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OPTIMIZATION OF A THIN-WALLED ELEMENT GEOMETRY USING A SYSTEM INTEGRATING NEURAL NETWORKS 
AND FINITE ELEMENT METHOD

Artificial neural networks [ANNs] are an effective method for predicting and classifying variables. This article presents the 
application of an integrated system based on artificial neural networks and calculations by the finite element method [FEM] for 
the optimization of geometry of a thin-walled element of an air structure. To ensure optimal structure, the structure’s geometry was 
modified by creating side holes and ribs, also with holes. The main criterion of optimization was to reduce the structure’s weight at 
the lowest possible deformation of the tested object. The numerical tests concerned a fragment of an elevator used in the ”Bryza” 
aircraft. The tests were conducted for networks with radial basis functions [RBF] and multilayer perceptrons [MLP]. The calculations 
described in the paper are an attempt at testing the FEM – ANN system with respect to design optimization.
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1. Motivation

Neural networks (NN) are an effective methods for predict-
ing or classifying variables. There are many publications on 
applications of the artificial intelligence methods for the purpose 
of prediction [1-5]. NN are mathematical structures enabling the 
processing of signals by other elements due to the use of certain 
models which perform input operations. Nowadays we can ob-
serve a significant role played by artificial intelligence methods 
in predicting material parameters or investigating strength of 
composite materials or failure behavior analyses [6-20]. The 
research on stiffened, buckling-susceptible composite elements 
used in the aircraft industry, oriented at reducing structure weight, 
by the finite element method in the Abaqus program and neural 
networks, was conducted among others by a research team from 
the Department of Aerospace Science and Technology, Politec-
nico di Milano [21].

Given the trend for reducing weight of air structures while 
maintaining their strength and rigidity unchanged makes de-
sign engineers look for optimized design solutions. It can be 
done by using specialized programs like Tosca, but it should be 
noted that the geometry result is raw and requires a smoothing 
process. In addition to this, the optimization program does not 
provide information about the relationships between individual 
parameters describing geometry and the considered result, such 
as displacement or acceptable stresses. This data can be obtained 
using neural networks, which have been used in the present study. 
The neural networks are part of a complex hybrid system which 
uses the finite element method – obtained numerical results as 
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input variables. It must be stressed that the authors have consider-
able experience in the use of numerical methods of calculation 
based on both artificial intelligence e.g. [2,3,22-24] and finite 
elements e.g. [25-28]. 

In all FEM application NNs can be applied to improve 
designing process to get better engineering solutions satisfying 
different conditions and requirements. In the present paper these 
requirements are:
• Keeping the stiffness of the element on relatively high level, 

expressed by maximum displacement umax.
• Reducing the weight of the element w.

2. Aim of the work

To make air structures as lightweight as possible, they are 
mainly made of aluminum or fibrous composites. The study 
was performed on a fragment of the airfoil used to control flight 
altitude in the aircraft (Fig. 1). 

Fig. 1. Considered fragment of the aircraft wing
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This fragment was idealized to cubic shape with a height 
of 60 mm, a width of 165 mm and a length of 265 mm, made of 
aluminum with a thickness of 0.8 mm. Since it was difficult to 
predict the values of hole radius, rib thickness and their angle 
of inclination relative to the side walls, therefore we performed 
over 160 FEM simulations for different geometrical configura-
tions of dimensions applied. 

To ensure optimal structure, the structure’s geometry was 
modified by creating: 
• system of ribs, situated under different angles in relation to 

side of the cuboid,
• different thickness of ribs,
• set of holes inside of the ribs,
• set of holes inside of the side walls of the cuboid.

3. Description of the investigated models 

The investigated model is loaded at 20 points located on 
two planes forming ribs in a real structure (Fig. 2). The speci-
fied loads system corresponds to the real state of loading during 
airplane flight in the considered box. It causes complex state of 
stress including bending and torsion.

The finite element mesh was built with 182 956 C3D8R 
elements and 690 C3D6 elements. The global dimension of each 
element was 2mm, and there were 4 elements located on the 
thickness of each wall (Fig. 2). 

Fig. 2. 3D view of the structure with marked points of application of 
stresses 

Besides the application of stresses, it was also important 
to remove relevant degrees of freedom: point 5 – uy = uz =0, 
point 8 – ux = uy = uz = 0, point 18 – uz = 0.

Table 1 lists the real stresses components of the structure 
loaded with in the FEM modeling. To apply the load, it was how-
ever necessary to do partitioning, so the stresses are applied in the 
simulation to square surfaces with the dimensions 1.2 × 1.2 mm. 

