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NEW ANALYTICAL APPROACHES FOR EVALUATING THE PERFORMANCE OF SYSTEMATIC 
PRE-TENSIONED FULLY GROUTED ROCKBOLTS IN TUNNEL STABILIZATION

NOWE ANALITYCZNE METODY OCENY SKUTECZNOŚCI DZIAŁANIA WSTĘPNIE NAPRĘŻANYCH 
ZACEMENTOWANYCH KOTEW PRZY STABILIZACJI TUNELI

In this paper, two new analytical approaches are presented on the basis of convergence-confinement 
method to compute both the ultimate convergence of circular tunnel and its plastic zone having been 
reinforced by systematically pre-tensioned fully grouted rockbolts. The models have two basic assump-
tions: (1) the grouted rockbolts increase the radial internal pressure within a broken rock mass by both 
the pre-tensioned force and the probable following induced force due to rock mass movement (2) tunnel 
convergence (specially short-term) occurs only due to reducing and diminishing of the radial constrained 
stress on tunnel surface provided by the working face. Hence, the values of both the pre-tensioned pressure 
and the mentioned radial constrained stress are specially taken into consideration in this paper. That is, 
according to their magnitudes, two different conditions occur: the magnitude of pre-tensioned pressure 
is greater than that of the constrained stress at bolt installation time and vice versa. The solutions are 
extended to each of conditions, and illustrative examples are solved. The proposed approaches predicting 
almost identical results show that pre-tensioning of grouted rockbolts will increase the efficiency and 
effectiveness of rockbolts.

Keywords: analytical approach; tunneling design; convergence-confinement method; pre-tensioned 
fully grouted rockbolt 

W pracy tej przedstawiono dwie analityczne metody oparte na metodzie badania konwergencji 
i naprężeń wymuszonych wykorzystane do obliczania zarówno granicznej konwergencji tunelu o prze-
kroju koła oraz zachowania strefy plastycznej, po wzmocnieniu tunelu za pomocą wstępnie naprężanych 
i zacementowanych kotew. Model opiera się dwóch założeniach: (1) zacementowane kotwy prowadzą do 
wzrostu ciśnienia wewnętrznego w kierunku promieniowym w kruszonym materiale skalnym, spowodo-
wanego siłą wstępnego naprężenia oraz siłą spowodowaną przez ruchy górotworu; (2) – konwergencja 
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tunelu (zwłaszcza w ujęciu krótkoterminowym) pojawia się jedynie wskutek zmniejszenia wymuszonego 
naprężenia promieniowego na powierzchni tunelu generowanego w rejonie przodka wydobywczego. 
W metodzie zwrócono szczególną uwagę na wartości ciśnienia wstępnego naprężenia jak i naprężenia 
wymuszonego. W zależności od wielkości tych naprężeń mamy do czynienia z dwiema zupełnie odmien-
nym sytuacjami: wielkość ciśnienia wstępnego naprężenia jest większa niż naprężenia wymuszonego 
w trakcie mocowania kotew, lub odwrotnie. Podano rozwiązania dla obydwu rozważanych przypadków 
i zaprezentowano przykłady. Prawie identyczne wyniki otrzymane przy użyciu obydwu metod wskazują, 
że wstępne naprężenia cementowanych kotew poprawia ich skuteczność działania.

Słowa kluczowe: metody analityczne, projektowanie tuneli, metoda obliczania konwergencji i naprężeń 
wymuszonych, wstępnie naprężane zacementowane kotwy

1. Introduction

The use of systematic grouted rockbolts as a standard practice in design and construction of 
tunnels is widely increased due to their effectiveness e.g. in new technologies such as New Aus-
trian Tunnelling Method (NATM) and their other advantageous e.g. speed, minimum installation 
space and cost. This stabilizing system can be installed as either passive or active (pre-tensioned) 
types which the aim of pre-tensioning is to transfer initial compressive pressure to rock mass in 
order to increase its performance and its efficiency (Carranza-Torres, 2009).

The study of behavior mechanism of grouted rockbolts as the systematic reinforcing support 
has been of considerable interest during the last three decades. A number of analytical methods 
of varying degrees of accuracy, efficiency, and sophistication have been developed. Among these 
works, in a group of approaches, it has been attempted to obtain the engineering properties of 
reinforced rock mass as an improved composite material (Ranjbarnia et al., 2014a, 2015). However, 
in another group of approaches, the grouted bolt have been considered as an individual element 
which its contribution to rock mass is in the form of a radial load inducing the radial pressure 
within the influence domain of itself (Ranjbarnia et al., 2014a, 2015).

