the inequality (45) from 0 to t, we get

t∫
0

|zzz(τ)|2 dτ¬V (0)−V (t) (46)

From (46), it follows that zzz(t) ∈ LLL2.
From Eq. (15), it can be deduced that żzz(t) ∈ LLL∞.
Thus, using Barbalat’s lemma [90], we conclude that zzz(t)→ 000 exponentially as t →∞

for all initial conditions zzz(0) ∈ ℜ4.
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Hence, it is immediate that xxx(t)→ 000 exponentially as t → ∞ for all initial conditions
xxx(0) ∈ ℜ4.

This completes the proof.
For the numerical simulations, the classical fourth-order Runge-Kutta method with

step size h = 10−8 is used to solve the system of differential equations (15) and (20),
when the adaptive control law (18) is applied.

The parameter values of the novel hyperjerk system (15) are taken as in the hyper-
chaotic case, viz. a = 3.7, b = 0.05, c = 1.3, and the positive gain constant as k = 10.

Furthermore, as initial conditions of the novel hyperjerk system (15), we take

x1(0) = 2.3, x2(0) =−8.5, x3(0) = 6.2, x4(0) = 3.6 (47)

Also, as initial conditions of the parameter estimates, we take

â(0) = 5.3, b̂(0) = 12.4, ĉ(0) = 7.5 (48)

In Fig. 5, the exponential convergence of the controlled states (x1,x2,x3,x4) is de-
picted, when the adaptive control law (18) and parameter update law (20) are imple-
mented.
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Figure 5: Time-history of the controlled states x1(t),x2(t),x3(t),x4(t)
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5. Adaptive synchronization of the identical 4-D novel hyperjerk systems with
unknown parameters

In this section, we use backstepping control method to derive an adaptive control law
for globally and exponentially synchronizing the identical 4-D novel hyperjerk systems
with unknown parameters.

As the master system, we consider the 4-D novel hyperjerk system given by

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = −x1 − x2 −ax3 −bsinh(x2)− cx4
1x4

(49)

where x1,x2,x3,x4 are the states of the system, and a,b,c are unknown constant param-
eters.

As the slave system, we consider the 4-D novel hyperjerk system given by

ẏ1 = y2

ẏ2 = y3

ẏ3 = y4

ẏ4 = −y1 − y2 −ay3 −bsinh(y2)− cy4
1y4 +u

(50)

where y1,y2,y3,y4 are the states of the system, and u is a backstepping control to be
determined using estimates â(t), b̂(t) and ĉ(t) for a,b and c, respectively.

We define the synchronization errors between the states of the master system (49)
and the slave system (50) as 

e1 = y1 − x1

e2 = y2 − x2

e3 = y3 − x3

e4 = y4 − x4

(51)

Then the error dynamics is easily obtained as
ė1 = e2

ė2 = e3

ė3 = e4

ė4 = −e1 − e2 −ae3 −b[sinh(y2)− sinh(x2)]− c(y4
1y4 − x4

1x4)+u

(52)
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The parameter estimation errors are defined as:
ea(t) = a− â(t)

eb(t) = b− b̂(t)

ec(t) = c− ĉ(t)

(53)

Differentiating (53) with respect to t, we obtain the following equations:
ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t)

ėc(t) = − ˙̂c(t)

(54)

Next, we shall state and prove the main result of this section.

Theorem 2 The identical 4-D novel hyperjerk systems (49) and (50) with unknown pa-
rameters a,b and c are globally and exponentially synchronized by the adaptive control
law  u(t) = −4e1 −9e2 − [9− â(t)]e3 −4e4 + b̂(t) [sinh(y2)− sinh(x2)]

+ĉ(t)
(
y4

1y4 − x4
1x4
)
− kz4

(55)

where k > 0 is a gain constant,

z4 = 3e1 +5e2 +3e3 + e4, (56)

and the update law for the parameter estimates â(t), b̂(t), ĉ(t) is given by
˙̂a(t) = −e3z4

˙̂b(t) = − [sinh(y2)− sinh(x2)]z4

˙̂c(t) = −
(
y4

1y4 − x4
1x4
)

z4

(57)

Proof We prove this result via backstepping control and Lyapunov stability theory
[90].

First, we define a quadratic Lyapunov function

V1(z1) =
1
2

z2
1 (58)

where
z1 = e1 (59)
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Differentiating V1 along the error dynamics (52), we get

V̇1 = z1ż1 = e1e2 =−z2
1 + z1(e1 + e2) (60)

Now, we define
z2 = e1 + e2 (61)

Using (61), we can simplify the equation (60) as

V̇1 =−z2
1 + z1z2 (62)

Secondly, we define a quadratic Lyapunov function

V2(z1,z2) =V1(z1)+
1
2

z2
2 =

1
2
(
z2

1 + z2
2
)

(63)

Differentiating V2 along the error dynamics (52), we get

V̇2 =−z2
1 − z2

2 + z2(2e1 +2e2 + e3) (64)

Now, we define
z3 = 2e1 +2e2 + e3 (65)

Using (65), we can simplify the equation (64) as

V̇2 =−z2
1 − z2

2 + z2z3 (66)

Thirdly, we define a quadratic Lyapunov function

V3(z1,z2,x3) =V2(z1,z2)+
1
2

z2
3 =

1
2
(
z2

1 + z2
2 + z2

3
)

(67)

Differentiating V3 along the error dynamics (52), we get

V̇3 =−z2
1 − z2

2 − z2
3 + z3(3e1 +5e2 +3e3 + e4) (68)

Now, we define
z4 = 3e1 +5e2 +3e3 + e4 (69)