TABLE 1

Boundary stress system conditions corresponding 
to the structure in Fig. 2

Plane A Plane B
point σx 

[MPa]
σy 

[MPa]
σz 

[MPa] point σx 
[MPa]

σy 
[MPa]

σz 
[MPa]

1 66,53 –182,85 22,92 11 –51,32 220,97 –52,99
2 83,82 –131,11 5,56 12 –61,88 140,97 –17,43
3 59,86 –81,11 –7,92 13 –56,18 84,24 –0,14
4 43,06 –133,19 –46,25 14 –64,51 194,65 67,43
5 –38,61 116,88 –57,15 15 62,22 –183,40 64,79
6 –53,75 80,07 –15,07 16 59,93 –77,78 8,13
7 –73,06 142,01 –6,11 17 63,19 –138,54 –9,79
8 –84,44 189,24 73,13 18 46,60 –234,24 –97,29
9 1,46 27,29 27,50 19 –2,36 –34,65 6,18
10 66,53 –182,85 22,92 20 –51,32 220,97 –52,99

Figure 3 shows the geometrical parameters, i.e. 4 individual 
variables of the presented model, which are modified in the 
simulations. They are: 
• rib thickness ranging from 0.2 mm to 2 mm,
• side hole radius ranging from 2.5 mm to 25 mm,
• rib hole radius ranging from 2.5 mm to 25 mm,
• rib angle ranging from 0° to 82.5°.

The thickness of the side walls t as well as of the upper and 
lower skins were maintained constant at 0.8 mm. All the above 
parameters were edited in the Abaqus CAE environment. After 
each parameter change, the FEM model was remeshed. In this 
calculations the Abaqus / Standard solver was used and it was 
a static analysis. Aerospace structures have to operate below the 
yield point, however in this work an elastic-plastic model with 
linear hardening of aluminum 2024 described by the following 
parameters were used: Young modulus – E = 73.1 GPa, yield 
point – σy = 300 MPa, rupture tensile strength – σr = 469 MPa, 
and unit elongation at rupture – A5 = 20%. The aim of the elas-
tic – plastic material model application was better observations 
the most efforted places and making corrections of geometrical 
parameters. It should be emphasized that in none of the consid-
ered models yield stress does not occur. 

Fig. 3. Modifications of the examined geometrical parameters: rib thick-
ness t, side hole radius rs, rib hole radius rr, rib angle α
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4. Results of the FEM analysis

The figures below illustrate the results for one parameter 
configuration, where the angle α is 75°, the rib thickness t is 
0.2 mm, the rib hole radius rr is set to 25 mm and the side hole 
radius rs is made equal to 20 mm. The computations were made 
using Abaqus Standard.

The crucial parameters measured in each case were the 
maximum displacement and weight, which in the discussed 
case were umax = 0.2323 mm and w = 293 g, respectively. The 
distribution of the resultant displacements in the entire structure 
is shown in Fig. 4.

Fig. 4. Distribution of the resultant displacements and deformed geo-
metry 

The highest displacement umax can be observed in the case 
of the corner that is located at the highest distance from the 
support conditions. 

Table 2 shows the results for boxes with above mentioned 
characteristics (t, α, rr, rs). As the primary model, the geometry 
without ribs, but with holes in the side walls was assumed. For 
this model we get the biggest displacement umax. By adding the 
ribs, a decrease of displacement followed of about 1,07%, but 
the weight increased by 5,3%. Therefore, providing holes in 
the robs gives a compromise between weight w increase and 
deflection decrease. 

TABLE 2
The results for displacement and weight values 

umax [mm] Weight w [g]
Box with holes in side walls 0,2335 283
Box with holes in side walls 
and with ribs 0,2310 298

Box with holes in side walls 
and with holes in ribs 0,2323 293

Figure 5 shows the distribution of the reduced (Huber – 
von Mises) stresses. Their values are below 130 MPa, so the 
yield point is not exceeded. The highest concentrations of the 
reduced stresses are located at points of load application and in 
accordance with the Saint-Venant principle they are decreased 
in cross-sections fare away from the applied loads. To avoid 
such situations in the future works, the loads should be applied 
to larger area or the submodel should be used. 

Fig. 5. Distribution of the reduced (Huber – von Mises) stresses in the 
top and bottom plates

A similar situation can be observed in the case of side walls 
shown in Fig. 6: the yield point is not exceeded and the stresses 
are equal to 154 MPa (at the points of load application). The 
stresses reaching 40 MPa also occur in the vicinity of holes in 
the longer side walls. 

