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Abstract. Target manoeuvre is one of the key factors affecting guidance accuracy. To intercept highly maneuverable targets, a second-order 
sliding-mode guidance law, which is based on the super-twisting algorithm, is designed without depending on any information about the 
target motion. In the designed guidance system, the target estimator plays an essential role. Besides the existing higher-order sliding-mode 
observer (HOSMO), a first-order linear observer (FOLO) is also proposed to estimate the target manoeuvre, and this is the major contribution 
of this paper. The closed-loop guidance system can be guaranteed to be uniformly ultimately bounded (UUB) in the presence of the FOLO. 
The comparative simulations are carried out to investigate the overall performance resulting from these two categories of observers. The re-
sults show that the guidance law with the proposed linear observer can achieve better comprehensive criteria for the amplitude of normalised 
acceleration and elevator deflection requirements. The reasons for the different levels of performance of these two observer-based methods 
are thoroughly investigated.
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matched disturbances. However, the chattering phenomenon is 
the major obstacle for the implementation of SMC in practice, 
and a number of methods have been proposed to reduce the 
chattering. Levant first proposed the higher-order sliding mode 
(HOSM) control method to attenuate the chattering [9–12]. 
The second-order sliding mode control is the most widely used 
HOSM method in which the super-twisting algorithm is uti-
lised to attenuate the differentiable disturbance and ensure the 
finite-time stability [13, 14]. To intercept highly manoeuvrable 
targets, the second-order sliding mode methods were utilised 
in [13] and [14], based on the nonlinear observers, which are 
used to check the uncertainty caused by target manoeuvres. 
However, in many simulations, it is readily observed that the 
guidance commands (acceleration) generated by the proposed 
guidance laws of [13] and [14] exhibit the properties of os-
cillation with a large amplitude. Comparing the fundamental 
guidance component with the observer component, the latter 
contributes to this phenomenon much more. Hence, an effec-
tive estimation approach is urgently needed to deal with highly 
manoeuvrable targets.

Han proposed a novel philosophy, namely the active dis-
turbance rejection control (ADRC) algorithm [15, 16], which 
has attracted wide attention in the past decade. The core of 
ADRC is an extended state observer (ESO) that can accurately 
observe the total disturbance. Han originally presented the ESO 
in a nonlinear form [15], which is too complicated to tune, and 
is difficult to be implemented. In [16], a linear ESO (LESO) 
was proposed in terms of frequency bandwidth, which provides 
a useful design approach in practical applications. Although this 

1.	 Introduction

Classical proportional navigation (PN) is widely used in prac-
tice, but it is the optimal guidance law only for intercepting 
one non-manoeuvrable or weakly manoeuvrable target [1]. To 
intercept highly manoeuvrable targets, the miss distance would 
increase considerably if the traditional PN law was employed 
and the performance would be unacceptable. Therefore, several 
improved PN laws have been proposed [2, 3]. These guidance 
algorithms can reduce the miss distance, but the target ma-
noeuvre information must be known in advance. The optimal 
guidance investigation is also a hot debated topic [4, 5]. None-
theless, the target velocity variation was not considered in [4], 
and the optimal guidance law from [5] can be realised only in 
the presence of accurate knowledge of the target manoeuvre. 
An H� guidance law was proposed in [6], wherein the target 
manoeuvre was treated as an unpredictable disturbance, and 
a favourable interception performance for arbitrary scenarios 
of target manoeuvres could be guaranteed if the target acceler-
ation is bounded; however, the huge computational complexity 
is a severe constraint to the implementation of this H� method. 
These deficiencies limit the practical applications of the above 
strategies.

Since the sliding mode control (SMC) method was firstly 
proposed, it has attracted a lot of researchers worldwide [7, 8] 
due to its robustness to parameter perturbations and external 
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linear observer is simple and there is only one tunable param-
eter, it has demonstrated its effectiveness when applied to con-
trol diverse nonlinear systems [17–21]. In addition, a binary 
distillation column can be controlled by using a linear propor-
tional-integral observer in [22]. In [23], a polynomial controller 
was proposed for a quad-rotor unmanned aerial vehicle (UAV) 
combined with a linear observer to deal with bounded uncer-
tainties and disturbances. Therefore, a linear observer is still 
a useful tool in coping with nonlinear control problems.

In this research, a second-order sliding mode guidance law 
is designed based on the super-twisting algorithm to intercept 
highly manoeuvrable targets. To estimate the target manoeuvre 
and compensate it, a first-order linear observer (FOLO) is pro-
posed in the guidance law, which is the major contribution of 
this study. The advantage of our work is that it has significantly 
weak requirements of elevator deflection in contrast with the 
nonlinear observer-based method in [13]. The comprehensive 
stability of the proposed sliding mode guidance law is also 
investigated when it is combined with the FOLO. In the nu-
merical simulations, the effects of the proposed method and 
the original nonlinear observer-based method [13] are com-
paratively illustrated. The reason behind the different perfor-
mance for these two observer-based methods is thoroughly 
investigated.

The remainder of this paper is organised as follows. In 
section 2, a mathematical model of the guidance problem is 
presented. The second-order sliding mode guidance law based 
on the super-twisting algorithm and the FOLO is proposed in 
section 3. The stability analysis is presented in section 4. Sec-
tion 5 furnishes the comparative simulation results. Finally, the 
concluding remarks are given in the last section.

2.	 Formulation of missile-target engagement 
kinematics

The geometry of planar interception is depicted in Fig. 1. The 
engagement kinematics are (as presented in [13, 14])
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where q  is the line-of-sight (LOS) angle; R  is the range 
along LOS; M and T  are the flight path angles of the 
missile and the target, respectively; V  and V  are the 
relative velocity components parallel with the LOS and 
normal to the LOS, respectively; Ta
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Fig. 1. Engagement geometry of target and missile. 

3. Guidance law design  

3.1 Preliminary of super-twisting algorithm 
Consider the following sliding mode: 

( )f t u   

where   is the sliding variable and u  is the control 
variable, f  is a sufficiently smooth uncertain function 
[13].  The disturbance term f  is to be cancelled by means 
of a special observer to be developed. 
Lemma 1 [12, 24] 

Consider the system (2) without the uncertain term or 
0f   and select the control as 

1/2
1 2sign( ) sign( )u d         

where 1  and 2  are real positive constants. Then 
0    can be achieved in a finite time. 

Combining (2) and (3) yields 

1/2
1
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which is the super-twisting algorithm. 
Refer to [12, 13] for the proof of Lemma 1. Note that 

(3) is a special nonlinear PI controller with 1  and 2  as 
its proportional and integral coefficients, respectively. 