In the first group, which the engineering properties of rock mass is assumed to be improved 
due to bolting effect, Indraratna and Kaiser (1990a, b) introduced a dimensionless parameter 
named “bolt density” which reflected the relative density of bolts with respect to the opening 
perimeter to obtain the reinforced rock mass properties. Osgoui and Oreste (2007, 2010) im-
proved Indraratna and Kaiser’s solution (1990a, b) by applying “bolt density” parameter into 
all strength parameters of generalized Hoek-Brown criterion. Bobet (2006) obtained the elastic 
properties of the rock- bolt material using the shear-lag method. Then, Bobet and Einstein (2011) 
discussed the importance of few parameters on the performance of grouted rockbolts, and in-
troduced a formulation for mechanical contribution of the rockbolts based on shear interaction 
stress on the bolt surface. Carranza-Torres (2009) introduced a dimensionless coefficient named 
as “ground reinforcement- stiffness” (the contrast of stiffnesses of ground and rockbolt) which 
was a function of another coefficient named as reinforcement- density (the ratio of cross sectional 
area of rockbolt to the tributary area of rockbolt). These coefficients were used as the multipliers 
to obtain the confinement stress of composite material. Grasso et al. (1989) and Bernaud et al. 
(2009) works are also the other attempts to model the composite material properties. 

All above mentioned researches have been performed for the passive grouted rockbolts ex-
cept the works by Carranza-Torres (2009) and Bobet and Einstein (2011) in which pre-tensioned 
grouted rockbolts have been also considered. In the other attempt, Fahimifar and Ranjbarnia 
(2009) presented an analytical approach for these types of rockbolts based on the extension of the 
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works by Stille et al. (1989) and Fahimifar and Soroush (2005) having originally been carried out 
for the passive types. In that study, it was assumed; due to applying compression pressure by the 
bolt around tunnel, the rock mass become stronger than the broken rock mass. Accordingly, the 
presence of pre-tensioned force leads to development of greater confinement stress, and hence; 
the associated material would be much stronger. 

In the second group, which the reinforcement contribution is in the form of a radial load 
spread uniformly within the zone of influence of the rockbolt, a comprehensive series of stud-
ies have been also conducted (Aydan, 1989; Peila & Oreste, 1995, 1996; Li & Stillborg, 1999; 
Oreste, 2003, 2004, 2008, 2009; Cai et al., 2004a, b; Guan et al., 2007; Bobet & Einstein, 2011). 
However, like the first group methods, a few of them have been devoted to the pre-tensioned 
grouted rockbolts such as the work by Bobet and Einstein (2011), Ranjbarnia, Oreste and Fa-
himifar (2016) with great limitations which will be discussed in the following.

In order to model the pre-tensioned grouted rockbolts as a systematic support of tunnels 
(at least in short-time), the relation between the value of pre-tensioned pressure on the tunnel 
surface (produced by the pre-tensioned force) and that of the fictitious constrained radial pressure 
by proximity of the face should be specially taken into consideration (Ranjbarnia et al., 2015). 
The advancement of tunnel face in front of bolted section leads to diminish the constrained ra-
dial pressure to zero and ultimately, the pre-tensioned pressure will only remain in that section. 
Providing the value of pre-tensioned pressure on the tunnel surface is greater than that of the 
constrained radial pressure, advancement of the tunnel face will not change the stresses within 
the rock mass around tunnel, and the ultimate load will not be greater than the initial tensioning. 
Conversely, providing the value of pre-tensioned pressure is less than that of constrained radial 
pressure, the stresses around tunnel will redistribute, and tunnel convergence will occur imme-
diately after the radial pressure becomes less than the initial value prior to bolt installation, and 
hence; the bolt force will increase. 

The above-mentioned analytical approaches for the pre-tensioned grouted rockbolts are not 
comprehensive solution. Because, the relation between the pre-tensioned and the constrained 
pressures is neglected (Carranza-Torres, 2009; Fahimifar & Ranjbarnia, 2009; Bobet & Einstein, 
2011). Furthermore, it would be almost impossible to extend and modify the approaches to use for 
pre-tensioned types, and to realistically model the influence of pre-tensioned load. On the other 
hand, the widely available commercial finite-element and finite-difference computer codes, while 
in principle are capable of modeling the pre-tensioning, are not yet treating a solution to include 
the above discussion (about the relation of the pre-tensioned and the constrained pressures).

For this reason, this paper develops analytical approaches that have the following attributes
• It quantitatively models the efficiency of the pre-tensioning of grouted rockbolts in terms 

of reduction in both the tunnel convergence and failure zone around tunnel in compari-
son with the passive systems. In other words, it provides a solution for obtaining the 
optimum efficiency of the reinforced system in terms of the advancement of tunnel face 
(delay in installation), rockbolt arrangement, and the magnitude of pre-tensioning load 
e.g. the optimum pre-tensioning force for a given delay installation time and the rockbolt 
arrangement.

• It provides total length of the bolt in terms of the rockbolt arrangement and the magnitude 
of pre-tensioned load.

The present paper develops two analytical approaches on the basis of two described groups of 
methods by the assumption of rigid connection between the bolt and the rock mass. The formula-
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tions of both methods are derived on the basis of convergence- confinement method representing 
the response of a reinforced circular tunnel under uniform in-situ stresses by a systematically 
installed pre-tensioned grouted rockbolts.

