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On fault tolerant control structures
incorporating fault estimation

DUŠAN KROKAVEC, ANNA FILASOVÁ and PAVOL LIŠČINSKÝ

The paper provides the minimal necessary modifications of linear matrix inequality con-
ditions for the mixed H2/H∞ control design as well as for the augmented observer-based fault
estimation to be mutually compatible in joint design of integrated fault estimation and fault tol-
erant control. To be possible, within this integration, to design the controller which guarantees a
pre-specified H∞ norm disturbance attenuation level, the design conditions has to be regularized
using the H2 performance index and, moreover, augmented fault observer must be of enforced
dynamics. Analyzing the ambit of performances given on the mixed H2/H∞ design, the joint
design conditions are formulated as a minimization problem subject to convex constraints ex-
pressed by a system of LMIs. The feasibility of the conditions is demonstrated by a numerical
example.

Key words: linear systems, fault tolerant control, fault estimation, linear matrix inequali-
ties, H∞ norm, H2/H∞ control strategy.

1. Introduction

A model-based fault tolerant control (FTC) can be realized as control-laws set de-
pendent, exploiting fault detection and isolation decision to reconfigure the control struc-
ture or as fault estimation dependent, preferring fault compensation within robust con-
trol framework. Whilst integration of FTC with the fault localization decision technique
requires a selection of optimal residual thresholds as well as a robust and stable re-
configuration mechanism [5], the fault estimation dependent FTC structures eliminate a
threshold subjectivism and integrate FTC and estimation problems into one robust opti-
mization task [17], [18].

The H2-norm is one of the most important characteristics for linear time-invariant
control systems, and is often used as performance index of the system in analysis and
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design problems. Thus, problems concerning H2, as well as H∞ control have been studied
by many authors [9], [16], [20], [21]. Adding H2 objective to H∞ control design, a mixed
H2/H∞ control problem was formulated in [13], with the goal to design the gain matrix of
the state-feedback control law such that minimizes H2 norm subject the constraint on H∞
norm of the disturbance transfer function. Such integrated design strategy corresponds
to optimization of the design parameters to satisfy desired specifications and to optimize
the performance of the closed-loop system. Because of the importance of control systems
with these properties, considerable attention was dedicated to mixed H2/H∞ closed-loop
performance criterion in design [1], [7], [10], [23], as well as to formulate the LMI-based
computational technique [19], [24] to solve them or to exploit non-linear multi-objective
algorithms for non-smooth optimization in this design task [11].

The approach, in which faults estimates are used in the control structure to com-
pensate the effects of acting faults, is adopted in modern FTC techniques [3], [8], [28].
Integrated single-step methods of fault estimation and FTC, for linear systems subject
to bounded actuator or sensor faults, are proposed in [17], [27]. Specified via LMI for-
mulations and solved using H∞ or mixed H2/H∞ optimization, the observer structures
are augmented fault state observers in the standard Luenberger form [22] or unknown
input augmented fault observers [25]. To guarantee desired time response, an LMI re-
gional pole placement design strategy is proposed in [26], [27]. However, such formula-
tion introduces minimally two additive LMIs, which increase conservatism of the design
conditions. Moreover, due to the extended structure of the parameter matrices of the
fault tolerant controller [17], the LMI-based H∞ control design solutions are, in general,
marginal feasible.

Re-modifying the results given in [4] by an updated D-stability circle criterion [14],
the LMI conditions for fault observer design, proposed in this paper, inherently includes
within minimal set of LMIs the regional pole placement condition to guarantee a suitable
fault observer dynamics and, in consequence, a satisfactory time response of the FTC
structure. Moreover, formulating as a problem subject to convex constraints, a mixed
H2/H∞ standard design method presented in [20] is modified relative the dual property
of Schur complements. Accordingly, since an extended Lyapunov function is exploited,
the obtained H2/H∞ design conditions are regularized under acting of H2 constraint.