3.2 Second-order sliding mode guidance law 
formulation 

The guidance objective is to achieve a hit-to-kill that 
means ( ) 0fR t   where ft  is the impact time. In [13, 25], 

this objective desires 0R   or 0V   in the guidance. 
Substituting (1c) into (1b) yields 
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Fig. 1. Engagement geometry of target and missile. 
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where q is the line-of-sight (LOS) angle; R is the range along LOS; 
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respectively; VΠ and V? are the relative velocity components par-
allel with the LOS and normal to the LOS, respectively; aTΠ and aT? 
are the target acceleration along and normal to the LOS, respec-
tively, and aTΠ = aT sin(q ¡ θT) and aT? = aT cos(q ¡ θT); aM  and 
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3.1. Preliminary of super-twisting algorithm. Consider the 
following sliding mode:
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law is designed based on the super-twisting algorithm to 
intercept highly manoeuvrable targets. To estimate the 
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simulations, the effects of the proposed method and the 
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The remainder of this paper is organised as follows. In 
section 2, the mathematical model of the guidance 
problem is presented. The second-order sliding mode 
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is presented in section 4. Section 5 furnishes the 
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3. Guidance law design  
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where   is the sliding variable and u  is the control 
variable, f  is a sufficiently smooth uncertain function 
[13].  The disturbance term f  is to be cancelled by means 
of a special observer to be developed. 
Lemma 1 [12, 24] 

Consider the system (2) without the uncertain term or 
0f   and select the control as 
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which is the super-twisting algorithm. 
Refer to [12, 13] for the proof of Lemma 1. Note that 

(3) is a special nonlinear PI controller with 1  and 2  as 
its proportional and integral coefficients, respectively. 

3.2 Second-order sliding mode guidance law 
formulation 

The guidance objective is to achieve a hit-to-kill that 
means ( ) 0fR t   where ft  is the impact time. In [13, 25], 

this objective desires 0R   or 0V   in the guidance. 
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,� (2)

where σ is the sliding variable and u is the control variable, f is 
a sufficiently smooth uncertain function [13]. The disturbance 
term f is to be cancelled by means of a special observer to be 
developed.

Lemma 1. After [12, 24], consider the system (2) without the 
uncertain term or f = 0 and select the control as:
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where   is the sliding variable and u  is the control 
variable, f  is a sufficiently smooth uncertain function 
[13].  The disturbance term f  is to be cancelled by means 
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Lemma 1 [12, 24] 
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(3) is a special nonlinear PI controller with 1  and 2  as 
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where α1 and α2 are real positive constants. Then σ ̇  = σ = 0 can 
be achieved in a finite time.

Combining (2) and (3) yields
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rotor unmanned aerial vehicle (UAV) combining with a 
linear observer to deal with bounded uncertainties and 
disturbances. Therefore, a linear observer is still a useful 
tool in coping with nonlinear control problems. 
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law is designed based on the super-twisting algorithm to 
intercept highly manoeuvrable targets. To estimate the 
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observer (FOLO) is proposed in the guidance law, which 
is the major contribution of this study. The advantage of 
our work is that it has significantly weak requirements of 
elevator deflection in contrast with the nonlinear observer-
based method in [13]. The comprehensive stability of the 
proposed sliding mode guidance law is also investigated 
when it is combined with the FOLO. In the numerical 
simulations, the effects of the proposed method and the 
original nonlinear observer-based method [13] are 
comparatively illustrated. The reason behind the different 
performance for these two observer-based methods is 
thoroughly investigated. 

The remainder of this paper is organised as follows. In 
section 2, the mathematical model of the guidance 
problem is presented. The second-order sliding mode 
guidance law based on the super-twisting algorithm and 
the FOLO is proposed in section 3. The stability analysis 
is presented in section 4. Section 5 furnishes the 
comparative simulation results. Finally, the concluding 
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3.1 Preliminary of super-twisting algorithm 
Consider the following sliding mode: 
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where   is the sliding variable and u  is the control 
variable, f  is a sufficiently smooth uncertain function 
[13].  The disturbance term f  is to be cancelled by means 
of a special observer to be developed. 
Lemma 1 [12, 24] 

Consider the system (2) without the uncertain term or 
0f   and select the control as 

1/2
1 2sign( ) sign( )u d         
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which is the super-twisting algorithm. 
Refer to [12, 13] for the proof of Lemma 1. Note that 

(3) is a special nonlinear PI controller with 1  and 2  as 
its proportional and integral coefficients, respectively. 

3.2 Second-order sliding mode guidance law 
formulation 

The guidance objective is to achieve a hit-to-kill that 
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which is the super-twisting algorithm.
Refer to [12, 13] for the proof of Lemma 1. Note that (3) is 

a special nonlinear PI controller with α1 and α2 as its propor-
tional and integral coefficients, respectively.

3.2. Second-order sliding mode guidance law formulation. The 
guidance objective is to achieve a hit-to-kill that means R(tf) = 0 
where tf  is the impact time. In [13, 25], this objective desires 
R < 0 or VΠ < 0 in the guidance. Substituting (1c) into (1b) yields
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original nonlinear observer-based method [13] are 
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guidance law based on the super-twisting algorithm and 
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comparative simulation results. Finally, the concluding 
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3. Guidance law design  

3.1 Preliminary of super-twisting algorithm 
Consider the following sliding mode: 
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where   is the sliding variable and u  is the control 
variable, f  is a sufficiently smooth uncertain function 
[13].  The disturbance term f  is to be cancelled by means 
of a special observer to be developed. 
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where 1  and 2  are real positive constants. Then 
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which is the super-twisting algorithm. 
Refer to [12, 13] for the proof of Lemma 1. Note that 

(3) is a special nonlinear PI controller with 1  and 2  as 
its proportional and integral coefficients, respectively. 

3.2 Second-order sliding mode guidance law 
formulation 

The guidance objective is to achieve a hit-to-kill that 
means ( ) 0fR t   where ft  is the impact time. In [13, 25], 

this objective desires 0R   or 0V   in the guidance. 
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The term Rq ̇ 2 in (5) represents the centrifugal acceleration, 
which rapidly grows as the LOS keeps rotating. It provides Fig. 1. Engagement geometry of target and missile
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almost instant reverse in VΠ direction when R becomes small. 
Therefore, zeroing q ̇  is a useful strategy to avoid the reverse 
of VΠ. On the other hand, zeroing q ̇  implies that V? → 0 ac-
cording to (1c). In fact, zeroing q ̇  was the primary goal for 
many developed guidance laws. The control task in this case 
is to counteract aT?, which attempts to drive q ̇  to be divergent.

Here, a relaxed requirement is considered. If q ̇  is allowed to 
grow and not faster than  1¡Rβ(0 < β < 1 as R → 0), one can obtain 
V? = Rq ̇  ∙ R 1¡Rβ = R1¡β as R → 0. It should be noted that Rq ̇ 2 
should be bounded by F as R → 0 in (5), otherwise the reverse 
in VΠ is inevitable. Therefore, we must make sure that Rq ̇ 2 ∙ F 
as R → 0 and
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The term 2Rq  in (5) represents the centrifugal 
acceleration which rapidly grows as the LOS keeps 
rotating. It provides almost instant reverse in V  direction 
when R  becomes small. Therefore, zeroing q  is a useful 
strategy to avoid the reverse of V . On the other hand, 
zeroing q  implies that 0V   according to (1c). In fact, 
zeroing q  was the primary goal for many developed 
guidance laws. The control task in this case is to 
counteract Ta
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Based on (6), a suitable LOS rate is chosen as 
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where 00 1c  . Combining (1c) and (7) yields  
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The consequent task is to stabilize the system (1a)-(1d) on 
the manifold 0 0V c R   . Define the sliding surface as 