2. Problem definition

A circular tunnel of radius ri is driven in a homogeneous, isotropic, initially elastic rock 
mass subjected to a hydrostatic stress field, p0. When the rockbolts are installed, it is assumed, 
a certain convergence of tunnel has already been occurred and an initial plastic zone of radius 
r–e will develop around the tunnel (Fig. 1) (Ranjbarnia et al., 2014a). In this condition, there is 
a radial pressure on tunnel periphery supplied by proximity of the face, and its value is a percent-
age of field stress p0 ( pi = β · p0), 0 < β < 1). The magnitude of β is mainly dependent upon the 
distance from the tunnel face within influence limit of tunnel face (which is about two tunnel 
diameters beyond working face).

The pre-tensioned grouted rockbolt installation consists of placing a grouted anchor, tension-
ing the rockbolt and tying end of the bolt by nut and plate to the tunnel surface, and then grouting 
the reminder of the bolt length as (Fig. 2a) (Ranjbarnia et al., 2014a, 2015). The pre-tensioned 
force applied by the bolt plate to tunnel surface develops the radial pressure extending within 
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Fig. 2.  Rockbolts arrangement (a) circular tunnel reinforced by systematic pre-tensioned grouted bolts; 
circumferential space between bolts (redrawn by Ranjbarnia et al. (2015)) 

(b) longitudinal spacing between bolts
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the rock mass in the radial direction. As the bolts are installed systematically (Figs 2a and 2b), it 
is assumed, each bolt increases radial pressure within the influence domain of itself. Therefore 
(Ranjbarnia et al., 2014a, 2015)

 0cl

tenpre
tenpre SS

T
p   (1)

where Tpre–ten and ppre–ten are the pre-tensioned force and its associated radial pressure at tun-
nel surface, respectively. Sl and Sc0 are longitudinal and circumferential bolts’ spacing at tunnel 
surface, respectively. 

It is assumed that the pre-tensioned force provides equivalent radial stress in domain zone 
of each bolt (Fig. 3) (Ranjbarnia et al., 2014a, 2015).
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Fig. 3. Equivalent radial stress due to pre-tensioned load

After installing the bolts, as tunnel face is again advancing within the influence limit of the 
working face, the fictitious constrained radial stress will be further reduced and will be ultimately 
diminished. If the magnitude of constrained radial stress is less than that of the pre-tensioned 
pressure (Case I ), progressive advancement of tunnel face and then full diminishing of the con-
strained radial stress will not lead to further radial displacement. This is because; by applying 
the pre-tensioned pressure, the overall radial stress on tunnel surface after full diminishing of 
the constrained stress is greater than that of its initial value prior to the bolt installation moment. 
Hence, the final bolt force is not greater than the initial applied tension i.e. the bolt force will 
remain constant and will be equal to pre-tensioned force, and grouting the reminder of bolt length 
has no influence on its behavior mechanism, but will only protect the bolt from corrosion. In this 
case, the bolt behavior is similar to support systems e.g. un-grouted tensioned bolts in which the 
bolt and the rock mass act independently.

However, if the magnitude of constrained radial stress is greater than that of pre-tensioned 
pressure (Case II), after somewhat diminishing of the constrained radial stress, the overall ra-
dial stress on tunnel surface will start to become less than that of its initial value prior to bolt 
installation. Thus, continuing excavation process will lead to further radial displacement of the 
surrounding rock mass and increase in the shear stresses between the bolt and the rock mass. 
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That is, the bolt force will increase till to full diminishing of the constrained radial stress, and 
the plastic radius becomes greater (Fig. 4). In this case, the bolt interacts by its surrounding 
medium i.e. the bolt does not act independently of the rock mass, and hence; their deformations 
cannot be separated.

For simplicity, further assumptions are made as follows:
• The problem is studied under plane-strain conditions; thus the three-dimensional effect 

even near the tunnel face is disregarded. That is, the analysis considers a ‘slice’ of tunnel 
of unit length i.e. 1 m along the axis of the tunnel or else the bolt properties should be 
adapted for a unit length. 

• Rigid connection is assumed between the bolt and the rock. Therefore, the bolt force (both 
of pre-tensioned and probable ultimate force) provides a uniform radial support pressure 
in tunnel boundary and within the rock mass. 

• The bolt has a length that it is anchored beyond the boundary of the broken zone in the 
original rock mass for both Cases of I and II (Figs 2a and 4).

• The pre-tensioned force applied to a rockbolt is typically a significant fraction of the 
bolt’s yielding capacity. However, its magnitude is not a value leading the bolt to yield.
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Fig. 4. Increasing tunnel plastic radius (redrawn by Ranjbarnia et al. (2015))
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Also reminding again that
• Tunnel closure is only assumed due to advancement of the working face. In other words, 

short-term movements of rock mass are taken into account, and time-dependent properties 
of the rock mass are neglected.

• The influence of the weight of the rock in the plastic zone on tunnel displacements is 
disregarded.

3. The reinforcement mechanics of systematic 
pre-tensioned bolts

The analytical solutions are proposed to model the pre-tensioned grouted rockbolts behavior 
in circular tunnels on the basis of both described methods.