The content and scope of the paper are as follows. Placed after the introduction, pre-
sented in Sec. 1, the problem formulation and the basic preliminaries are given in Sec. 2
Next, Sec. 3 recalls the formulation of the fault-augmented observer for continuous-time
linear systems and the controller design conditions in the framework of LMIs are recast
in Sec. 4 Then, in Sec. 5, in response to fault compensation principle for such type of
fault observers, the design conditions for the fault tolerant tracking control structures
are derived, reflecting the mixed H2/H∞ control idea. The relevance of the proposed ap-
proach is illustrated by a numerical example in Sec. 6 and Sec. 7 draws some concluding
remarks.

Throughout the paper, the notations is narrowly standard in such a way that xxxT , XXXT

denotes the transpose of the vector xxx and matrix XXX , respectively, diag( ·) denotes a block
diagonal matrix, rank( · ) remits the rank of a matrix, for a square matrix XXX < 0 means
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that XXX is a symmetric negative definite matrix, the symbol IIIn indicates the n-th order
unit matrix, ℜ denotes the set of real numbers and ℜn×r refers to the set of all n× r real
matrices.

2. Basic preliminaries

The considered systems are described in the state-space form by the set of equations

q̇qq(t) = AAAqqq(t)+BBBuuu(t)+FFF fff (t) , (1)

yyy(t) =CCCqqq(t) , (2)

where qqq(t) ∈ ℜn, uuu(t) ∈ ℜr, yyy(t) ∈ ℜm are the vectors of the state, input and output
variables, fff (t) ∈ ℜp is the fault vector, AAA ∈ ℜn×n, BBB ∈ ℜn×r, CCC ∈ ℜm×n, FFF ∈ ℜn×p are
real finite values matrices, m,r, p < n and

rank

[
AAA FFF
CCC 000

]
= n+ p . (3)

The transfer function matrix with respect to (1), (2) is

GGG(s) =CCC(sIIIn −AAA)−1BBB , (4)

which gives the relationship to the state representation.
It is assumed that the fault fff (t) may occur at an uncertain time, is slowly-varying

and bounded and, to estimate such faults, it is supposed that the pair (AAA,CCC) is observable.
In order to analyze whether a system is stable under defined quadratic constraints,

the concept can be summarized by the following LMI forms.

Lemma 1 [6] The matrix AAA is Hurwitz and ∥GGG(s)∥2 < γ2 if there exists a symmetric
positive definite matrix VVV ∈ ℜn×n and a positive scalar γ2 ∈ ℜ, such that

VVV =VVV T > 0 , (5)

AAAVVV +VVV AAAT +BBBBBBT < 0 , (6)

tr(CCCVVVCCCT )< γ2
2 , (7)

where γ2 > 0, γ2 ∈ ℜ is H2 norm of the transfer function matrix (4) of the system.

Lemma 2 [2] The matrix AAA is Hurwitz and ∥GGG(s)∥∞ < γ∞ if there exists a symmetric
positive definite matrix RRR ∈ ℜn×n and a positive scalar γ∞ ∈ ℜ such that

RRR = RRRT > 0 , (8)
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BBBT RRR −γ∞IIIr ∗∗∗

CCC 000 −γ∞IIIm

< 0 , (9)

where IIIr ∈ ℜr×r, IIIm ∈ ℜm×m are identity matrices and γ∞ > 0, γ∞ ∈ ℜ is H∞ norm of
the transfer function matrix (4) of the system.

Hereafter, ∗ denotes the symmetric item in a symmetric matrix.

Lemma 3 [14] The matrix AAA is D-stable Hurwitz if for given positive scalars a,ρ ∈ ℜ,
a > ρ > 0, there exists a symmetric positive definite matrix PPP ∈ ℜn×n such that[

−ρPPP ∗∗∗
PPPAAA+aPPP −ρPPP

]
< 0 , (10)

while the eigenvalues of AAA are clustered in the circle with the origin so = (−a+0i) and
radius ρ within the complex plane S.

3. Observer-based fault estimation

Limiting to time invariant systems and focusing on fault estimation for slowly-
varying faults, the fault observer is considered in the following form

q̇qqe(t) = AAAqqqe(t)+BBBuuu(t)+FFF fff e(t)+ JJJ(yyy(t)− yyye(t)) , (11)

yyye(t) =CCCqqqe(t) , (12)

where qqqe(t) ∈ ℜn, yyye(t) ∈ ℜm, fff e(t) ∈ ℜp are estimates of the system states vector, the
output variables vector and the fault vector, respectively, and JJJ ∈ ℜn×m is the observer
gain matrix.