0s V c R  

Differentiating Eq. (9) gives rise to 
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Substituting (1d) into (10) yields 
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In (11), Ta


can be regarded as an external disturbance and 
we can define  
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The reaching law of s  is designed by the super-twisting 
algorithm as  
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This is the desired guidance command that is consistent 
with the proposed algorithm in [13], wherein the unknown 
term ( )f t  was estimated and compensated by a HOSM 
observer (HOSMO) [13] which is formulated as 
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where 0z , 1z  and 2z  are the estimations of s , ( )f t  and 

( )f t , respectively. Moreover, L  is the observer gain and 

it is the known Lipshitz constant [13] of ( )f t . In other 

words, ( )f t L . According to (15), the error dynamics 
of HOSMO can be obtained as 
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where 0 0z s   , 1 1z f   , and 2 2z f   . Define 
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0 1 2[ , , ]     . Note that the function ( )   represents 
the right-hand side of (44), and we have the following 
result. 
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Based on (6), a suitable LOS rate is chosen as
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The term 2Rq  in (5) represents the centrifugal 
acceleration which rapidly grows as the LOS keeps 
rotating. It provides almost instant reverse in V  direction 
when R  becomes small. Therefore, zeroing q  is a useful 
strategy to avoid the reverse of V . On the other hand, 
zeroing q  implies that 0V   according to (1c). In fact, 
zeroing q  was the primary goal for many developed 
guidance laws. The control task in this case is to 
counteract Ta


  which attempts to drive q  to be divergent. 

Here, a relaxed requirement is considered. If q  is 

allowed to grow and not faster than 1
R ( 0 1   as 

0R  ), one can obtain 11 0V Rq R R
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



      as 

0R  . It should be noted that 2Rq  should be bounded 
by F  as 0R   in (5), otherwise the reverse in V  is 

inevitable. Therefore, we must make sure that 2Rq F  as 
0R   and 
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This is the desired guidance command that is consistent 
with the proposed algorithm in [13], wherein the unknown 
term ( )f t  was estimated and compensated by a HOSM 
observer (HOSMO) [13] which is formulated as 
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where 0z , 1z  and 2z  are the estimations of s , ( )f t  and 

( )f t , respectively. Moreover, L  is the observer gain and 

it is the known Lipshitz constant [13] of ( )f t . In other 

words, ( )f t L . According to (15), the error dynamics 
of HOSMO can be obtained as 
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where 0 0z s   , 1 1z f   , and 2 2z f   . Define 
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the right-hand side of (44), and we have the following 
result. 

,� (7)

where 0 < c0 < 1. Combining (1c) and (7) yields
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The term 2Rq  in (5) represents the centrifugal 
acceleration which rapidly grows as the LOS keeps 
rotating. It provides almost instant reverse in V  direction 
when R  becomes small. Therefore, zeroing q  is a useful 
strategy to avoid the reverse of V . On the other hand, 
zeroing q  implies that 0V   according to (1c). In fact, 
zeroing q  was the primary goal for many developed 
guidance laws. The control task in this case is to 
counteract Ta


  which attempts to drive q  to be divergent. 

Here, a relaxed requirement is considered. If q  is 

allowed to grow and not faster than 1
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0R  . It should be noted that 2Rq  should be bounded 
by F  as 0R   in (5), otherwise the reverse in V  is 

inevitable. Therefore, we must make sure that 2Rq F  as 
0R   and 
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The consequent task is to stabilize the system (1a)-(1d) on 
the manifold 0 0V c R   . Define the sliding surface as 
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This is the desired guidance command that is consistent 
with the proposed algorithm in [13], wherein the unknown 
term ( )f t  was estimated and compensated by a HOSM 
observer (HOSMO) [13] which is formulated as 
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where 0z , 1z  and 2z  are the estimations of s , ( )f t  and 

( )f t , respectively. Moreover, L  is the observer gain and 

it is the known Lipshitz constant [13] of ( )f t . In other 

words, ( )f t L . According to (15), the error dynamics 
of HOSMO can be obtained as 
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where 0 0z s   , 1 1z f   , and 2 2z f   . Define 
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result. 
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The consequent task is to stabilize the system (1a–1d) on the 
manifold V? ¡ c0 R  = 0. Define the sliding surface as
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The term 2Rq  in (5) represents the centrifugal 
acceleration which rapidly grows as the LOS keeps 
rotating. It provides almost instant reverse in V  direction 
when R  becomes small. Therefore, zeroing q  is a useful 
strategy to avoid the reverse of V . On the other hand, 
zeroing q  implies that 0V   according to (1c). In fact, 
zeroing q  was the primary goal for many developed 
guidance laws. The control task in this case is to 
counteract Ta


  which attempts to drive q  to be divergent. 

Here, a relaxed requirement is considered. If q  is 

allowed to grow and not faster than 1
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The consequent task is to stabilize the system (1a)-(1d) on 
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This is the desired guidance command that is consistent 
with the proposed algorithm in [13], wherein the unknown 
term ( )f t  was estimated and compensated by a HOSM 
observer (HOSMO) [13] which is formulated as 
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where 0z , 1z  and 2z  are the estimations of s , ( )f t  and 

( )f t , respectively. Moreover, L  is the observer gain and 

it is the known Lipshitz constant [13] of ( )f t . In other 

words, ( )f t L . According to (15), the error dynamics 
of HOSMO can be obtained as 
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Differentiating (9) gives rise to
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The term 2Rq  in (5) represents the centrifugal 
acceleration which rapidly grows as the LOS keeps 
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when R  becomes small. Therefore, zeroing q  is a useful 
strategy to avoid the reverse of V . On the other hand, 
zeroing q  implies that 0V   according to (1c). In fact, 
zeroing q  was the primary goal for many developed 
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The term 2Rq  in (5) represents the centrifugal 
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rotating. It provides almost instant reverse in V  direction 
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strategy to avoid the reverse of V . On the other hand, 
zeroing q  implies that 0V   according to (1c). In fact, 
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where 0z , 1z  and 2z  are the estimations of s , ( )f t  and 
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The term 2Rq  in (5) represents the centrifugal 
acceleration which rapidly grows as the LOS keeps 
rotating. It provides almost instant reverse in V  direction 
when R  becomes small. Therefore, zeroing q  is a useful 
strategy to avoid the reverse of V . On the other hand, 
zeroing q  implies that 0V   according to (1c). In fact, 
zeroing q  was the primary goal for many developed 
guidance laws. The control task in this case is to 
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This is the desired guidance command that is consistent 
with the proposed algorithm in [13], wherein the unknown 
term ( )f t  was estimated and compensated by a HOSM 
observer (HOSMO) [13] which is formulated as 
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where 0z , 1z  and 2z  are the estimations of s , ( )f t  and 

( )f t , respectively. Moreover, L  is the observer gain and 

it is the known Lipshitz constant [13] of ( )f t . In other 

words, ( )f t L . According to (15), the error dynamics 
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result. 

R
.� (11)

In (11), aT? can be regarded as an external disturbance and we 
can define
	

3 

The term 2Rq  in (5) represents the centrifugal 
acceleration which rapidly grows as the LOS keeps 
rotating. It provides almost instant reverse in V  direction 
when R  becomes small. Therefore, zeroing q  is a useful 
strategy to avoid the reverse of V . On the other hand, 
zeroing q  implies that 0V   according to (1c). In fact, 
zeroing q  was the primary goal for many developed 
guidance laws. The control task in this case is to 
counteract Ta


  which attempts to drive q  to be divergent. 

