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Abstract 
 
The paper presents an application of advanced data-driven (soft) models in finding the most probable particular causes of missed ductile 
iron melts. The proposed methodology was tested using real foundry data set containing 1020 records with contents of 9 chemical 
elements in the iron as the process input variables and the ductile iron grade as the output. This dependent variable was of discrete 
(nominal) type with four possible values: ‘400/18’, ‘500/07’, ‘500/07 special’ and ‘non-classified’, i.e. the missed melt. Several types of 
classification models were built and tested: MLP-type Artificial Neural Network, Support Vector Machine and two versions of 
Classification Trees. The best accuracy of predictions was achieved by one of the Classification Tree model, which was then used in the 
simulations leading to conversion of the missed melts to the expected grades. Two strategies of changing the input values (chemical 
composition) were tried: content of a single element at a time and simultaneous changes of a selected pair of elements. It was found that in 
the vast majority of the missed melts the changes of single elements concentrations have led to the change from the non-classified iron to 
its expected grade. In the case of the three remaining melts the simultaneous changes of pairs of the elements’ concentrations appeared to 
be successful and that those cases were in agreement with foundry staff expertise. It is concluded that utilizing an advanced data-driven 
process model can significantly facilitate diagnosis of defective products and out-of-control foundry processes. 
 
Keywords: Quality management, Application of information technology to the foundry industry, Process fault diagnosis, Ductile iron 
melting, Data-driven models  
 
 
 

1. Introduction 
 
Finding root causes of defect in products, especially those 

appearing in the manufacturing process is of great interest to 
production companies and is regarded as one of key factors in 
competing on the market. Due to rapid development of IT large 
amounts of data are nowadays recorded in most of manufacturing 
companies, including foundry industry. The Data Mining 
techniques, especially advanced data-driven (soft) models, can be 
helpful in diagnosis of process failures and product defects. They 
have been mainly applied in finding the root causes of appearance 
of excessive fractions of defective products (see e.g. review and 

research papers [1-6]). For foundry production, a good example is 
a problem of identifying the cause of gas porosities which can be 
attributed to a large number of randomly changing production 
parameters (see e.g. [7, 8]).  

Data-driven modeling can be also helpful in identification of 
reasons of a particular problem related to manufacturing such as 
appearance of an out-of-control signal on Shewhart’s charts SPC. 
Two different problems of that kind were addressed and solved in 
[9, 10]. Similarly, finding the most probable cause of appearance 
of specific product defect or machine failure can be aided by 
models linking the process input parameters with the process 
outcomes.  

mailto:m.perzyk@wip.pw.edu.pl?Subject=AFE-00294-2017-02


124 A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  1 7 ,  I s s u e  4 / 2 0 1 7 ,  1 2 3 - 1 2 6  

In the present study, an application of advanced data-driven 
modeling in finding the most likely particular causes of a missed 
ductile iron melt is proposed and presented. The paper utilizes 
real data collected in an iron foundry producing castings 
dedicated for Diesel engines and other applications. 

 
 

2. Research methodology  
 
2.1. Characteristic of melting process data sets 
 

In the cooperating foundry, the only controlled input variables 
for ductile cast iron melting process were concentrations of nine 
chemical elements in the base iron. Three typical types of iron 
were produced: low strength (Rm) and high elongation (A5) 
(grade 400/18), high strength and lower elongation (grade 500/07) 
and grade denoted as 500/07 special, which is similar to the 
previous one but with increased hardness.  

In Tables 1 and 2 some basic statistical data of the melting 
shop production are presented. 
 

 
Table 1. 
Descriptive statistics for input and continuous output variables in the foundry data set used in the present study 
 Concentrations of chemical elements in ductile iron, %  Mechanical properties 
Statistical parameters C Mn Si P S Cr Ni Cu Mg  Rm, MPa A5, % 
Mean 3,717 0,232 2,403 0,049 0,011 0,041 0,022 0,160 0,040  520,8 16,1 
Maximum 4,000 0,420 2,980 0,070 0,021 0,120 0,070 0,690 0,065  834,0 29,0 
Minimum 3,470 0,090 2,020 0,010 0,005 0,010 0,000 0,030 0,024  382,0 5,7 
Standard deviation 0,087 0,095 0,171 0,009 0,003 0,022 0,014 0,123 0,007  82,8 5,2 
 