If the observer errors between the system state vector and the observer state vector,
as well as between the fault vector and the vector of its estimate, are defined as follows

eeeq(t) = qqq(t)−qqqe(t), eee f (t) = fff (t)− fff e(t) , (13)

it is reasonable to consider for slowly-varying faults [27]

ḟff (t)≈ 000, ḟff e(t) = LLLCCCeeeq(t) , (14)

where LLL ∈ ℜp×m is the design parameter. The goal is to synthesize the couple (JJJ,LLL) in
such a way that the fault observer (11)–(14) is stable.

In order to be able to formulate the fault observer design conditions, (1), (2) and (14)
are rewritten compositely as[

q̇qq(t)
ḟff (t)

]
=

[
AAA FFF
000 000

][
qqq(t)
fff (t)

]
+

[
BBB
000

]
uuu(t) , (15)
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yyy(t) =
[

CCC 000
][ qqq(t)

fff (t)

]
(16)

and, analogously, (11), (12), (14) as[
q̇qqe(t)
ḟff e(t)

]
=

[
AAA FFF
000 000

][
qqqe(t)
fff e(t)

]
+

[
BBB
000

]
uuu(t)+

[
JJJ
LLL

]
CCCeeeq(t) , (17)

yyye(t) =
[

CCC 000
][ qqqe(t)

fff e(t)

]
. (18)

Thus, introducing the notations

qqq◦T (t) =
[

qqqT (t) fff T (t)
]
, qqq◦T

e (t) =
[

qqqT
e (t) fff T

e (t)
]
, (19)

AAA◦ =

[
AAA FFF
000 000

]
, BBB◦ =

[
BBB
000

]
, JJJ◦ =

[
JJJ
LLL

]
, CCC◦ =

[
CCC 000

]
, (20)

where AAA◦ ∈ ℜ(n+p)×(n+p), JJJ◦ ∈ ℜ(n+p)×m, CCC◦ ∈ ℜm×(n+p), BBB◦ ∈ ℜ(n+p)×r, qqq◦(t), qqq◦e(t)∈
ℜn+p, then from the above follows

q̇qq◦(t) = AAA◦qqq◦(t)+BBB◦uuu(t) , (21)

q̇qq◦e(t) = AAA◦qqq◦e(t)+BBB◦uuu(t)+ JJJ◦(yyy(t)− yyye(t)) , (22)

yyy(t) =CCC◦qqq◦(t), yyye(t) =CCC◦qqq◦e(t) . (23)

This leads to the following equation

ėee◦(t) = (AAA◦− JJJ◦CCC◦)eee◦(t) = AAA◦
eeee◦(t) , (24)

where
AAA◦

e = AAA◦− JJJ◦CCC◦, (25)

eee◦(t) = qqq◦(t)−qqq◦e(t) , (26)

qqq◦e(t) and yyye(t) represent the estimates of qqq◦(t) and yyy(t), respectively, and eee◦(t) is the
fault observer error.
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4. Control design strategies

It is assumed that the system (22), (23) is controllable to be controlled by the state
feedback control law

uuu(t) =−KKK◦qqq◦(t) , (27)

KKK◦ =
[

KKKq KKK f

]
, (28)

where KKK◦ ∈ ℜr×(n+p) is the control law gain matrix.
If the system set-point may vary under normal circumstances, it is desired to adjust

the plant working point indirectly by the output following. That this be done, the differ-
ence between the output yyy(t) and its desired value www(t) has to be exploited so that the
outputs could try to follow their desired values. It is possible to ensure this idea by the
integral tracking, where the controller integral term minimized this difference. In order
to eliminate tracking error, the control law (27) is extended by an integral component of
the form [29]

eeew(t) =
t∫

0

(www(τ)− yyy(τ))dτ , (29)

which is joined to (27) in such a way that

uuu(t) =−KKK•qqq•(t) , (30)

where
qqq•T (t) =

[
qqq◦T (t) eeeT

w(t)
]
=
[

qqqT (t) fff T (t) eeeT
w(t)