Here, a relaxed requirement is considered. If q  is 

allowed to grow and not faster than 1
R ( 0 1   as 

0R  ), one can obtain 11 0V Rq R R
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0R  . It should be noted that 2Rq  should be bounded 
by F  as 0R   in (5), otherwise the reverse in V  is 

inevitable. Therefore, we must make sure that 2Rq F  as 
0R   and 
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This is the desired guidance command that is consistent 
with the proposed algorithm in [13], wherein the unknown 
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0 0 0
2/31/3

0 0 0 1

1 1
1/21/2

1 1 0 1 0 2

2 2 1

1

cos( ) / (2 )

2 sign( )

1.5 sign( )
1.1 sign( )

( )

M Mz v a q Rq c R R

v L z s z s z

z v

v L z v z v z
z L z v
f t z

     

     




     


  
 



where 0z , 1z  and 2z  are the estimations of s , ( )f t  and 

( )f t , respectively. Moreover, L  is the observer gain and 

it is the known Lipshitz constant [13] of ( )f t . In other 

words, ( )f t L . According to (15), the error dynamics 
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The term 2Rq  in (5) represents the centrifugal 
acceleration which rapidly grows as the LOS keeps 
rotating. It provides almost instant reverse in V  direction 
when R  becomes small. Therefore, zeroing q  is a useful 
strategy to avoid the reverse of V . On the other hand, 
zeroing q  implies that 0V   according to (1c). In fact, 
zeroing q  was the primary goal for many developed 
guidance laws. The control task in this case is to 
counteract Ta


  which attempts to drive q  to be divergent. 

Here, a relaxed requirement is considered. If q  is 

allowed to grow and not faster than 1
R ( 0 1   as 
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R





      as 

0R  . It should be noted that 2Rq  should be bounded 
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inevitable. Therefore, we must make sure that 2Rq F  as 
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This is the desired guidance command that is consistent 
with the proposed algorithm in [13], wherein the unknown 
term ( )f t  was estimated and compensated by a HOSM 
observer (HOSMO) [13] which is formulated as 
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where 0z , 1z  and 2z  are the estimations of s , ( )f t  and 

( )f t , respectively. Moreover, L  is the observer gain and 

it is the known Lipshitz constant [13] of ( )f t . In other 

words, ( )f t L . According to (15), the error dynamics 
of HOSMO can be obtained as 
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result. 
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Piecing (11), (12), and (13) together yields

	

R

3 

The term 2Rq  in (5) represents the centrifugal 
acceleration which rapidly grows as the LOS keeps 
rotating. It provides almost instant reverse in V  direction 
when R  becomes small. Therefore, zeroing q  is a useful 
strategy to avoid the reverse of V . On the other hand, 
zeroing q  implies that 0V   according to (1c). In fact, 
zeroing q  was the primary goal for many developed 
guidance laws. The control task in this case is to 
counteract Ta


  which attempts to drive q  to be divergent. 

Here, a relaxed requirement is considered. If q  is 

allowed to grow and not faster than 1
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inevitable. Therefore, we must make sure that 2Rq F  as 
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This is the desired guidance command that is consistent 
with the proposed algorithm in [13], wherein the unknown 
term ( )f t  was estimated and compensated by a HOSM 
observer (HOSMO) [13] which is formulated as 
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where 0z , 1z  and 2z  are the estimations of s , ( )f t  and 

( )f t , respectively. Moreover, L  is the observer gain and 

it is the known Lipshitz constant [13] of ( )f t . In other 

words, ( )f t L . According to (15), the error dynamics 
of HOSMO can be obtained as 
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result. 

3 

The term 2Rq  in (5) represents the centrifugal 
acceleration which rapidly grows as the LOS keeps 
rotating. It provides almost instant reverse in V  direction 
when R  becomes small. Therefore, zeroing q  is a useful 
strategy to avoid the reverse of V . On the other hand, 
zeroing q  implies that 0V   according to (1c). In fact, 
zeroing q  was the primary goal for many developed 
guidance laws. The control task in this case is to 
counteract Ta
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  which attempts to drive q  to be divergent. 

Here, a relaxed requirement is considered. If q  is 

allowed to grow and not faster than 1
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where 0z , 1z  and 2z  are the estimations of s , ( )f t  and 
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it is the known Lipshitz constant [13] of ( )f t . In other 
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the right-hand side of (44), and we have the following 
result. 
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The term 2Rq  in (5) represents the centrifugal 
acceleration which rapidly grows as the LOS keeps 
rotating. It provides almost instant reverse in V  direction 
when R  becomes small. Therefore, zeroing q  is a useful 
strategy to avoid the reverse of V . On the other hand, 
zeroing q  implies that 0V   according to (1c). In fact, 
zeroing q  was the primary goal for many developed 
guidance laws. The control task in this case is to 
counteract Ta


  which attempts to drive q  to be divergent. 

Here, a relaxed requirement is considered. If q  is 
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0R  . It should be noted that 2Rq  should be bounded 
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This is the desired guidance command that is consistent 
with the proposed algorithm in [13], wherein the unknown 
term ( )f t  was estimated and compensated by a HOSM 
observer (HOSMO) [13] which is formulated as 
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where 0z , 1z  and 2z  are the estimations of s , ( )f t  and 

( )f t , respectively. Moreover, L  is the observer gain and 

it is the known Lipshitz constant [13] of ( )f t . In other 

words, ( )f t L . According to (15), the error dynamics 
of HOSMO can be obtained as 
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where 0 0z s   , 1 1z f   , and 2 2z f   . Define 
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result. 
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This is the desired guidance command that is consistent with the 
proposed algorithm in [13], wherein the unknown term f(t) was 
estimated and compensated by a HOSM observer (HOSMO) 
[13] which is formulated as
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The term 2Rq  in (5) represents the centrifugal 
acceleration which rapidly grows as the LOS keeps 
rotating. It provides almost instant reverse in V  direction 
when R  becomes small. Therefore, zeroing q  is a useful 
strategy to avoid the reverse of V . On the other hand, 
zeroing q  implies that 0V   according to (1c). In fact, 
zeroing q  was the primary goal for many developed 
guidance laws. The control task in this case is to 
counteract Ta


  which attempts to drive q  to be divergent. 