Table 2. 
Numbers of correct and missed melts in the foundry data set used 
in the present study 
 Ductile iron grade  

 400/18 500/07 500/07 
special Total 

Correct 457 151 350 958 
Missed in original data 44 14 4 62 
Missed used in analysis 36 12 3 51 
Note: melts used in analysis are described in the last paragraph of 
Section 2.2  

 
A natural way of finding the cause of a missed melt is a 

‘manual’ checking its chemical composition. This was done in the 
preliminary analysis of the data and it was found that only in one 
case the content of an element (silicon) exceeded the range 
observed for all the correct melts (of grade 500/07 special). This 
case was rejected in the further analysis which was aimed at 
finding non-obvious causes of missed melts.   
 
 
2.2. Selection of model type 

 
Data-driven models applied in the present study should link 

the process input variables, i.e. the concentrations of the chemical 
elements in the melt with the process output defined as the iron 
grade, including the non-classified iron, i.e. the missed melts. The 
primary selection of the classification models types was made 
basing on results obtained by one of the authors in previous 
works. These models included 
• Artificial Neural Networks of MLP type (ANNs) 
• Support Vector Machines (SVMs), being a highly evaluated 

newer alternative of ANNs 
• Classification Trees with typical stopping criterion (CTv1) 

• Classification Trees with reduced minimum number of 
records in a node equal 5 (CTv2) 

All records in the original data set were utilized for building and 
testing the models. The commercial software package ‘Statistica’ 
version 12 was used. 

In Fig. 1 the results of testing the models are shown in a form 
of misclassification errors expressed as fractions of the total 
number of records. It can be seen that the more complex 
Classification Tree model (with reduced minimum number of 
record in nodes) is undoubtedly the best one. Fractions of 
misclassified cases by this model are given in Table 3. 

 

 
Fig. 1. Results of primary testing the classification data-driven 

models (fractions of misclassified cases) 
 
Table 3. 
Fractions of misclassified cases by the best model used in the 
present study (CT v2) 
              Actual ductile iron grade    

 400/18 500/07 500/07 
special  

Not-classified 
iron  

(missed melts) 
  Average 

Misclassified 
fraction, % 1,5 3,3 2,0 3,1    2,1 
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It is worth noticing, that the misclassified cases not 
necessarily can be a result of the model imperfections. The 
measured values of tensile strength and elongation which decide 
on the assignment of the ductile iron to its particular grade, may 
be influenced also by some other factors, including preparation of 
test pieces and measuring errors. The cases of missed melts used 
further in the analysis included only those properly classified by 
the model since only in such cases the simulations (described in 
Section 2.3) make sense; also a few quite similar cases were 
omitted. The final numbers of used cases are given in Table 2. 

 
 

2.3. Plan of simulations 
 
Having a reliable model of the process one can carry out 

arbitrary simulations aimed at finding such changes of selected 
input variables, i.e. the concentrations of the elements, which 
would lead to the change from the non-classified iron to its 
desired (expected) grade. An obvious strategy is to start with the 
changes of single concentrations, especially of those elements 
which have the largest impact on the iron properties or which are 
far from the averages for the given grade or simply look 
‘suspicious’ according to the foundry staff experience. However, 
due to the fact that the simulations are effortless and the results 
are obtained immediately, systematic changing of all inputs can 
be recommended. That kind of approach was tried in the present 
work, assuming even spacing of all the concentrations between 
minimum and maximum for the given grade, with step equal 10% 
of the whole range. 

The concentrations of particular elements in the iron melt may 
be not completely independent. There are two kinds of such 
relationships. First, some correlations between the concentrations 
may be observed, mainly resulting from the metallic charge which 
usually include returns, steel scrap, recarburizers, ferroalloys and 
other silicon additions. Second, the particular elements can act in 
the same or opposite directions from the viewpoint of the iron 
mechanical properties. Hence, in the present work also 
simultaneous changes of selected pairs of the input variables were 
tested. For all possible pairs (36) the statistical tests of 
correlations calculated as average of the linear Pearson’s and 
non-parametric Spearman’s coefficients, were made. The results 
characterizing the interdependences between concentrations of the 
chemical elements appearing in the foundry data are presented in 
Fig. 2.  