]
, (31)

KKK• =
[

KKK◦ KKKw

]
=
[

KKKq KKK f KKKw

]
, (32)

while qqq•(t) ∈ ℜn+p+m, KKK• ∈ ℜr×(n+p+m).
From (29) follows directly

ėeew(t) = www(t)− yyy(t) (33)

and the system model (15), (16) has to be expanded as q̇qq(t)
ḟff (t)

ėeew(t)

=

 AAA FFF 000
000 000 000

−CCC 000 000


 qqq(t)

fff (t)
eeew(t)

+
 BBB

000
000

uuu(t)+

 000
000
IIIm

www(t) , (34)

yyy(t) =
[

CCC 000 000
] qqq(t)

fff (t)
eeew(t)

 , (35)
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where IIIm is the identity matrix of given dimension.
Using the notations (31), (32) and

AAA• =

 AAA FFF 000
000 000 000

−CCC 000 000

 , BBB• =

 BBB
000
000

 , WWW • =

 000
000
IIIm

 , CCC• =
[

CCC 000 000
]
, (36)

then the state-space description of the closed-loop system (34), (35), (30) can be written
as

q̇qq•(t) = AAA•
cqqq•(t)+WWW •www(t) , (37)

yyy(t) =CCC•qqq•(t) , (38)

where
AAA•

c = AAA•−BBB•KKK• (39)

is the closed-loop system matrix of the expanded system.
In order to test whether the system is controllable with reference attenuations γ∞, the

transfer function matrices

GGG•(s) =CCC•(sIIIn+p+m −AAA•
c)

−1BBB•, (40)

GGGw(s) =CCC•(sIIIn+p+m −AAA•
c)

−1WWW •, (41)

are considered in the following.

Lemma 4 (H2 control synthesis) The state feedback control (30) to the system (37),
(38) exists and ∥GGG•(s)∥2 < γ•2 if there exist symmetric positive definite matrices VVV • ∈
ℜ(n+p+m)×(n+p+m), HHH• ∈ℜm×m, a matrix YYY • ∈ℜr×(n+p+m) and a positive scalar η• ∈ℜ
such that

VVV • =VVV •T > 0, HHH• = HHH•T > 0 , (42)[
AAA•VVV •+VVV •AAA•T −BBB•YYY •−YYY •T BBB•T ∗∗∗

BBB•T −IIIr

]
< 0 , (43)

[
VVV • ∗∗∗

CCC•VVV • HHH•

]
> 0, tr(HHH•)< η•. (44)

When the above conditions hold, the control law gain is

KKK• = YYY •(VVV •)−1. (45)

Proof Rearranging the inequality (6) by using Schur complement property, it yields[
AAAVVV +VVV AAAT BBB

BBBT −IIIr

]
< 0 . (46)
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Replacing AAA in (46) by (40) and VVV by VVV • redefines the linear matrix inequality (46) as
follows [

(AAA•−BBB•KKK•)VVV •+VVV •(AAA•−BBB•KKK•)T BBB•

BBB•T −IIIr

]
< 0 (47)

so, with the notation
YYY • = KKK•VVV •, (48)

(47) implies (43).
The objective of H2 control is to minimize the constraint

tr(CCC•VVV •CCC•T )< (γ•2)
2 (49)

but this inequality cannot be directly optimized. Introducing the inequality

HHH• >CCC•VVV •CCC•T =CCC•VVV •(VVV •)−1VVV •CCC•T , tr(HHH•) = η•, (50)

with a new matrix variable HHH• being symmetric and positive definite, and using Schur
complement property, then (49), (50) imply directly (44). This concludes the proof.

Note, to obtain a feasible block structure of the LMI, Schur complement property has
to be used. Contrarily to the algorithm presented in [20], the Schur complement property
was used to rearrange (6) to obtain (46) while the dual Schur complement property was
applied to modify (49). It is the main reason that the proof is attached to this lemma.