Here, a relaxed requirement is considered. If q  is 

allowed to grow and not faster than 1
R ( 0 1   as 
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0R  . It should be noted that 2Rq  should be bounded 
by F  as 0R   in (5), otherwise the reverse in V  is 

inevitable. Therefore, we must make sure that 2Rq F  as 
0R   and 
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The consequent task is to stabilize the system (1a)-(1d) on 
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This is the desired guidance command that is consistent 
with the proposed algorithm in [13], wherein the unknown 
term ( )f t  was estimated and compensated by a HOSM 
observer (HOSMO) [13] which is formulated as 
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where 0z , 1z  and 2z  are the estimations of s , ( )f t  and 

( )f t , respectively. Moreover, L  is the observer gain and 

it is the known Lipshitz constant [13] of ( )f t . In other 

words, ( )f t L . According to (15), the error dynamics 
of HOSMO can be obtained as 
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where z–0, z–1 and z–2 are the estimations of s, f(t) and f ̇(t), respec-
tively. Moreover, L is the observer gain and it is the known Lip-
shitz constant [13] of f ̇(t). In other words, j fÄ(t)j ∙ L. According 
to (15), the error dynamics of HOSMO can be obtained as
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The term 2Rq  in (5) represents the centrifugal 
acceleration which rapidly grows as the LOS keeps 
rotating. It provides almost instant reverse in V  direction 
when R  becomes small. Therefore, zeroing q  is a useful 
strategy to avoid the reverse of V . On the other hand, 
zeroing q  implies that 0V   according to (1c). In fact, 
zeroing q  was the primary goal for many developed 
guidance laws. The control task in this case is to 
counteract Ta
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  which attempts to drive q  to be divergent. 
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This is the desired guidance command that is consistent 
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where 0 0z s   , 1 1z f   , and 2 2z f   . Define 
3 3( ) : R R    and 

1 2 3 1 2 3( ) [ ( ), ( ), ( )] [ , , ]               with 

0 1 2[ , , ]     . Note that the function ( )   represents 
the right-hand side of (44), and we have the following 
result. 

,� (16)

where ∆0 = z–0 ¡ s, ∆1 = z–1 ¡ f, and ∆2 = z–2 ¡ f ̇. Define 
ξ(∆) : R3 → R3� and
ξ(∆) = [ξ1(∆), ξ2(∆), ξ3(∆)]T = [∆ ̇ 1, ∆ ̇ 2, ∆ ̇ 3]

T� with
∆ = [∆0, ∆1, ∆2]

T. Note that the function ξ(∆) represents the 
right-hand side of (44), and we have the following result.

Theorem 1. The function ξ(∆)is homogeneous of degree q– = –1 
with the dilation dκ : (∆0, ∆1, ∆2) → (κm0∆0, κm1∆1, κm2∆2) and 
the homogeneity weights mi for ∆i, i = 0, 1, 2 as

	 m0 = 3,  m1 = 2,  m2 = 1,� (17)

and ξ(∆) = κ–q–dκ–1ξ(dκ∆) for any κ > 0.

Proof. For the dynamics of ∆0, one has
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Therefore, the homogeneity equations 
1( ) ( ), 0,1,2q d d i         are established and the 

HOSMO is homogeneous. This completes the proof. 
Note that (15) is essentially a nonlinear observer with 

fractional power. It should be pointed out that a uniform 
convergence cannot be achieved for a homogeneous 
system [26]. In this paper, a linear observer is adopted to 
estimate ( )f t .  

3.3 Target motion estimation by using FOLO 
Denote the following known information in (11) as 
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then (11) can be reformulated as  
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which can be described in a state-space form as 
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2x  is denoted as an extended  state and w  is its derivative; 
w can be regarded as a jerk [27] that generates 2x  and 
terminates the description of the state-space. Note that u  
is a virtual guidance command, which is used to simplify 
the design process, and it contains all the known 
information of the derivative of s .  

It is now necessary to estimate 2x . Since 1x  is 
available, a reduced-order observer can be employed to 
decrease the phase lag. For the 2x  subsystem  

2x w 
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according to (24). In terms of (26) and (27), the observer 
for 2x  can be written as 
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where 2z  is the estimation for 2x , and l  is the observer 
gain. However, since 1x  is not available, we define a new 
variable 

2 1cz z lx  

in order to reformulate (28) as 

� (18)

Based on the first equation of (16), one can obtain
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2x  is denoted as an extended  state and w  is its derivative; 
w can be regarded as a jerk [27] that generates 2x  and 
terminates the description of the state-space. Note that u  
is a virtual guidance command, which is used to simplify 
the design process, and it contains all the known 
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where 2z  is the estimation for 2x , and l  is the observer 
gain. However, since 1x  is not available, we define a new 
variable 
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Therefore, the homogeneity equations ξ(∆) = κ–q–dκ–1ξ(dκ∆), 
i = 0, 1, 2 are established, and the HOSMO is homogeneous. 
This completes the proof.

Note that (15) is essentially a nonlinear observer with frac-
tional power. It should be pointed out that a uniform conver-
gence cannot be achieved for a homogeneous system [26]. In 
this paper, a linear observer is adopted to estimate f(t).

3.3. Target motion estimation by using FOLO
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4 

Theorem 1 
The function ( )   is homogeneous of degree 1q    

with the dilation d : 
0 1 2

0 1 2 0 1 2( , , ) ( , , )m m m          and the 
homogeneity weights im  for i , 0,1,2i   as 

0 1 23, 2, 1m m m   

and 1( ) ( )q d d        for any 0  . 
Proof: 

For the dynamics of 0 , one has 

0 0 1

1
0

2 / 3( 1 ) 1/ 3
0 0 1

2 / 32 1/ 3 3 2
0 0 1

2 / 31/ 3
0 0 1

0

( )

[ 2 sign( ) ]

[ 2 sign( ) ]

2 sign( )
( ).

q

m m m

d d

L

L

L

  

  

  



 

  





     

     

     

 



Based on the first equation of (16), one can obtain 
2/31/3

1 0 0 02 sign( )L     

and  

1
1/ 22 / 31/ 2 1/ 3

0 0 0 2

1/ 32 / 3
0 0 2

( )

1.5 2 sign( ) sign( )

1.5 2 sign( ) .

L L

L

 

      

     



Then, we have 

01 2

1
1

1/ 3( 1 ) 2 / 3
0 0 2

1/ 31 2 / 3 3
0 0 2

1/ 32 / 3
0 0 2

1

( )

[ 1.5 2 sign( ) ]

[ 1.5 2 sign( ) ]

1.5 2 sign( )
( ).

q

mm m

d d

L

L

L

  

  

  



 

  





     

     

     

 

(21)
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Note that (15) is essentially a nonlinear observer with 
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convergence cannot be achieved for a homogeneous 
system [26]. In this paper, a linear observer is adopted to 
estimate ( )f t .  

3.3 Target motion estimation by using FOLO 
Denote the following known information in (11) as 
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then (11) can be reformulated as  

0 ( ) ( ) cos( )M Ms f t f t q a    

which can be described in a state-space form as 
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2x  is denoted as an extended  state and w  is its derivative; 
w can be regarded as a jerk [27] that generates 2x  and 
terminates the description of the state-space. Note that u  
is a virtual guidance command, which is used to simplify 
the design process, and it contains all the known 
information of the derivative of s .  

It is now necessary to estimate 2x . Since 1x  is 
available, a reduced-order observer can be employed to 
decrease the phase lag. For the 2x  subsystem  
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where 2z  is the estimation for 2x , and l  is the observer 
gain. However, since 1x  is not available, we define a new 
variable 
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in order to reformulate (28) as 
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Therefore, the homogeneity equations 
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HOSMO is homogeneous. This completes the proof. 
Note that (15) is essentially a nonlinear observer with 

fractional power. It should be pointed out that a uniform 
convergence cannot be achieved for a homogeneous 
system [26]. In this paper, a linear observer is adopted to 
estimate ( )f t .  
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2x  is denoted as an extended  state and w  is its derivative; 
w can be regarded as a jerk [27] that generates 2x  and 
terminates the description of the state-space. Note that u  
is a virtual guidance command, which is used to simplify 
the design process, and it contains all the known 
information of the derivative of s .  
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variable 
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Therefore, the homogeneity equations 
1( ) ( ), 0,1,2q d d i         are established and the 

HOSMO is homogeneous. This completes the proof. 
Note that (15) is essentially a nonlinear observer with 

fractional power. It should be pointed out that a uniform 
convergence cannot be achieved for a homogeneous 
system [26]. In this paper, a linear observer is adopted to 
estimate ( )f t .  