Fig. 6. Distribution of the reduced (Huber – von Mises) stresses in the 
side walls 

The lowest values of the reduced stress concentration were 
observed in the inside ribs, where the maximum amounting to 
16 MPa occurs in the vicinity of the holes shown in Fig. 7. 

Fig. 7. Distribution of the reduced (Huber – von Mises) stresses in 
the ribs 
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5. Description of the neural models

The FEM analysis enables determination of the above 
parameters for a single examined case, without precise informa-
tion about the model’s sensitivity to its individual parameters. 
The objective of the analyses with the application of artificial 
neural networks was to investigate the effect of variables on 
the model’s stiffness and deformation umax as well as weight 
prediction. The proposed approach enables the synergy of both 
methods, FEM and NN. As a result of neural network training, 
it will be possible to not only determine the examined model 
variables but also perform a sensitivity analysis of the model, 
which will provide a basis for optimization of the model’s 
geometrical parameters. The literature provides information 
concerning the attempts at using artificial neural networks with 
the FEM analysis [29].

The numerical computations were run for two model 
variants. The first variant involved loading 4 quantitative input 
variables. They were: rib wall thickness, the angle of rib incli-
nation relative to the side walls, side hole diameter and rib hole 
diameter. The output variable was the structure’s deformation 
under the applied load. The second variant, the input variables 
included 2 quantitative input variables, i.e. side hole and rib hole 
diameters, as well as 2 qualitative variables, i.e. the defined rib 
angles and wall thicknesses. 

The tests were conducted for multilayer perceptron (MLP) 
as these network, based on the results of previous research 
[2,3,23-24], are best suited for solving this particular model 
of regression. A schematic design of a MLP neural network is 
given in Fig. 8.

Fig. 8. Schematic diagram of an MLP neural network

The most promising models out of the examined MLP are 
listed in Tables 3 and 4. The employed network training method 
was the BFGS algorithm due to its effectiveness and insensitiv-
ity to all kinds of minimization inaccuracies. The analyses were 
performed for the networks with different numbers of neurons 
in the hidden layer. 

5.1. Analyses with 4 quantitative inputs

The experimental data obtained from the FEM analysis were 
divided into 3 groups. 70% of cases were assigned to the group 
of training data, 15% to the validation set, and the remaining 
15% to the testing set. Such a division of data enables testing 
the model’s effectiveness using data which were not used for 
network training. The variables were matched with relevant 
sets at random. We used over 160 cases that were network input 
signals and contained information about the output. The creation 
of a network consist of obtaining a function which describes the 
predicted variables in the best possible way compared to the 
available experimental data. The following functions were used 
as activation functions for neurons in the hidden and output lay-
ers: linear, exponential, logistic and hyperbolic tangent. 

TABLE 3

Activation functions and quality of the models
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1 MLP 
4-5-1 0.94 0.95 0.91 22 Logistic Logistic

2 MLP 
4-3-1 0.94 0.94 0.93 19 Logistic Exponential

3 MLP 
4-10-1 0.98 0.95 0.93 61 Exponential Tanh

The specific types of the employed activation functions 
in both layers for the models are listed in Table 3. The training 
quality values listed in the table correspond to the coefficients 
of correlation between the real data and the numerical results.

TABLE 4

Sensitivity analysis of multilayer perceptrons 

Network
Sensitivity analysis with respect to displacement 

Side holes Rib angle Wall thickness Rib holes
1. MLP 4-5-1 10.2 1.1 1.0 0.9
2. MLP 4-3-1 11.0 1.1 1.1 1.0
3. MLP 4-10-1 32 4.8 1.9 1.7

The values listed in Table 4 reveal the impact of a given 
input variable on operation of the model. The results demonstrate 
that the most important variable is the size of holes in the side 
walls of the box. This is the expected result yet the degree of 
significance of this parameter is surprising. The network de-
pends on this input variable to such a great extent that this raises 
a concern regarding the impact of other variables on deformation 
prediction. This phenomenon results from the behavior of the 
model in FEM analysis at larger diameters of holes in the side 
walls, where the displacements rapidly increase due to fact of 
significant decrease of the cuboid stiffness. This can clearly be 
observed in Fig. 9. 
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The results lead to a conclusion that the model’s weight 
can be reduced by considerably increasing rib hole diameters, 
as this will be of much less importance for strain values than the 
modification of side holes. Figures 9 and 10 show forecasting 

weight w and displacement umax by the neural network system 
as a function of rib angle α and side hole radius rs. Figures 11 
and 12 illustrate the response of the model to the varying thick-
ness t and rib angle α. 