Lemma 5 (H∞ control synthesis) The state feedback control (30) to the system (37),
(38) exists and ∥GGG•

w(s)∥∞ < γ∞ if there exist a symmetric positive definite matrix QQQ• ∈
ℜ(n+p+m)×(n+p+m), a matrix ZZZ• ∈ ℜr×(n+p+m) and a positive scalar γ•∞ ∈ ℜ such that

QQQ• = QQQ•T > 0 , (51) AAA•QQQ•+QQQ•AAA•T −BBB•ZZZ•−ZZZ•T BBB•T ∗∗∗ ∗∗∗
WWW •T −γ∞IIIm ∗∗∗
CCC•QQQ• 000 −γ∞IIIm

< 0 . (52)

When the above conditions hold, the control law gain is

KKK• = ZZZ•(QQQ•)−1. (53)

Proof Replacing in (9) AAA by AAA•
c , RRR by RRR•, BBB by WWW • and IIIr by IIIm, and defining the

transform matrix

TTT • = diag
[

QQQ• IIIm IIIm

]
, QQQ• = (RRR•)−1, (54)
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then pre-multiplying the left side and post-multiplying the ride side of (9) by TTT •, it yields AAA•
cQQQ•+QQQ•AAA•T

c ∗∗∗ ∗∗∗
WWW •T −γ∞IIIm ∗∗∗
CCC•QQQ• 000 −γ∞IIIm

< 0 . (55)

Substituting (39) modifies the linear matrix inequality (55) as follows (AAA•−BBB•KKK•)QQQ•+QQQ•(AAA•−BBB•KKK•)T ∗∗∗ ∗∗∗
WWW •T −γ∞IIIm ∗∗∗
CCC•QQQ• 000 −γ∞IIIm

< 0 (56)

and with the notation
ZZZ• = KKK•QQQ• (57)

(56) implies (52). This concludes the proof.

It is important to point out, due to the structure of the matrix AAA•, BBB• that a solution of
(51), (52) is usually marginal feasible [15], i.e., rank(AAA•−BBB•KKK•) < n+ p+m, and the
design has to be combined with any constraint. For this reason the proof for this lemma
is given. The mixed H2/H∞ control principle, using H2 and H∞ performance constraints
to solve FTC problem, is proposed in [27].

5. Joint design of fault tolerant control

With these expressions it is now easy to formulate the joint approach for integrated
design of fault estimation and FTC, where qqq•T (t) is considered as

qqq•T (t) =
[

qqqT (t) fff T
e (t) eeeT

w(t)
]
. (58)

Theorem 1 The state feedback control (30), (58) to the system (38), (39) exists and
∥GGG•(s)∥2 < γ2 as well as ∥GGG•

w(s)∥∞ < γ∞ if for given positive scalars a,ρ ∈ ℜ, a >
ρ > 0, there exist symmetric positive definite matrices VVV • ∈ ℜ(n+p+m)×(n+p+m), PPP• ∈
ℜ(n+p)×(n+p), HHH• ∈ ℜm×m, matrices YYY • ∈ ℜr×(n+p+m), SSS◦ ∈ ℜ(n+p)×m and a positive
scalar γ•∞ ∈ ℜ such that

VVV • =VVV •T > 0 , PPP• = PPP•T > 0 , HHH• = HHH•T > 0 , (59)[
−ρPPP◦ ∗∗∗

PPP◦AAA◦−SSS◦CCC◦+aPPP◦ −ρPPP◦

]
< 0 , (60)



462 D. KROKAVEC, A. FILASOVÁ, P. LIŠČINSKÝ AAA•VVV •+VVV •AAA•T −BBB•YYY •−YYY •T BBB•T ∗∗∗ ∗∗∗
WWW •T −γ∞IIIm ∗∗∗
CCC•VVV • 000 −γ∞IIIm

< 0 , (61)

[
AAA•VVV •+VVV •AAA•T −BBB•YYY •−YYY •T BBB•T ∗∗∗

BBB•T −IIIr

]
< 0 , (62)[

VVV • ∗∗∗
CCC•VVV • HHH•

]
> 0, tr(HHH•)< η•. (63)

When the above conditions hold

KKK• = YYY •(VVV •)−1, JJJ◦ = (PPP◦)−1SSS◦. (64)

Proof Replacing in (10) AAA by AAA◦
e and PPP by PPP◦ results[

−ρPPP◦ ∗∗∗
PPP◦(AAA◦− JJJ◦CCC◦)+aPPP◦ −ρPPP◦

]
< 0 (65)

and with the notation
SSS◦ = PPP◦JJJ◦ (66)

(65) implies (60).
Prescribing a unique solution of KKK• with respect to (45) and (53) that is

VVV • = QQQ•, YYY • = ZZZ•, (67)

then (42)-(44) and (51), (52) in the joint sense implies (61)-(64). This concludes the
proof.