3.1. The first method 

As mentioned in Introduction, in this method, the properties of the medium surrounding the 
tunnel is considered as an improved stronger material than the broken rock mass. To model the 
composite material properties, it will be worth figuring out the functional behavior of grouted 
rockbolt and its surrounding rock mass. 

In general, the grouted rockbolts assist the rock mass to form a self supporting rock struc-
ture. They reinforce and mobilize the inherent strength of the rock mass by offering internal and 
confining pressure (Huang, 2002). Therefore, it is assumed in this paper, the grouted rockbolts 
reduce and control tunnel convergence through increasing the radial stress within the plastic rock 
mass. In other words, as the rockbolt restrains the deformation of rock mass, a tensioned force 
in the rockbolt results in, and at the same time, it applies pressure to the rock mass. Therefore, 
the adjusted radial stress of the composite material is written by

 C
T

rr   (2)

where σ'r is the adjusted radial stress for composite material, T is the overall rockbolt tension 
force, and C is the rockbolt effective area calculated by (Fig. 2)

 C = Sl · Sc (3)
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r
rCC ii
i

0   (4)

where C0 is the rockbolt effective area at tunnel surface, L is the bolt length located in the plastic 
zone, and r is a variable showing the radial distance from tunnel center. Substituting Equation 
(4) into Equation (2) gives

 r
r

C
T i

rr
0

  (5)
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In this paper, the Hoek- Brown strength criterion (Hoek & Brown, 1980) is adopted for 
original rock mass

 
2
1

2
crcr sm   (6)

where σθ and σr are the circumferential and radial stresses, respectively. σc is uniaxial compressive 
strength of the intact rock material, and parameters m and s are rock mass constants depending 
on the nature of the rock mass and its geotechnical conditions. Equation (6) can be used for the 
rock mass strength before and after failure by using appropriate m and s. 

Substituting the adjusted radial stress of composite material into Equation (6) gives the 
strength criterion of composite material i.e.

 
2
1

2
crcr sm   (7)

Note that due to plane strain and the axial symmetry assumptions, the tangential and radial 
stresses, σθ and σr, will be principal stresses, σ1 and σ3, respectively. As well, due to the rigid 
connection assumption between bolt and its surrounding rock, presence of the bolts does not 
change the principal stress directions. 

Substituting Equation (2) into Equation (7) gives

 C
Ts

C
Tm crcr

2
1

2   (8)

The axial bolt force can be obtained by

 T = Ab · Es · εb (9)

where Ab and Es are bolt cross section area and the modulus of elasticity of bolt, respectively, 
and εb is axial bolt strain.

As explained in section 2, for Case I, continuing excavation process will not impose 
further radial tunnel convergence and the bolt force will remain constant and will be equal to 
pre-tensioned load, i.e.

 εb = εpre–ten (10)
and so forth

 T = Tpre–ten (11)

In this condition, tunnel convergence will be equal to its value prior to the bolt installation.
It should be noted that, according to the static equilibrium, the pre-tensioned load is constant 

along the bolt, and hence; its corresponding pressure applied along the bolt to its surrounding 
rock mass is uniform. However, this pressure within the rock mass is linearly decreased from the 
tunnel surface to the depth of rock mass due to the increasing the rockbolt effective area (Fig. 3). 
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where ppre–ten is the pre-tensioned pressure.
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For Case II, further radial displacements of the rock mass after full diminishing of the con-
strained stress become less than that of the pre-tensioned pressure leading a further tension to 
be imposed to the rockbolt. The additional bolt strain will be the same as radial rock mass strain 
due to the rigid connection assumption between them. Therefore 

 εb = εpre–ten + ε'r (13)

where ε'r is the radial strain within rock mass that takes place after installing the bolts. 

Prior to installing the bolts, on the other hand, a certain radial displacement of rock mass 
has occurred i.e. the plastic displacement in the initial plastic zone, r–e, and the elastic deforma-
tions in the greater plastic zone, re, have been already developed (Figure 4). Hence, Equation 
(13) can be rewritten as 

 eetenpre
e
rr

eitenprerr
b rrr

rrr
  (14)

(Note: re – ri = L)

where εr is total radial strain within plastic rock mass, ε–r and εr
e are the radial strain within the 

rock mass before installing the bolts in the initial and developed plastic zone, respectively. To 
obtain each of these radial strains, the rock mass stress-strain behavior is assumed elastic strain-
softening which is more appropriate behavior of most rock masses in tunnelling design (Hoek 
& Brown, 1997). Different approaches and formula have been presented to distribute stress and 
strain around tunnel for this behaviour (Brown et al., 1983; Alonso et al., 2003; Park et al., 2008; 
Lee & Pietruszczak, 2008; Wang et al., 2010; Ranjbarnia et al., 2014b)

However, as the aim of this paper is only to assess the critical and the effective parameters 
of the pre-tensioned grouted rockbolts, Brown et al. (1983) work (one of the simplest models) 
is used although it does not have very exact predictions (Alonso et al., 2003). The rockbolts pa-
rameters implemented into this approach is presented in Appendix 1 in the form of calculation 
sequence to obtain Ground Response Curve of reinforced tunnel.

