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PARTIAL LEAST SQUARES METHOD IN THE ANALYSIS OF THE INTENSITY 
OF DAMAGE IN PREFABRICATED LARGE-BLOCK BUILDING STRUCTURES

METODA CZĄSTKOWYCH NAJMNIEJSZYCH KWADRATÓW 
W ANALIZIE INTENSYWNOŚCI USZKODZEŃ BUDYNKÓW WIELKOBLOKOWYCH

The paper presents the research methodology aimed at determining the building damage intensity index 
as a linear combination of indices describing the damage to its individual components. The research base 
comprised 129 building structures erected in the large-block technology. The study compared the results 
of a standardized approach to data mining – PCA (Principal Components Analysis) with the procedure 
of the PLSR method (Partial Least Squares Regression). As a result of the analysis, a generalized form 
of the building damage index was obtained, as a linear combination of the damage to its components.

Keywords: Principal Components Analysis, Partial Least Squares Regression, mining effects, technical 
condition of building

W referacie przedstawiono metodykę badań, której celem było ustalenie wskaźnika zakresu intensyw-
ności uszkodzeń budynku, jako kombinacji liniowej wskaźników opisujących uszkodzenia jego elementów 
składowych. Bazą do badań było 129 budynków wzniesionych w technologii wielkoblokowej. W badaniach 
porównano wyniki standardowego podejścia do eksploracji danych PCA (Principal Components Analysis) 
z procedurą metody PLSR (Partial Least Squares Regression). W wyniku analiz uzyskano uogólnioną 
postać wskaźnika uszkodzeń budynku jako kombinacji liniowej uszkodzeń elementów składowych. 

Słowa kluczowe: analiza składowych głównych, regresja cząstkowych najmniejszych kwadratów, 
wpływy górnicze, stan techniczny budynków

1. Introduction

Due to the impact of mining activities, the buildings located in mining areas require, inter 
alia, a detailed assessment of their technical condition. This survey is carried out to evaluate 
their resilience to mining effects and to determine the extent of the necessary preventive safety 
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measures, as well as to identify the extent of possible mining damage. As far as the develop-
ment of mining areas is concerned,  multi-family and public utility building structures, erected 
in the large-block technology, are of a particular importance, both in technical and social terms. 
During the assessment of the technical condition of these objects, evaluation of the extent and 
the intensity of damage is especially difficult, both in the context of identifying the causes of its 
occurrence, as well as the methods for its repair (e.g. Wodyński, 2007).

The research presented in this article aimed at determining the building damage intensity 
index as a linear combination of indices describing the damage to its individual components 
(both structural and secondary).

The research base created by the authors comprised 129 building structures erected in the 
large-block technology, located in the Legnica-Głogów Copper District (LGOM). 22 indices 
were pre-specified for these objects, describing damage to all their structural and secondary 
components (Firek, 2009). Given the relatively large number of variables (22 damage intensity 
indices wui) and statistically significant mutual correlations between individual indices, it was 
determined that there was a need for the initial evaluation and selection of the variables for the 
modeling of a course of a building technical wear, planned for the subsequent stages of the research. 
Eventually, two methods were adopted, which enabled to determine the building damage index 
as a dominant principal component in the input variable space. The first one was the method of 
principal components (PCA – Principal Components Analysis), used on regular basis to deal with 
such issues (e.g. Osowski, 2013). The second method was based on the results of the NIPALS 
iterative algorithm (Nonlinear Partial Least Squares), used in the PLSR method (PLSR – Partial 
Least Squares Regression) (e.g. Geladi et al., 1986; Rosipal et al., 2006; KeeSiong Ng., 2013; 
Varmuža et al., 2009).

The PCA method is commonly used as a tool for reducing the dimensionality of data. It 
involves finding the values and eigenvectors of covariance matrix built for the full set of input 
variables. In the basic approach, with identifying the individual principal components, only the 
attributes in the input variable space are analyzed (Osowski, 2013). The method of identifying 
principal components in the PLSR method is a greater generalization in relation to the PCA method.

Basically, the PLSR method can be broken down into two simultaneous steps (e.g. Geladi et 
al., 1986). The first one involves identifying the principal components in the input variable space, 
and the second one – the relationships binding these components with the dependent variable. 
As part of the presented study, the PLSR method was used at the level of identifying individual 
principle components and their subsequent verification. Such a course of action allows to find 
one of the most efficient linear combinations between input variables.

A measure for the verification of individual principal components is the coefficient of 
determination R² for univariate regression models which were created based on the individual 
principal components identified using the PCA and PLSR methods. This measure gives an idea 
of a degree of contribution of a given principal component in explaining the variance contained 
in the output variables.