3.3 Target motion estimation by using FOLO 
Denote the following known information in (11) as 
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then (11) can be reformulated as  
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which can be described in a state-space form as 

1 2

2

1

x x bu
x w
y x

 
 
 



Here 

1

2

0

( )
cos( )
( )

M

M

x s
x f t
b q

f t
u a

b




 

  

  




2x  is denoted as an extended  state and w  is its derivative; 
w can be regarded as a jerk [27] that generates 2x  and 
terminates the description of the state-space. Note that u  
is a virtual guidance command, which is used to simplify 
the design process, and it contains all the known 
information of the derivative of s .  

It is now necessary to estimate 2x . Since 1x  is 
available, a reduced-order observer can be employed to 
decrease the phase lag. For the 2x  subsystem  
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where 2z  is the estimation for 2x , and l  is the observer 
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variable 
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in order to reformulate (28) as 
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x2 is denoted as an extended state and w is its derivative; w can 
be regarded as a jerk [27] that generates x2 and terminates the 
description of the state-space. Note that u– is a virtual guidance 
command, which is used to simplify the design process, and 
it contains all of the known information of the derivative of s.

It is now necessary to estimate x2. Since x1 is available, 
a reduced-order observer can be employed to decrease the phase 
lag. For the x2 subsystem

	 x ̇ 2 = w,� (26)
we have

	 x2 = x ̇ 1 ¡ bu–,� (27)

according to (24). In terms of (26) and (27), the observer for 
x2 can be written as
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Therefore, the homogeneity equations 
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HOSMO is homogeneous. This completes the proof. 
Note that (15) is essentially a nonlinear observer with 

fractional power. It should be pointed out that a uniform 
convergence cannot be achieved for a homogeneous 
system [26]. In this paper, a linear observer is adopted to 
estimate ( )f t .  
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( )

M

M

x s
x f t
b q

f t
u a

b




 

  

  




2x  is denoted as an extended  state and w  is its derivative; 
w can be regarded as a jerk [27] that generates 2x  and 
terminates the description of the state-space. Note that u  
is a virtual guidance command, which is used to simplify 
the design process, and it contains all the known 
information of the derivative of s .  

It is now necessary to estimate 2x . Since 1x  is 
available, a reduced-order observer can be employed to 
decrease the phase lag. For the 2x  subsystem  

2x w 

we have  

2 1x x bu  

according to (24). In terms of (26) and (27), the observer 
for 2x  can be written as 

2 1 2( )z l x bu z   

where 2z  is the estimation for 2x , and l  is the observer 
gain. However, since 1x  is not available, we define a new 
variable 

2 1cz z lx  

in order to reformulate (28) as 

,� (28)

where z2 is the estimation for x2, and l is the observer gain. 
However, since x ̇ 1 is not available, we define a new variable

	 zc = z2 ¡ lx1� (29)

in order to reformulate (28) as
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Note that (29)-(30) can only estimate 2x  with its order as 
1, therefore it is a first-order linear observer (FOLO) from 
the second-order extended system (24). The observer gain 
l  can be denoted as the observer bandwidth o . With a 
well-tuned observer, one can obtain 2 2z x . Hence 2z  
can be utilised to mitigate the target manoeuvre in a 
straightforward way: the desired guidance command (14) 
can be implemented as 

1/2
1

2 0 20

1 ( sign( )
cos( )

sign( ) ) / (2 )

M
M

t

a s s
q

s dt Rq c R R z






  

    


In order to avoid 2Mq    , a defending measure 

is setting Mq     when Mq    .  Here   is 
constant just less than 2 , for example 

/ 2 80/90   . 
Remark 1 Since V  can be calculated via V Rq   with 
measurable R  and q , 1x  can be obtained in real time as 

1 0x V c R   where 0c  is a given positive constant. 
Therefore 1x  is available. Furthermore, the observation of 

1x  is not needed any more, and only the extended state 2x  
needs to be estimated by (29)-(30). Although this observer 
contains two equations (one is differential and the other is 
algebraic), its order is 1 because the order of an observer 
is defined as its differential order. In this case, only 2x  is 
estimated for the ( 1x , 2x ) system wherein a second-order 
observer is generally needed. From this point of view, we 
can declare it is a reduced-order observer. In such a way, 
the phase lag triggered by the estimator can be reduced 
and the proposed method can enhance the closed-loop 
robustness effectively. 
Remark 2 In (31), the flight path angle M  can be 
calculated by using the horizontal velocity xV  and vertical 
velocity yV  from the on-board inertial navigation system 
(INS). Nevertheless, it is well known that the sole INS 
vertical position solution is dynamically exponential 
unstable since the computer must use the vertical position 
to compute and compensate measured accelerations for 
normal gravity. This problem can be solved by using 
some improved compensation algorithms. The gravity can 
be fixed as a constant, because the terminal guidance 
period is generally quite short. The anomalous gravity 
field map can also be used in a map-matching mode to 
bound the vertical velocity error [28]. Through these ways, 
a sufficiently accurate vertical velocity can be obtained, 
and the flight path angle M  can be obtained as  

arctan ( )M y xV V  

Remark 3 Although there are two sign functions in (31), 
the guidance command is still continuous (not smooth) 
[13]. The first sign function ensures that the square root 
function makes sense for each real number s  while still 
maintaining the sign thereof. The second sign function 
takes effect with an integral operator; hence its role is 
demonstrated in a continuously incremental form. It is 
remarkable that these fundamental characteristics of the 
second-order sliding mode approach can check the 
chattering phenomenon by eliminating the direct sign 
terms. 

4. Stability analysis 

In this section, the stability of the proposed guidance 
law is analysed.  

Substituting the guidance law (31) into (11), the 
closed-loop system is given as  

1/2
1 2 20

- sign( ) sign( ) ( )
t

s s s s dt f t z     

which can be rewritten as  

1/2
1 1 1 1 2

2 2 1

sign( )
sign( )

e    
  

    


 


where 1 s  , 2 20
sign( )

t
s dt   , and 2( )e f t z   

represents the observer error.  
Choose the Lyapunov function of [13]  

1
2
2

1 20
sign( )

2
V t dt


   

The derivative of 1V  is 

1 2 2 2 1 1

2 2 1 2 1
1/ 2

1 1 1 2

1/ 2
1 2 1 2

sign( )
sign( ) sign( )

( sign( ) )

.

V

e

e

    
    

   

   

 
  

 

  



With respect to (36), we cannot immediately confirm 
whether the system is stable when employing the 
Lyapunov function in [13]. 