Note, the introduced mixed H2/H∞ control maximizes the H2 norm over all state-
feedback gains KKK• while the H∞ norm constraint is minimized. Comparing with [20], the
set of LMIs (61)-(63) is well conditioned and feasible. The main reason for the use of
D-stability principle in the fault observer design is to adapt interactive the fault observer
dynamics to the dynamics of the FTC structure.

6. Illustrative example

To illustrate the proposed method, a system whose dynamics is described by equa-
tions (1), (2) is considered with the matrix parameters [12]

AAA =


1.380 −0.208 6.715 −5.676

−0.581 −4.290 0.000 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

 ,
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BBB =


0.000 0.000
5.679 0.000
1.136 −3.146
1.136 0.000

 , FFF =


1.400
1.504
2.233
0.610

 , CCC =

[
4 0 1 0
0 0 0 1

]
.

Solving (59)–(63) using SeDuMi package, the design problem is solved as feasi-
ble where, with the prescribed stability region parameters a = 10, ρ = 8.5, the resulted
control system parameters are

KKKq =

[
0.0709 −0.7022 0.0245 1.9807

−14.6220 −0.0706 −1.2190 −1.2406

]
,

KKK f =

[
0.2546

−0.5672

]
, KKKw =

[
−0.0859 −0.3923

0.9172 0.0261

]
,

JJJ =


3.3817 −2.7407
0.4280 2.6900
1.2510 7.4649
0.5128 8.2180

 , LLL =
[

1.8415 3.1383
]
, HHH =

[
31.3538 1.1875

1.1875 21.0385

]
,

γ∞ ­ 21.1631 , γ2
2 ­ 28.0805 ,

while

ρ(AAA•
c) = {0, −0.1784, −0.3017 −1.6245±7.0670i, −5.0321±16.4998i} ,

ρ(AAA◦
e) = {−3.4866 −5.9462±1.1756i, −9.6424±0.6226i} ,

which affirms that for given (a,ρ) the dynamics of the fault augmented observer is sub-
stantially faster then the dynamics of the FTC structure.

The faults in simulations are generated using the window

g(t) =



0, t ¬ tsa ,
1

tsb−tsa
(t − tsa), tsa < tsb ,

1, tsb ¬ tea ,

− 1
teb−tea

(t − teb), tea < teb ,

0, t ­ teb ,

where it is adjusted

f1(t) = g(t)sin(ω t) , ω = 0.2 rad/sec , f2(t) = g(t) ,

tsa = 30s, tsb = 35s, tea = 65s, teb = 70s ,
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and the initial conditions are

qqq•(0) = 000, qqq◦(0) = 000, wwwT (t) =
[

1 2
]
.

Figures 2-4 show the sinusoidal-like fault and its estimate, the corresponding esti-
mated closed-loop system outputs as well as the corresponding closed-loop system out-
puts with fault compensation, when the sinusoidal-like fault arises. In the same manner,
Figures 1-6 characterize the signals in the FTC structure with integrated fault estimation
when the ramp fault comes into.

From the above given figures it is obvious that the integrated FTC, which parameters
are obtained as a solution of the LMI problem specified by Theorem 1, can with suffi-
cient precision approximate given class of slowly warring faults that their impact on the
system output variables is successfully compensated. Moreover, the mixed joint design,
which includes the updated D-stability circle criterion, outperforms the two-stage design
approach without increasing conservatism.