Using (69), we can simplify the equation (68) as

V̇2 =−z2
1 − z2

2 − z2
3 + z3z4 (70)

Finally, we define a quadratic Lyapunov function

V (z1,z2,z3,z4,ea,eb,ec) =V3(z1,z2,z3)+
1
2

z2
4 +

1
2

e2
a +

1
2

e2
b +

1
2

e2
c (71)

Clearly, V is a positive definite function on ℜ7.
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Differentiating V along the error dynamics (52), we get

V̇ =−z2
1 − z2

2 − z2
3 − z2

4 + z4(z4 + z3 + ż4)− ea ˙̂a− eb
˙̂b− ec ˙̂c (72)

Eq. (72) can be written compactly as

V̇ =−z2
1 − z2

2 − z2
3 − z2

4 + z4S− ea ˙̂a− eb
˙̂b− ec ˙̂c (73)

where
S = z4 + z3 + ż4 = z4 + z3 +3ė1 +5ė2 +3ė3 + ė4 (74)

A simple calculation gives

S = 4e1 +9e2 +(9−a)e3 +4e4 −b [sinh(y2)− sinh(x2)]− c
(
y4

1y4 − x4
1x4
)
+u (75)

Substituting the adaptive control law (55) into (75), we obtain

S =− [a− â(t)]e3 −
[
b− b̂(t)

]
[sinh(y2)− sinh(x2)]− [c− ĉ(t)]

(
y4

1y4 − x4
1x4
]
− kz4

(76)
Using the definitions (54), we can simplify (76) as

S =−eae3 − eb [sinh(y2)− sinh(x2)]− ec
(
y4

1y4 − x4
1x4
)
− kz4 (77)

Substituting the value of S from (77) into (73), we obtain V̇ = −z2
1 − z2

2 − z2
3 − (1+ k)z2

4 + ea(−e3z4 − ˙̂a)

+eb

[
− [sinh(y2)− sinh(x2)]z4 − ˙̂b

]
+ ec

[
−
(
y4

1y4 − x4
1x4
)

z4 − ˙̂c
] (78)

Substituting the update law (57) into (78), we get

V̇ =−z2
1 − z2

2 − z2
3 − (1+ k)z2

4, (79)

which is a negative semi-definite function on ℜ7.
From (79), it follows that the vector zzz(t) = (z1(t),z2(t),z3(t),z4(t)) and the param-

eter estimation error (ea(t),eb(t),ec(t)) are globally bounded, i.e.[
z1(t) z2(t) z3(t) z4(t) ea(t) eb(t) ec(t)

]
∈ LLL∞ (80)

Also, it follows from (79) that

V̇ ¬−z2
1 − z2

2 − z2
3 − z2

4 =−∥z∥2 (81)

That is,
∥z∥2 ¬−V̇ (82)
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Integrating the inequality (82) from 0 to t, we get

t∫
0

|zzz(τ)|2 dτ¬V (0)−V (t) (83)

From (83), it follows that zzz(t) ∈ LLL2.
From Eq. (52), it can be deduced that żzz(t) ∈ LLL∞.
Thus, using Barbalat’s lemma [90], we conclude that zzz(t)→ 000 exponentially as t →∞

for all initial conditions zzz(0) ∈ ℜ4.
Hence, it is immediate that eee(t)→ 000 exponentially as t → ∞ for all initial conditions

eee(0) ∈ ℜ4.
This completes the proof.
For the numerical simulations, the classical fourth-order Runge-Kutta method with

step size h = 10−8 is used to solve the system of differential equations (49) and (50).
The parameter values of the novel hyperjerk systems are taken as in the hyperchaotic

case, viz. a = 3.7,b = 0.2,c = 1.5 and the positive gain constant as k = 10.
Also, as initial conditions of the master system (49), we take

x1(0) = 1.5, x2(0) = 0.4, x3(0) =−0.8, x4(0) = 1.5 (84)

As initial conditions of the slave system (50), we take

y1(0) = 3.7, y2(0) = 1.2, y3(0) = 1.6, y4(0) = 2.3 (85)

Furthermore, as initial conditions of the parameter estimates â(t), b̂(t) and ĉ(t), we
take

â(0) = 6.1, b̂(0) = 3.8, ĉ(0) = 2.9 (86)

In Figs. 6-9, the complete synchronization of the identical 4-D novel hyperchaotic
hyperjerk systems (49) and (50) is shown, when the adaptive control law and the param-
eter update law are implemented.

Also, in Fig. 10, the time-history of the synchronization errors
(e1(t),e2(t),e3(t),e4(t)) is shown.

6. Conclusion

In this research work, a 4-D novel hyperchaotic hyperjerk system with two non-
linearities has been proposed, and its qualitative properties have been detailed. The
novel hyperjerk system has a unique equilibrium at the origin, which is a saddle-focus
and unstable. The Lyapunov exponents of the novel hyperjerk system were obtained as
L1 = 0.14219, L2 = 0.04605, L3 = 0 and L4 = −1.39267. The Kaplan-Yorke dimen-
sion of the novel hyperjerk system was obtained as DKY = 3.1348. Next, an adaptive
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Figure 10: Time-history of the synchronization errors e1,e2,e3,e4

controller was designed via backstepping control method to stabilize the novel hyper-
jerk chaotic system with three unknown parameters. Moreover, an adaptive controller
was designed via backstepping control method to achieve global synchronization of the
identical novel hyperjerk systems with three unknown parameters. MATLAB simula-
tions have been provided to illustrate all the main results derived in this research work
on a novel hyperjerk system.
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