The advantages of the PLSR method, as compared with the PCA method, include among 
others (e.g. Wise B. M.):

– a possibility to identify any number of principal components, dependent exclusively on 
the number of variable attributes, not on the number of cases collected in the database,

– a possibility to iteratively identify principal components in the input variable space, while 
maintaining a relationship with the dependent variable,
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– an identified set of principal components, due to the iterative procedure used, is insensi-
tive to the deviation of the variables from the requirements set for the standard linear 
models,

– it is possible to analyze both continuous and categorical variables.

2. Methodology of the research

The PCA method involves determination of the values and eigenvectors of the covariance 
matrix. Therefore new, mutually uncorrelated linear combinations of input variables are obtained. 
It is aimed for each of the new variables to be characterized by the largest possible variance (e.g. 
Osowski, 2013, Wise B. M.).

The PLSR method assumes that both the variables from the input space X and output space Y 
can be written as the sum of the linear combinations of the vectors t and p as well as q and u, 
i.e. the so-called scores and loadings. These relationships have the following form (Rosipal et 
al., 2006):
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where:
 X = {x1, x2,...,xi,...,xm} — the input variable space,
 Y = {y1, y2,...,yi,...,ym} — the output variable space,
 a — arbitrarily determined number of principal components,
 t,p — parameters of linear combinations: scores,
 q,u — parameters of linear combinations: loadings,
 T,Q — block scoring matrix (n X a)
 PT,UT — block loading matrix (a X m).

The PLSR method in the classical form based on the NIPALS iterative algorithm lead to 
finding vectors w and c (normalized vectors t and u) in order to consequently maximize the 
covariance between the projected input and output variable space to the normalized directions t 
and u, respectively (w and c) (KeeSiong Ng., 2013):
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As a result, using the NIPALS iterative procedure (Geladi et al., 1986), the decomposition 
of the vectors of the state of the input variables and the dependent variable (1) and (2) was ob-
tained, as assumed at the beginning. The individual component vectors  of the matrix P are the 
tangent coefficients of the subsequent principal components identified during the construction 
of the PLSR model.
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3. Database of prefabricated large-block buildings

3.1. Technical characteristics of the study group of buildings

The research studies used the information collected during the building surveys carried out 
with the participation of the authors in the years 2002-2010 (surveying documentation, 2002-
2010). A database of 129 residential and public utility buildings, not older than 35 years, located 
in the Legnica-Głogów Copper District (LGOM) was created. All the structures subject to the 
analysis were erected in the large-block technology, in the systems of large blocks (WBL) and 
large blocks for school buildings (SzWBL). Most of the structures were built as multi-segmented, 
split by expansion joints. In 93.8% of the cases, the surveyed buildings had no more than five 
storeys. The foundation of most buildings was on a constant level, mostly with a basement 
(85.3%). The dominant construction system (68.0%) was a system of transverse load-bearing 
walls. The analyzed structures were characterized by high rigidity, resulting from the reinforced 
concrete prefabricated structure made of the so-called Żerań brick. This system consisted of wall 
diaphragms, connected by vertical joints and stiffened horizontally by floor slabs, connected 
with a tie beam to the walls. The foundation and basement walls of all the studied buildings 
were made as reinforced concrete or concrete monolithic. The ceilings above basements, in 
most cases (89.1%), and all the ceilings in higher floors, were made as prefabricated reinforced 
concrete. According to the database, the buildings had a ventilated bipartite flat roof, primarily 
made of prefabricated roofing beams, based on honeycomb walls. Most of the surveyed buildings 
(96.9%) had preventive protection against mining impacts. These included reinforced concrete 
footings founded on a constant level with additional longitudinal reinforcement and reinforced 
concrete tie beams at the ceiling levels. The ceilings above the basements and last floors were 
monolithized with reinforced concrete topping and reinforced concrete shear studs in the corners 
of the basement walls.

3.2. Technical condition and the extent of damage to the surveyed 
buildings

The measure of the technical condition of buildings is the degree of wear. In this research, the 
degree of technical wear was determined for individual buildings using the method of weighted 
average, taking into account individual construction and technological solutions (e.g. Wodyński, 
2007). Most of the studied buildings had the degree of wear within the range of 20-50%. This 
means that due to the aging processes, the technical condition of the buildings ranged between 
good and average (Wodyński, 2007).

In order to examine the importance of damage in the technical wear of each building, quali-
tative damage intensity index wui was determined for the individual structural and non-structural 
components (Table 1). This index was defined in (Firek, 2009) in a 6-point scale, in which wui = 0 
means that the damage does not occur, wui = 1 – slight damage, wui = 2 – moderate damage, 
wui = 3 – intensive damage, wui = 4 (and 5) – very intensive damage.

Preliminary analysis of the value of the damage intensity index wui in the study group of 
buildings proved that most of the objects were damaged slightly or moderately.