Because the target manoeuvrability is finite, it can be 
effectively captured by a sufficiently fast observer. Note 
that strong manoeuvrability generally means a large 
amplitude instead of a high-frequency variation in order 
for the target acceleration to evade interception in reality. 
In other words, ( )f t  can be regarded as a low-frequency 

.� (30)

Note that (29–30) can only estimate x2 with its order as 1, 
therefore it is a first-order linear observer (FOLO) from the 
second-order extended system (24). The observer gain l can 
be denoted as the observer bandwidth ωo. With a well-tuned 
observer, one can obtain z2 ¼ x2. Hence z2 can be utilised to 
mitigate the target manoeuvre in a straightforward way: the de-
sired guidance command (14) can be implemented as
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Note that (29)-(30) can only estimate 2x  with its order as 
1, therefore it is a first-order linear observer (FOLO) from 
the second-order extended system (24). The observer gain 
l  can be denoted as the observer bandwidth o . With a 
well-tuned observer, one can obtain 2 2z x . Hence 2z  
can be utilised to mitigate the target manoeuvre in a 
straightforward way: the desired guidance command (14) 
can be implemented as 

1/2
1

2 0 20

1 ( sign( )
cos( )

sign( ) ) / (2 )

M
M

t

a s s
q

s dt Rq c R R z






  

    


In order to avoid 2Mq    , a defending measure 

is setting Mq     when Mq    .  Here   is 
constant just less than 2 , for example 

/ 2 80/90   . 
Remark 1 Since V  can be calculated via V Rq   with 
measurable R  and q , 1x  can be obtained in real time as 

1 0x V c R   where 0c  is a given positive constant. 
Therefore 1x  is available. Furthermore, the observation of 

1x  is not needed any more, and only the extended state 2x  
needs to be estimated by (29)-(30). Although this observer 
contains two equations (one is differential and the other is 
algebraic), its order is 1 because the order of an observer 
is defined as its differential order. In this case, only 2x  is 
estimated for the ( 1x , 2x ) system wherein a second-order 
observer is generally needed. From this point of view, we 
can declare it is a reduced-order observer. In such a way, 
the phase lag triggered by the estimator can be reduced 
and the proposed method can enhance the closed-loop 
robustness effectively. 
Remark 2 In (31), the flight path angle M  can be 
calculated by using the horizontal velocity xV  and vertical 
velocity yV  from the on-board inertial navigation system 
(INS). Nevertheless, it is well known that the sole INS 
vertical position solution is dynamically exponential 
unstable since the computer must use the vertical position 
to compute and compensate measured accelerations for 
normal gravity. This problem can be solved by using 
some improved compensation algorithms. The gravity can 
be fixed as a constant, because the terminal guidance 
period is generally quite short. The anomalous gravity 
field map can also be used in a map-matching mode to 
bound the vertical velocity error [28]. Through these ways, 
a sufficiently accurate vertical velocity can be obtained, 
and the flight path angle M  can be obtained as  

arctan ( )M y xV V  

Remark 3 Although there are two sign functions in (31), 
the guidance command is still continuous (not smooth) 
[13]. The first sign function ensures that the square root 
function makes sense for each real number s  while still 
maintaining the sign thereof. The second sign function 
takes effect with an integral operator; hence its role is 
demonstrated in a continuously incremental form. It is 
remarkable that these fundamental characteristics of the 
second-order sliding mode approach can check the 
chattering phenomenon by eliminating the direct sign 
terms. 

4. Stability analysis 

In this section, the stability of the proposed guidance 
law is analysed.  

Substituting the guidance law (31) into (11), the 
closed-loop system is given as  

1/2
1 2 20

- sign( ) sign( ) ( )
t

s s s s dt f t z     

which can be rewritten as  

1/2
1 1 1 1 2

2 2 1

sign( )
sign( )

e    
  

    


 


where 1 s  , 2 20
sign( )

t
s dt   , and 2( )e f t z   

represents the observer error.  
Choose the Lyapunov function of [13]  

1
2
2

1 20
sign( )

2
V t dt


   

The derivative of 1V  is 

1 2 2 2 1 1

2 2 1 2 1
1/ 2

1 1 1 2

1/ 2
1 2 1 2

sign( )
sign( ) sign( )

( sign( ) )

.

V

e

e

    
    

   

   

 
  

 

  



With respect to (36), we cannot immediately confirm 
whether the system is stable when employing the 
Lyapunov function in [13]. 

Because the target manoeuvrability is finite, it can be 
effectively captured by a sufficiently fast observer. Note 
that strong manoeuvrability generally means a large 
amplitude instead of a high-frequency variation in order 
for the target acceleration to evade interception in reality. 
In other words, ( )f t  can be regarded as a low-frequency 

.
� (31)

In order to avoid jq ¡ θMj = π/2, a defending measure is 
setting jq ¡ θMj = μ when jq ¡ θMj ¸ μ. Here, μ is constant and 
just less than π/2, for example μ = π/2£80/90.

Remark 1. Since VT can be calculated via V? = Rq ̇  with measur-
able R and q ̇ , x1 can be obtained in real time as x1 = V? ¡ c0 R , 
where c0 is a given positive constant. Therefore x1 is available. 
Furthermore, the observation of x1 is not needed anymore, and 
only the extended state x2 needs to be estimated by (29–30). Al-
though this observer contains two equations (one is differential 
and the other is algebraic), its order is 1 because the order of 
an observer is defined as its differential order. In this case, only 
x2 is estimated for the (x1, x2) system wherein a second-order 
observer is generally needed. From this point of view, we can 
declare it is a reduced-order observer. In such a way, the phase 
lag triggered by the estimator can be reduced and the proposed 
method can enhance the closed-loop robustness effectively.

Remark 2. In (31), the flight path angle θM can be calculated 
by using the horizontal velocity Vx and vertical velocity Vy from 
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the on-board inertial navigation system (INS). Nevertheless, it 
is well known that the sole INS vertical position solution is dy-
namically exponentially unstable since the computer must use 
the vertical position to compute and compensate the measured 
accelerations for normal gravity. This problem can be solved 
by using some improved compensation algorithms. The gravity 
can be fixed as a constant, because the terminal guidance period 
is generally quite short. The anomalous gravity field map can 
also be used in a map-matching mode to bound the vertical 
velocity error [28]. Through these ways, a sufficiently accurate 
vertical velocity can be obtained, and the flight path angle θM 
can be obtained as
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Note that (29)-(30) can only estimate 2x  with its order as 
1, therefore it is a first-order linear observer (FOLO) from 
the second-order extended system (24). The observer gain 
l  can be denoted as the observer bandwidth o . With a 
well-tuned observer, one can obtain 2 2z x . Hence 2z  
can be utilised to mitigate the target manoeuvre in a 
straightforward way: the desired guidance command (14) 
can be implemented as 

1/2
1

2 0 20

1 ( sign( )
cos( )

sign( ) ) / (2 )

M
M

t

a s s
q

s dt Rq c R R z






  

    


In order to avoid 2Mq    , a defending measure 

is setting Mq     when Mq    .  Here   is 
constant just less than 2 , for example 

/ 2 80/90   . 
Remark 1 Since V  can be calculated via V Rq   with 
measurable R  and q , 1x  can be obtained in real time as 

1 0x V c R   where 0c  is a given positive constant. 
Therefore 1x  is available. Furthermore, the observation of 