Differential equation of equilibrium of original rock mass around tunnel at radius r from 
the tunnel centre in polar coordinates is given by

 rdr
d rr   (15)

Substituting the composite material criterion into Equation (15) results in the differential 
equation of equilibrium for the stronger rock mass

 r
C
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C
Tm

dr
d crc

r

2
1

2

  (16)

or
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r 0
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0   (17)
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in which 

 r
ri  (18)

For Case I, the ultimate tunnel convergence will be identical to that of the installing time. 
However, Equation (17) can be extended to this condition as follows

 r
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And for Case II 
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and
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  (21)

The differential Equation (19) has both boundary conditions of (1) and (2), while Equations 
(20) and (21) have boundary condition (1) and (2), respectively:

(1) At r = ri, σr = pi in which ri is the tunnel radius and pi is the magnitude of radial pressure 
in the tunnel surface.

(2) At r = re, σr = σre, in which σre is the radial stress at the outer boundary of plastic zone 
and is obtained as follows (Brown et al., 1983)

 σre = p0 – M · σc (22)
in which 
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1
21

0
2 mspmmM

c
  (23)

To plot Ground Response Curve or to calculate the ultimate radial convergence, the radial 
stress should be reduced to zero. This is because, in the first method, the material surrounding the 
tunnel is only considered as a stronger material and GRC of a stronger material is to be calculated.
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These differential equations can be solved by numerical method due to their algebraic 
complexity. An iterative finite difference solution on the basis of Brown et al. (1983) work is 
used. That is, the plastic zone is split into annular rings and calculations are starting from the 
unknown elastic-plastic interface towards the tunnel by incrementing the tangential strain value 
for each calculation step and then calculating the corresponding radial strain (Brown et al., 1983)

If equation (19) is rewritten for a ring r( j), it can be
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in which
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Note that the average value of parameters in the right hand side of Equation (19) (i.e. m, s, r,σr) 
were written in Equation (24) e.g. ma is the average value of m at two rings r( j –1) and r( j). 

where different parameters are in r( j –1) and r( j) radii. 
Defining some parameters and making simplifications results in the second order equation 

giving σr(j)
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and solution is
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where 
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Performing the same process for both Equations (20) and (21) changes the multiplier of 
second order as follows
for ri ≤ r ≤ r–e zone
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where 

 )()1(
*

jrjr   (35)

 
a

sb
C
EAK *

0

*
1 2

  (36)

 )()1(
*

jrjr   (37)

 
a

sb
C
EAK *

0

*
1 2

  (38)

and for r–e < r ≤ re zone
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where
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Note: superscript * refers to the first method.

3.2. The second method

As mentioned in Introduction, this method is on the basis of functional mechanism of grouted 
rockbolt in which reinforcement contribution is in the form of a radial load spread within its in-
fluencing zone. For tunnel with circular cross section, uniform in-situ stresses, and close spacing 
of the rockbolts, the differential equation of equilibrium is given as (Oreste, 2008)

 Cdr
dT

rdr
d rr 1   (42a)

or

 rC
r

dr
dT

rdr
d irr 1

0
  (42b)

Substituting failure criterion of original rack mass i.e. Equation (6) into Equation (42b) gives
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The above differential equations have the same boundary conditions as Equations (19)-(21).

To solve differential equation for Case I, it is assumed that the radial pressure must be 
reduced from p0 to ppre–ten in which ppre–ten is greater than β · p0 (the constrained stress at bolt 
installation time). That is, as the pre-tensioned pressure on tunnel surface ppre–ten is applied, it is 
added to β · p0 and then an outward radial elastic deformation occurs, and unloading takes place. 
Full diminishing of β · p0 associated with progressive advancement of tunnel face leads again 
to loading of the rock mass around tunnel and therefore, according to solid mechanics concepts, 
some inward radial elastic deformation occurs which its magnitude is dependent upon ppre–ten 
value. However, in this paper, small elastic deformations and variations of total deformations are 
disregarded in the formula, and hence; the ultimate radial convergence will almost be the same 
as that of the bolt installation time. The differential equation for this condition will be
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 rdr
d rr   (44)

with the following boundary condition (Ranjbarnia et al., 2014a, 2015)

(1) At r = ri, σr = pi in which β · p0 ≤ pi ≤ p0.

(2) At r = re, σr = σre.

From the mathematical point of view, on the other hand, as the load is constant along the 
bolt for Case I, dT/dr will be zero and Equation (44) will be obtained from Equation (43).

For Case II, after dwindling of the radial pressure on tunnel surface from the remained 
in-situ radial pressure i.e. β · p0 to pre-tensioned pressure i.e. ppre–ten, the radial deformations of 
rock mass will increase, and further tensioned is imposed to the bolt. This process is continued 
till to full diminishing of the constrained stress β · p0, and till to decreasing the radial pressure 
on tunnel surface to ppre–ten. Thus, the differential equation for this condition will be 

 rC
r

dr
dT

rdr
d irr 1

0
  (45)

with the following boundary conditions

(1) At r = ri, σr = pi in which ppre–ten ≤ pi ≤ p0 (this is just for ri < r ≤ r–e zone).