In the analyzed group of buildings, the elements of the load-bearing structure did not exhibit 
any damage that could threaten the safety of the structure. The elements which were damaged 
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to the greatest extent were elevation layers and load-bearing overground walls. For most objects 
(80.6%), the index of damage to the elevation layers wu17 was qualified as grade 2 or 3 (moder-
ate or intensive damage).

4. Research results

Prior to the study, the input variables were analyzed for their variance The initial database 
comprised damage indices, sequentially wu1, wu2, to wu22. Preliminary analysis of the variance 
of individual attributes allowed to leave the following damage indices for further analysis: wu2, 
wu3, wu7, wu11, wu12, wu13, wu17. Other indices were rejected after the analysis of their diversity 
of values for all the buildings collected in the database.

Finally, a reduced set of damage indices was subjected to the PCA and PLSR analyses, 
performing calculations in Matlab (Matlab ...). As a result of these analyses, seven principal 
components each were obtained, respectively. Then, using the individual principal components, 
univariate simple linear regression models were determined for prediction of the degree of techni-
cal wear of buildings for which the values of coefficients of determination R² were determined.

In addition, for all the principal components obtained by the two methods, relative reduc-
tion in the raw variance contained in the input variables, due to the identification of respective 
principal components, was evaluated.

Tables 2 and 3 illustrate the linear formulas of the identified principal components. The 
results are presented for the standardized variables. Standardization of the variables allows for 
the assessment of relative contributions of the individual indices, introduced by specific damage 
to the appropriate principal component.

TABLE 1 

Intensity indices of damage to components of a building structure
Source: own study

Designation Index description
1 2

Components of load-bearing structure
wu1 intensity of damage to foundations
wu2 intensity of damage to load-bearing walls of the basement or to foundation walls

wu3
intensity of damage to interior and exterior overground load-bearing walls (including 
lintels and walls under windows)

wu4 intensity of damage to fi rewalls
wu5 intensity of damage to components of framed load-bearing structure (columns, transoms)
wu6 intensity of damage to ceilings over basements
wu7 intensity of damage to ceilings over higher levels, fl at roof (roof covering)
wu8 intensity of damage to stairs
wu9 intensity of damage to balconies and loggias (as well as eaves and cornices)
wu10 intensity of damage to roof structure

Secondary components (fi nishing elements)
wu11 intensity of damage to partition walls
wu12 intensity of damage to internal plasters and wall cladding
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1 2
wu13 intensity of damage to fl oors (fl oor layers)
wu14 intensity of damage to chimney walls
wu15 intensity of damage to bracings (elements ensuring spatial rigidity)
wu16 intensity of damage to infi ll (or curtain) walls
wu17 intensity of damage to facade (facade layers)
wu18 intensity of damage to damp-proof insulation
wu19 intensity of damage to roofi ng
wu20 intensity of damage to fl ashings, gutters and downpipes
wu21 intensity of damage to joinery

wu22
intensity of damage to exterior elements (entrances to buildings, platforms, terraces, wall 
trims, etc.)

TABLE 2

 Summary of the forms of the subsequent principal componentsobtained by the PCA method 
for standardized variables

Source: 

Coeffi cients
of the linear 
combination

Forms of the subsequent principal components
PCi = a2wu2 + a3wu3 + a7wu7 + a11wu11 + a12wu12 + a13wu13 + a17wu17

PC1 PC2 PC3 PC4 PC5 PC6 PC7

a2 0,21 0,52 0,77 –0,09 –0,26 0,11 0,04
a3 0,44 0,22 0,05 0,01 0,80 –0,18 –0,29
a7 0,37 0,23 –0,26 0,79 –0,32 –0,11 –0,08
a11 0,46 –0,28 –0,09 –0,16 –0,14 0,73 –0,37
a12 0,44 –0,37 0,14 0,10 0,15 0,05 0,79
a13 0,44 –0,25 –0,02 –0,40 –0,38 –0,63 –0,20
a17 0,18 0,59 –0,56 –0,42 –0,07 0,12 0,34

Table 4, on the other hand, illustrates the results of a simulation and evaluation of univariate 
regression models for the individual principal components identified by each method.

To complement the analysis, Table 5 summarizes the degree of variance explained in the 
input variable space by the subsequent principal components by the PCA and PLSR methods.

Tables 2 and 3 highlight these principal components, which defined as one generalized vari-
able in the simple linear regression model give the best degree of fitting, and thus the contribution 
of these components in explaining the variance of the output variables is the highest (cf. Tab. 4). 
It is important that the dominant principal component determined by the PLSR method is more 
effective in this regard. The efficiency, in this case, lies in the fact that one dominant component 
of the PLSR methods used in the simple regression model allows for an explanation of the vari-
ance of more than two principal components identified by the PCA method.