 

 
Fig. 2. Relationships between concentrations of chemical 
elements obtained as average Pearson’s and Spearman’s 

correlation coefficients 

From all possible pairs of elements, the following 11 pairs 
were selected for the simulation tests, covering those with highest 
correlations and/or highest interactions: C&Cu, C&Mn, C&P, 
C&Si, Cr&Ni, Mn&Cr, Mn&Cu, Mn&Ni, Mn&P, Mn&Si and 
Si&P. 
 
 

3. Results of simulations 
 
 
3.1. Changes of single elements 
 

From among all 51 missed melts the simulations with changes 
of single elements concentrations have led to the change from the 
non-classified iron to its desired (expected) grade in 48 cases. The 
number of elements the changes of which have led to the success 
in a single melt varied from 1 to 6 whereas the number of melts in 
which the change of a given element concentration was successful 
varied from 3 to 36. The latter results are presented in Fig. 3.  

Based on the Classification Tree model the relative 
significances of the input variables were determined using the 
Breiman’s approach [11]. It can be seen that the most significant 
elements, such as carbon and manganese are not always among 
the most successful in the simulations. The general observation is 
that systematic changes of single elements concentrations give 
positive results in most cases. However, as mentioned above, the 
number of candidate elements responsible for a missed melt may 
be large (up to 6 in the investigated data) which makes the 
diagnosis difficult. 
 

 
Fig. 3. Fraction of successful simulations (i.e. leading to the 

change from a non-classified iron to the expected grade) due to 
changes of single elements concentrations (dotted line) and the 

relative significance of the elements (solid line) 
 
 
3.2. Simultaneous changes of two elements 
 

All the simulations with simultaneous changes of 
concentrations of two elements have led to successful change 
from the non-classified iron to its desired grade. It was found that 
in many cases it was true despite the fact that changes of the 
single elements appearing in the given pair not allowed to obtain 
the expected iron grade.  
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In particular, in the three missed melts for which the single 
changes failed, the simultaneous changes of carbon and silicon 
appeared to be successful. In two of them, intended for 500/07 
grade, the significant reduction of C and Si contents was the only 
possibility. For example, in one of these missed melts the actual 
contents were 3.76%C and 2.6%Si and they both had to be 
reduced at least to 3.6%C and 2.1%Si. These results are obviously 
not surprising from the standpoint of foundry practice: apparently 
the carbon equivalent was too large for this high strength ductile 
iron grade and the levels of remaining chemical elements have 
forced that correction.  

It should be noticed that although simultaneous changes of 
more than one inputs appeared to be unnecessary in most cases, 
sometimes such changes can provide more correct diagnosis 
compared to a successful change of a single input.  
 
 

4. Summary and conclusions 
 

The present study revealed some new possibilities of 
identification the most probable particular causes of missed 
ductile iron melts. The proposed methodology is based on 
advanced data-driven (soft) modeling of the melting process and 
was presented using real industry data collected in a cooperating 
iron foundry. The primary analysis of several types of date-driven 
classification models have shown an outstanding prediction 
accuracy of Classification Trees whereas Artificial Neural 
Networks and Support Vector Machines appeared to be 
significantly worse.  

With a use of the selected model simulations for all missed 
melts were made in which the contents of chemical element were 
changed in order to obtain the expected grade of ductile iron. The 
main observation is that in the vast majority of cases the changes 
of a single element leads to a successful result. Moreover, in some 
melts the number of such elements is large which can make the 
unequivocal diagnosis difficult. In three cases, it was necessary to 
change contents of two elements to obtain the expected iron 
grade. These elements were carbon and silicon which had to be 
reduced significantly for the high strength grade which is in 
agreement with foundry practice and confirms the usability of the 
model.  

The proposed approach and methodology can be applied to 
various manufacturing processes in which the output is the 
product quality. It is worth noticing, that the inputs may be 
process parameters of arbitrary type, including human and 
organizational variables defined by non-numerical values. Also, 

the strategies of the input changes in the simulations may be 
different and adjusted to the specificity of the process. 
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