(2) At r = re, σr = σre (this is just for r–e < r ≤ re zone).

Equation (45) can be rewritten as (Ranjbarnia et al., 2015)
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Processing Equation (47) in the similar way performed for Equations (19)-(21) gives the 
multiplier of second order, respectively as follows (Ranjbarnia et al., 2015)
for ri < r ≤ r–e zone

 
22

)1(
**

1
**

1**
2

** 2
2

,
4

1 K
KK

KKb
K

a jr  
 

 

2( 1) 21 1
( 1) 2 1 12 2

4

** **
** ** **r j

r j a c
K K

c K K K s
KK

  (48)

where

 1
**

jrjrjrd   (49)

 

1
0 1

** **b s i

j j

A E r
K

C r r
  (50)

 )1()(
**

jrjrjrd   (51)

 

1
0 1

** **b s i

j j

A E r
K

C r r
  (52)

and for r–e < r ≤ re zone
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Note: superscript ** refers to the second method
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4. Examples

Ground Response Curve calculations, for a rock mass being reinforced by the pre-tensioned 
grouted rockbolts, are performed by the proposed methods. To quantify the effect of pre-tensioning, 
GRC calculations are also performed for the passive grouted rockbolts. Other parameters such as

• the magnitude of pre-tensioned load and
• bolt’s spacing

are investigated to identify the weight of each in tunnel stability. The examples were selected 
from (Ward et al., 1976; Brown et al., 1983)

Example 1. Verification of the proposed models results 
with that of to the Kielder experimental tunnel

According to Ward et al. (1976), total short-term movement of tunnel surface in the un-
supported section of mudstone with weak engineering properties (Table 1) was about 8 mm in 
which less than 1 mm had occurred before the face reached, and about 6 mm when the face had 
advanced 2 m beyond this position. If the reinforcement system was installed just in front of the 
face, it can be expected that tunnel closure was about 1-2 mm prior to bolt installation (assumed 
value is 1.5 mm in this paper). 

TABLE 1

Mechanical properties of mudstone in the Kielder experimental tunnel (Hoek & Brown, 1980)

Prarameter Value
Axial compressive strength σc (MPa) 37
Radius of tunnel, ri (m) 1.65
In-situ stress, p0 (MPa) 2.56
Deformation modulus, E (MPa) 5000
Poisson’s ratio of rock mass 0.25
Strength parameter, m peak 

s peak 
m residual 
S residual 

0.1
0.00008

0.05
0.00001

Dilation angle (degree) 10

Of the eight sections with different support systems in mudstone, one of them is only rein-
forced by passive grouted rockbolts (Table 2). 

TABLE 2

Geometrical parameters of passive grouted rockbolts in the Kielder experimental tunnel (Hoek & Brown, 1980)

The parameter The value
Fully grouted Rockbolt Length, L (m) 1.8 
Young’s modulus of rock bolt, Es (GPa) 210
Bolt diameter, db (mm) 25
Distance between rockbolt, Sl * Sc (m2) 0.9 * 0.9
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The corresponding ground response curves (Fig. 5) and output results (Table 3) show the 
calculated and measured deformations data at tunnel surface for supported and unsupported rock 
mass. As observed, the proposed methods can almost predict the identical results for the reinforced 
section, and agree, in a satisfactory way, with the in-situ measurements.

0

0,1

0,2

0,3

0,4

0 1 2 3 4 5 6 7 8 9

Pi
/P

0

Radial displacement (mm)

The First method The Second method Un-reinforced tunnel

Fig. 5. Ground response curves for the rock mass around Kielder experimental tunnel

TABLE 3

The measured deformations by (Ward et al., 1976) and the calculated deformations by the proposed methods 
at the rock surface for supported and unsupported rock mass

Parameter Measured Calculated
Un-reinforced tunnel 8 mm 8.05 mm

Passive grouted bolt section 4-5 mm
4.27 mm (the fi rst method)

3.96 mm (the second method)

In continue; the parameters associated to pre-tensioned grouted rock bolts are investigated. 
Note: the curves of GRC associated to the passive and the pre-tensioned reinforcements in 

Examples 2-5 are only calculated by the second method, meanwhile; the output results 
of both methods for these examples are available in Table 6. 

Example 2. Evaluating the performance of grouted bolts 
for Case I circumstance

A highway tunnel with 10.7 m in diameter is driven in a fair   to good quality limestone at 
a depth of 122 m below the surface (Brown et al., 1983) (Table 4). 
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TABLE 4

Mechanical properties of the rock mass (Brown et al., 1983) in Example 2-5 

Prarameter Value
Axial compressive strength σc (MPa) 27.6
Radius of tunnel, ri (m) 5.35
In-situ stress, p0 (MPa) 3.31
Deformation modulus, E (MPa) 1380
Poisson’s ratio of rock mass 0.25
Strength parameter, m peak 

s peak 
m residual 
S residual 

0.5
0.001
0.1
0

Dilation coeffi cients, f 1.2
h 2
α 3.5

The pre-tensioned grouted rockbolts are installed for Tpre–ten =17 ton. As can be calculated 
(Table 5), the pre-tensioned pressure is greater than the fictitious constrained pressure of tunnel 
face. Consequently, the circumstance of Case I will take place i.e. continuing excavation process 
will not induce any further tunnel convergence. 