On the other hand, Table 5 summarizes the levels of explaining the variance contained in 
the input variable space. As it can be seen at this stage, the PLSR method has a higher degree 
of explaining the variance contained in the variables already at the level of the first principal 
component. Comparing both methods, it can be stated that in order to achieve the same level of 
explaining the variance of the input variables, the PCA method (to catch up with the result of the 
PLSR method) needs at least two principal components (cf. Tab. 5).
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TABLE 3

 Summary of the forms of the subsequent principal componentsobtained by the PLSR method 
for standardized variables

Source: 

Coeffi cients 
of the linear 
combination

Forms of the subsequent principal components
PCi = a2wu2 + a3wu3 + a7wu7 + a11wu11 + a12wu12 + a13wu13 + a17wu17

PC1 PC2 PC3 PC4 PC5 PC6 PC7

a2 0,44 –0,04 –0,57 0,64 –0,63 0,09 0,05
a3 0,46 –0,32 –0,10 –0,40 0,17 0,55 –0,56
a7 0,40 –0,28 –0,26 –0,11 0,60 –0,66 0,43
a11 0,20 –0,49 0,47 0,03 –0,16 –0,41 –0,44
a12 0,10 –0,56 0,28 0,51 0,15 0,28 0,06
a13 0,21 –0,46 0,46 –0,40 –0,40 0,10 0,55
a17 0,58 0,22 0,31 –0,05 0,10 0,00 0,06

TABLE 4

 Summary of the influence of individual principal componentsobtained by the PLSR and PCA methods 
on the variance of the explained variable sz

Source: 

Number of the principal 
component

PCA PLSR
Values of the coeffi cient of determination R2

PC1 2,48 8,16
PC2 6,25 0,62
PC3 2,03 0,01
PC4 0,00 0,44
PC5 0,04 0,75
PC6 0,03 0,49
PC7 1,11 0,01

TABLE 5

Summary of the influence of the principal components obtained by the PCA and PLSR methods 
on the variance contained in the input space of the standardized variables

Source: 

Number of the principal 
component

PCA PLSR
The degree of explaining variance contained in the input variables (%)

PC1 50,36 80,28
PC2 23,24 14,55
PC3 8,89 0,88
PC4 8,07 1,42
PC5 4,96 0,64
PC6 2,54 1,02
PC7 1,94 1,19
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From the analysis of the contained results it can be concluded that:
– the PCA method can be used as a tool for reducing dimensionality, as evidenced by a high level 

of variance explained by subsequent principal components (cf. Tab. 5). However, its use in 
a situation when one generalized variable is sought for future model analyses is limited 
for the following reasons:
• principle components obtained by this method are characterized by a certain dispersion. 

Comparing the results contained in Table 4, it can be noticed that the PCA method 
requires at least two principal components to be generated to equal the level of the 
infl uence on the explanation of the variance of the dependent variable with one, fi rst 
component of the PLSR method; a similar situation occurs in the case of a variance 
analysis contained in the input variable space (cf. Tab. 5),

• linear combination coeffi cients obtained by the PCA method, for the dominant prin-
cipal component, take negative values (cf. Tab. 2), which is in contradiction to the 
observations and physics of the phenomenon (Wodyński, 2007),

– on the other hand, in the PLSR method, the principal components are generated so as to 
ensure a high level of explanation of the variance in both the space of the input variable 
and the dependent variable sz (Tab. 4 and 5). The first identified principal component 
allows to explain over 80% of the variance contained in the input space, as well as, more 
importantly, helps to explain more than 8% of the variance contained in the raw set of the 
output variables sz. In addition, the linear combination coefficients for the first, dominant 
principal component emphasize that increased intensity of damage is accompanied by an 
increase in technical wear.

5. Summary and conclusions

The subject of the study comprised data on damage to individual structural and secondary 
components of a group of large-block buildings located in the Legnica-Głogów Copper District 
(LGOM). The main objective of the analysis was to identify a methodology allowing for a pre-
liminary data analysis and for identifying damage index of the whole building, which could be 
used to analyze the effect of mining impacts on the technical condition of this kind of a struc-
ture.

The methods in the field of Data Mining, i.e. the PCA and PLSR analyses were adopted 
for the research study.

The following conclusions were drawn therefrom.
It was found that the PLSR method was more efficient at the level of a preliminary data 

analysis than the PCA method. This is an effect of the iterative identification of principal compo-
nents in the input variable space in the PLSR method, which occurs with a permanent relationship 
with the dependent variable.

It was proved that the first principal component may be the initial approximation of a gen-
eralized degree of damage to a prefabricated large-block building; it is generated by the PLSR 
method and takes the following form:
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This formula can be used to assess the technical condition of buildings erected in the large-
block technology.

The article was prepared within the scope of the AGH Statutory Research no. 11.11.150.005.
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