7. Concluding remarks

A modified approach for designing fault augmented observes, integrated with the
compensation FTC structure, is presented in the contribution. Using LMI technique, the
exploited mixed H2/H∞ control design to regularize in general marginally feasible condi-
tions, a dual form of the Schur complement to linearize the bilinear γ2 constraint in LMI
approach for H2 control principle, as well as an updated D-stability circle criterion in
fault observer design to adapt the fault observer dynamics to the dynamics of the control
system, the design conditions are established as feasible problem, accomplishing under
given quadratic constraints. Presented illustrative example confirms the effectiveness of
the proposed design alternative, to construct the control structure with sufficient approx-
imation of given class slowly warring faults and compensation of their impact on the
system output variables.
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Figure 1: Estimated ramp fault
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Figure 2: Estimated sinusoidal-like fault
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Figure 3: Estimated closed-loop system outputs
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Figure 4: Closed-loop system outputs with fault compensation
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Figure 5: Estimated closed-loop system outputs
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Figure 6: Closed-loop system outputs with fault compensation
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Conference ICCC 2017, Tatranská Lomnica, Slovakia, (2016), 384-389.

[16] B.P. LAMPE, M. OBRASZO and E.N. ROSENWASSER: H2-norm computation
for stable linear continuous-time periodic systems. Archives of Control Sciences,
14(2), (2004), 147-160.

[17] J. LAN and R.J. PATTON: Integrated design of robust fault estimation and fault-
tolerant control for linear systems. Proc. 54th Conf. Decision and Control, Osaka,
Japan, (2015), 5105-5110.

[18] F.R. LOPEZ-ESTRADA, J.C. PONSART, D. THEILLIOL, C.M. ASTORGA-
ZARAGOZA and J.L. CAMAS-ANZUETO: Robust sensor fault estimation for
descriptor-LPV systems with unmeasurable gain scheduling functions. Applica-
tion to an anaerobic bioreactor. Int. J. Applied Mathematics and Computer Science,
25(2), (2015), 233-244.

[19] M. MEISAMI-AZAD, J. MOHAMMADPOUR and K.M. GRIGORIADIS: Upper
bound mixed H2/H∞ control and integrated design for collocated structural sys-
tems. Proc. 2009 American Control Conference, St. Louis, MO, USA, (2009),
4563-4568.

[20] K. NONAMI and S. SIVRIOGLU: Active vibration control using LMI-based mixed
H2/H∞ state and output feedback control with nonlinearity. Proc. 35th Conf. Deci-
sion and Control, Kobe, Japan, (1996), 161-166.

[21] Y.V. ORLOV and L.T. AGUILAR: Advanced H∞ Control. Towards Nonsmooth
Theory and Applications, New York, Springer Science, 2014.

[22] N. OUCIEF, M. TADJINE and S. LABIOD: Adaptive observer-based fault estima-
tion for a class of Lipschitz nonlinear systems. Archives of Control Sciences, 26(2),
(2016), 245-259.

[23] M.A. ROTEA and P.P. KHARGONEKAR: H2-optimal control with an H∞ con-
straint. The state feedback case. Automatica, 27(2), (1991), 307-316.

[24] C. SCHERER: Mixed H2/H∞ control. Trends in Control. A European Perspective,
A. Isidori (Ed.), Berlin, Springer-Verlag, (1995), 173-216.

[25] F. SHI and R.J. PATTON: Simultaneous state and fault estimation for descriptor
systems using an augmented PD observer. Prepr. 19th IFAC World Congress, Cape
Town, South Africa, (2014), 8006-8011.



ON FAULT TOLERANT CONTROL STRUCTURES INCORPORATING FAULT ESTIMATION 469

[26] F. SHI and R.J. PATTON: Fault estimation and active fault tolerant control for
linear parameter varying descriptor systems. Int. J. Robust and Nonlinear Control,
25(5), (2015), 689-706.

[27] D. TAN and R.J. PATTON: Integrated fault estimation and fault tolerant control. A
joint design. IFAC-PapersOnLine, 48(21), (2015), 517-522.

[28] H. WANG and G.H. YANG: Integrated fault detection and control for LPV systems.
Int. J. Robust and Nonlinear Control, 19(3), (2009), 341-363.

[29] Q.G. WANG, Z. YE, W.J. CAI, and C.C. HANG: PID Control for Multivariable
Processes, Berlin, Springer-Verlag, 2008.