TABLE 5

Geometrical parameters of reinforcement systems in Examples 2-5 

Example Rockbolt Density (m2) pre-tensioned force (ton) constrained pressure due 
to working face

2A* 17 16.5 ton/m2 (0.165 MPa)
2P* C0 = 1 0 16.5 ton/m2 (0.165 MPa)
3A C0 = 1 17 33.1 ton/m2 (0.331 MPa)
3P C0 = 0.5 0 33.1 ton/m2 (0.331 MPa)
4A C0 = 0.5 17 33.1 ton/m2 (0.331 MPa)
4P C0 = 0.5 0 33.1 ton/m2 (0.331 MPa)

5AI C0 = 1 21.25 33.1 ton/m2 (0.331 MPa)
5AII C0 = 0.75 17 33.1 ton/m2 (0.331 MPa)
5AIII C0 = 1 22.67 33.1 ton/m2 (0.331 MPa)

* Letters A and P in the examples denote the employing of active (pre-tensioned) and passive grouted rockbolt, respectively.
Note: The diameter of bolts in all examples is 25 mm.

The output results (Fig. 6 and Table 6) show the efficiency of pre-tensioning. The conver-
gence of tunnel by pre-tensioning of bolts is reduced considerably.
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Fig. 6. Ground response curve for the rock mass around tunnel in Examples 2

TABLE 6

The output results of Example 2-4

Example Approach

Ultimate convergence of tunnel 
reinforced by …. *

Plastic radius of tunnel 
reinforced by …. **

Pre-tensioned 
bolt Passive bolt Pre-tensioned Passive

2
The fi rst method 28.1 36.2 8.24 9.06

The second method 25.7 41.8 7.96 9.56

3
The fi rst method 25.5 31.2 7.94 8.57

The second method 24.7 35 7.84 8.94

4
The fi rst method 23.1 28.6 7.64 8.3

The second method 19.5 29.5 7.15 8.39
Unreinforced tunnel 78.4 12.27

* unit is millimetre
**unit is metre 

Example 3. Evaluating the performance of grouted bolts 
for Case II circumstance

If the pre-tensioned grouted rockbolts in Example 2 are installed sooner i.e. at section where 
pi = 0.1 p0 = 33.1 ton/m2, the circumstance of Case I will take place. 

Comparing the results of 3A and 3P (Table 6 and Fig. 7), the result shows that employing the 
pre-tensioned grouted rockbolts will not be as efficiency as the previous circumstances in Example 
2A (Case I). Hence, the less delay to install the bolt, the less need to apply the pre-tensioned load.

On the other hand, if the bolts are installed with great delay i.e. the tunnel advancement is 
so long that insignificant and least constrained radial pressure of tunnel head is remained prior 
to bolt installation, the bolt may be much pre-tensioned to apply greater initial pressure to the 
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tunnel surface (trying to alter or close the condition from Case II to Case I). However, it may 
lead to bolts with a final load too close to yield. 

Reducing spacing of bolts may be an appropriate alternative for pre-tensioning of bolts to 
confine tunnel convergence in case increasing pre-tensioned force is impossible and is insufficient 
or else the bolt will yield. Example 4 evaluates this issue.
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Reinforced by Pre-tensioned grouted bolt, Tpre = 17 ton, C = 1
Reinforced by Passive grouted bolt, Tpre = 0 ton, C = 1
Un-reinforced tunnel

Fig. 7. Ground response curve for the rock mass around tunnel in Examples 3

Example 4. Evaluating the influence of bolts density in the performance 
of pre-tensioned grouted bolts in tunnel stabilization 

In this example, the effect of rockbolt density is evaluated. Pre-tensioned grouted rockbolts 
in Example 3 are installed with C0 = 0.5 m2. In this case, the circumstance of Case I is produced, 
and the convergence will be significantly reduced in comparison to employing of passive grouted 
bolts (Table 6 and Fig. 8). 

Example 5. Comparing the increase of bolt density parameter 
with the increase of pre-tensioned force in tunnel stabilization 

The weighting of spacing of bolts and increasing the pre-tensioned force which both increase 
the radial pressure are quantified and compared. Both parameters variations have the identical 
influence on confining of the convergence and stability of tunnel provided they lead Case I to 
occur. However, if the pre-tension force is increased by α percent, the ratio of new corresponding 
pressure to the radial constrained pressure on tunnel surface will be
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or

 inewi pp 1,   (58b)

On the other hand, reducing bolts’ spacing as α percent gives the following result for tunnel 
surface pressure
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Comparing the Equations (58b) and (59b) gives

 newinewi pp ,,   (60)

Therefore, it can be concluded that reducing spacing of bolts is more effective than increas-
ing of the pre-tensioned force. On the other hand, this parameter has great influence on confining 
convergence in the case of passive grouted rockbolts. This is because; it reflects the reinforcement 
density in the rock mass. In other words, reducing spacing of bolts not only efficiently increases 
tunnel surface pressure but also effectively improves broken rock mass strength. 