Fig. 12. Weight w versus thickness t and rib angle α

Fig. 9. Displacement umax versus rib angle α and side hole radius rs Fig. 10. Weight w versus rib angle α and side hole radius rs

Fig. 11. Displacement umax versus thickness t and rib angle α

The most interesting is the effect on the model of the angle 
of the ribs and the diameter of the side holes. The graphs indicate 
that the smallest displacement values are forecasted for the angle 
of the ribs about 50-55 degrees. Deformation decreases with 
increasing thickness t of the wall and grows hyperbolically with 
increasing diameter of holes 2rs in the side walls.

5.2. Analyses with 2 quantitative and 2 qualitative inputs

The use of this solution is limiting as regards the network 
versatility – the network can make predictions only for selected 

groups of parameters; nonetheless, this helps to analyze better 
the network’s sensitivity to some parameters.

The input data included the following ranges of variables: 
• Rib thickness t = 0.2 mm; 0.8 mm; 1.4 mm; 2 mm,
• Rib angle α = 0°; 15°; 30°; 45°; 60°; 75°,
• Side hole diameter 2rs = 0÷25 mm,
• Rib hole diameter 2rr = 0÷25 mm.

We used a system of 3 networks presented in Table 5. The 
network error defined as the difference between the values of the 
variable predicted by the model and the real variable resulting 
from the mean square error in the process of network training 
was small. Therefore, it can be concluded that the network good 
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represents the tested model. What can be observed with respect 
to all models in this case is that the side hole radius is the most 
significant variable here, while the variable which has the low-
est impact on the model deformation is the rib hole radius. The 
results of this analysis variant lead to a conclusion that rib angle 
is the crucial variable regarding the stiffness of the model and 
its maximum displacement umax. 

TABLE 5

Sensitivity of the models (quotient)

Network
Sensitivity analysis (displacement)

Wall thickness Rib angle Side holes Rib holes
1. MLP 12-14-1 47 107 510 2
2. MLP 12-5-1 38 80 402 2
3. MLP 12-10-1 68 118 476 2

The quality of the tested models, the results of which are 
listed in Table 6, similarly to that of the network with 4 quanti-
tative input variables, is satisfactory. The listed values concern 
the training, validation and testing sets. The table also lists the 

number of epochs and activation functions in the hidden and 
output layers of individual networks.

TABLE 6
MLPs parameters
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1 MLP 
12-14-1 0.99887 0.99474 0.99773 76 Logistic Expo-

nential

2 MLP 
12-5-1 0.99877 0.99523 0.99821 161 Expo-

nential
Expo-
nential

3 MLP 
12-10-1 0.99879 0.99568 0.99710 84 Tanh Expo-

nential

The charts in Figs 13-16 illustrate the impact of the rib 
angle α and other input parameters on displacement umax and 
weight w of the model. The graphs indicate that the smallest 
displacement values are forecasted for the angle of the ribs about 
50-60 degrees. The chart in Fig. 13 illustrates the relationship 

Fig. 13. Displacement umax versus rib hole radius rr and rib angle α Fig. 14. Weight w versus rib hole radius rr and rib angle α

Fig. 15. Displacement umax versus rib angle and side hole radius rs Fig. 16. Weight w versus rib angle and side hole radius rs
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between displacement vs rib hole diameter. The results can cast 
doubts on the network-generated approximation accuracy of 
the effect exerted by this particular variable. Maximum weight 
values can be observed for an angle of approximately 30 degrees 
(Fig. 14 and 16). 

6. Conclusions

The most important conclusion from the research is the abil-
ity to use the considered methods to optimize the design process. 
Application of FEM data as variables to the neural network data 
can quickly and effectively assess the structure parameters. The 
proposed approach can also be used for other types of structures 
designed, especially composites.

The results of neural networks sensitivity analysis demon-
strate that the key variable in model design regarding the struc-
ture’s deformation is the diameter of holes in side walls. This is 
an important conclusion about considered model, because the 
walls are the main carrying element of the box. To reduce the 
element’s weight, the diameters of rib holes must be increased. 
It is also necessary to consider increasing rib length, even at the 
expense of the model’s weight, while at the same time decreasing 
the thickness of rib walls t in the model. 
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