In this Example, the pressure on tunnel surface is increased up to 25% either of the pre-
tensioned force or the rockbolt density. As output results show (Table 7 and Fig. 9), the rockbolt 
density has more effect in tunnel stability than the pre-tensioned force. This is because; the radial 
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Fig. 8. Ground response curve for the rock mass around tunnel in Examples 4
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pressure will be greater while increasing rockbolt density. However, if the pressure on tunnel 
wall is improved by increasing the pre-tensioned force to the magnitude achieved by increasing 
rockbolt density i.e. ppre–ten = 22.67 ton/m2, the supporting performance of bolts will not be as 
effective as the case of increase in the bolt density (Example 5AII and 5AIII).
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Fig. 9. Ground response curve for the rock mass around tunnel in Example 5

TABLE 7

The output results of Example 5

Example Ultimate convergence (mm) Plastic radius (m)
3 24.7 7.84

5AI 23.2 7.69
5AII 22.7 7.58
5AIII 22.8 7.6

5. Conclusions

Two new analytical approaches were proposed for the computation of the Ground Response 
Curve of a circular tunnel reinforced by the pre-tensioned grouted rockbolts, and also computa-
tion of ultimate plastic zone around tunnel. These models were developed on the basis of short-
term convergence of tunnel i.e. tunnel convergence would only occur in term of reducing the 
constrained stress on surface due to tunnel face advancement. Consequently, the value of the 
constrained radial stress at bolt installation time and applied pre-tensioned pressure on tunnel 
were focused on in process of modeling. 
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Different examples were solved by these approaches. The results obtained through these 
two models were almost identical and comparable. The results showed pre-tensioning of grouted 
rockbolts will be very appropriate option when installation of rockbolts is carried out with delay.
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APPENDIX 1
Ground response curve calculation for reinforced rock mass

Input data

σc : un-axial compressive strength of intact rock pieces;
m, s : material constants for original rock mass;
E, ν : Young’s modulus and Poisson’s ratio of original rock mass;
mr, sr : material constants for broken rock mass;
f, h : gradients of –ε3

p vs. –ε1
p lines;

α : constant defining strain at which residual strength is reached;
p0 : in situ hydrostatic stress;
ri : internal tunnel radius;
Ab : cross section area of each bolt;
Es : Young’s modulus of bolt;
C : bolt’s spacing;
Tpre–ten : pre-tensioning force;
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Preliminary Calculations

(1) 
842
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21

0
2 mspmmM

c

(2) G = E/ [2(1 + ν)]
(3) εpre–ten = Tpre–ten /(AbEs)

(4) r(1) = re

(5) εθ(1) = εθ(e) = Mσc /2G

(6) εr(1) = εr(e) = –Mσc /2G 

(7) σr(1) = σre = p0 – M · σc

(8) σθ(1) = σθ(e) = p0 + M · σc

(9) m(1) = m

(10) s(1) = s

(11) ω(1) = 0

(12) λ1 = r(1) /re = 1

Sequence of calculations for each ring by the first method

(1) dεθ = 0.005εθ (1)

(2) εθ( j) = εθ(j–1) + dεθ 
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(14) If ppre–ten ≥ β · p0, then go to step 15, otherwise go to step 21
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Note: the value of ζ has not great influence on ultimate solution.
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 r–e ≤ r ≤ re 

(29) Δ = b*2 – 4a*c*
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(31) If σr ( j ) > pi, then increment j by 1 and repeat the calculation sequence for next ring.

(32) If σr ( j ) ≈ pi, then r( j ) = ri; re = r( j ) /λ( j ). 

Note: pi should be gradually decreased to zero.

(32) If σr ( j ) ≈ β · p0, then r–e = re 

(32) The radii of all the rings may now be calculated, using r( j ) = λ( j ) · re 

(32) The displacement values of rings may be determined from the previously computed 
values of uj = –εθ( j) · r( j ) 

Sequence of calculations for each ring by the second method

Steps (1) to (13) are repeated as for the first method.

(14) If ppre–ten ≥ β · p0, then go to step 15, otherwise go to step 19
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(18) Now, go to step 27

(19) If σr ( j –1) > β · p0 and then ω( j ) = 0, other wise ω( j ) = ω(j–1) + 1
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(27) ****2** 4 cab  
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(29) If σr ( j ) > pi, then increment j by 1 and repeat the calculation sequence for next ring.

(30) If σr ( j ) ≈ pi, then r( j ) = ri; re = r( j ) /λ( j ). 

Note: pi should not be decreased from ppre–ten.

(31) If σr ( j ) ≈ β · p0, then r–e = re 

(32) The radii of all the rings may now be calculated, using r( j ) = λ( j ) · re

(33) The displacement values of rings may be determined from the previously computed 
values of uj = –εθ( j) · r( j )