1x  is not needed any more, and only the extended state 2x  
needs to be estimated by (29)-(30). Although this observer 
contains two equations (one is differential and the other is 
algebraic), its order is 1 because the order of an observer 
is defined as its differential order. In this case, only 2x  is 
estimated for the ( 1x , 2x ) system wherein a second-order 
observer is generally needed. From this point of view, we 
can declare it is a reduced-order observer. In such a way, 
the phase lag triggered by the estimator can be reduced 
and the proposed method can enhance the closed-loop 
robustness effectively. 
Remark 2 In (31), the flight path angle M  can be 
calculated by using the horizontal velocity xV  and vertical 
velocity yV  from the on-board inertial navigation system 
(INS). Nevertheless, it is well known that the sole INS 
vertical position solution is dynamically exponential 
unstable since the computer must use the vertical position 
to compute and compensate measured accelerations for 
normal gravity. This problem can be solved by using 
some improved compensation algorithms. The gravity can 
be fixed as a constant, because the terminal guidance 
period is generally quite short. The anomalous gravity 
field map can also be used in a map-matching mode to 
bound the vertical velocity error [28]. Through these ways, 
a sufficiently accurate vertical velocity can be obtained, 
and the flight path angle M  can be obtained as  

arctan ( )M y xV V  

Remark 3 Although there are two sign functions in (31), 
the guidance command is still continuous (not smooth) 
[13]. The first sign function ensures that the square root 
function makes sense for each real number s  while still 
maintaining the sign thereof. The second sign function 
takes effect with an integral operator; hence its role is 
demonstrated in a continuously incremental form. It is 
remarkable that these fundamental characteristics of the 
second-order sliding mode approach can check the 
chattering phenomenon by eliminating the direct sign 
terms. 

4. Stability analysis 

In this section, the stability of the proposed guidance 
law is analysed.  

Substituting the guidance law (31) into (11), the 
closed-loop system is given as  

1/2
1 2 20

- sign( ) sign( ) ( )
t

s s s s dt f t z     

which can be rewritten as  
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1 1 1 1 2

2 2 1

sign( )
sign( )

e    
  

    


 


where 1 s  , 2 20
sign( )

t
s dt   , and 2( )e f t z   

represents the observer error.  
Choose the Lyapunov function of [13]  
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1 20
sign( )

2
V t dt


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The derivative of 1V  is 
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

With respect to (36), we cannot immediately confirm 
whether the system is stable when employing the 
Lyapunov function in [13]. 

Because the target manoeuvrability is finite, it can be 
effectively captured by a sufficiently fast observer. Note 
that strong manoeuvrability generally means a large 
amplitude instead of a high-frequency variation in order 
for the target acceleration to evade interception in reality. 
In other words, ( )f t  can be regarded as a low-frequency 

.� (32)

Remark 3. Although there are two sign functions in (31), the 
guidance command is still continuous (not smooth) [13]. The 
first sign function ensures that the square root function makes 
sense for each real number s while still maintaining the sign 
thereof. The second sign function takes effect with an integral 
operator; hence its role is demonstrated in a continuously in-
cremental form. It is remarkable that these fundamental charac-
teristics of the second-order sliding mode approach can check 
the chattering phenomenon by eliminating the direct sign terms.

4.	 Stability analysis

In this section, the stability of the proposed guidance law is 
analysed.

Substituting the guidance law (31) into (11), the closed-loop 
system is given as
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Note that (29)-(30) can only estimate 2x  with its order as 
1, therefore it is a first-order linear observer (FOLO) from 
the second-order extended system (24). The observer gain 
l  can be denoted as the observer bandwidth o . With a 
well-tuned observer, one can obtain 2 2z x . Hence 2z  
can be utilised to mitigate the target manoeuvre in a 
straightforward way: the desired guidance command (14) 
can be implemented as 

1/2
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2 0 20

1 ( sign( )
cos( )

sign( ) ) / (2 )

M
M

t
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s dt Rq c R R z



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  

    


In order to avoid 2Mq    , a defending measure 

is setting Mq     when Mq    .  Here   is 
constant just less than 2 , for example 

/ 2 80/90   . 
Remark 1 Since V  can be calculated via V Rq   with 
measurable R  and q , 1x  can be obtained in real time as 

1 0x V c R   where 0c  is a given positive constant. 
Therefore 1x  is available. Furthermore, the observation of 

1x  is not needed any more, and only the extended state 2x  
needs to be estimated by (29)-(30). Although this observer 
contains two equations (one is differential and the other is 
algebraic), its order is 1 because the order of an observer 
is defined as its differential order. In this case, only 2x  is 
estimated for the ( 1x , 2x ) system wherein a second-order 
observer is generally needed. From this point of view, we 
can declare it is a reduced-order observer. In such a way, 
the phase lag triggered by the estimator can be reduced 
and the proposed method can enhance the closed-loop 
robustness effectively. 
Remark 2 In (31), the flight path angle M  can be 
calculated by using the horizontal velocity xV  and vertical 
velocity yV  from the on-board inertial navigation system 
(INS). Nevertheless, it is well known that the sole INS 
vertical position solution is dynamically exponential 
unstable since the computer must use the vertical position 
to compute and compensate measured accelerations for 
normal gravity. This problem can be solved by using 
some improved compensation algorithms. The gravity can 
be fixed as a constant, because the terminal guidance 
period is generally quite short. The anomalous gravity 
field map can also be used in a map-matching mode to 
bound the vertical velocity error [28]. Through these ways, 
a sufficiently accurate vertical velocity can be obtained, 
and the flight path angle M  can be obtained as  

arctan ( )M y xV V  

Remark 3 Although there are two sign functions in (31), 
the guidance command is still continuous (not smooth) 
[13]. The first sign function ensures that the square root 
function makes sense for each real number s  while still 
maintaining the sign thereof. The second sign function 
takes effect with an integral operator; hence its role is 
demonstrated in a continuously incremental form. It is 
remarkable that these fundamental characteristics of the 
second-order sliding mode approach can check the 
chattering phenomenon by eliminating the direct sign 
terms. 

4. Stability analysis 

In this section, the stability of the proposed guidance 
law is analysed.  

Substituting the guidance law (31) into (11), the 
closed-loop system is given as  

1/2
1 2 20

- sign( ) sign( ) ( )
t

s s s s dt f t z     

which can be rewritten as  

1/2
1 1 1 1 2

2 2 1

sign( )
sign( )

e    
  

    


 


where 1 s  , 2 20
sign( )

t
s dt   , and 2( )e f t z   

represents the observer error.  
Choose the Lyapunov function of [13]  

1
2
2

1 20
sign( )

2
V t dt


   

The derivative of 1V  is 

1 2 2 2 1 1

2 2 1 2 1
1/ 2

1 1 1 2

1/ 2
1 2 1 2

sign( )
sign( ) sign( )

( sign( ) )

.

V

e

e

    
    

   

   

 
  

 

  



With respect to (36), we cannot immediately confirm 
whether the system is stable when employing the 
Lyapunov function in [13]. 

Because the target manoeuvrability is finite, it can be 
effectively captured by a sufficiently fast observer. Note 
that strong manoeuvrability generally means a large 
amplitude instead of a high-frequency variation in order 
for the target acceleration to evade interception in reality. 
In other words, ( )f t  can be regarded as a low-frequency 

,� (33)

which can be rewritten as 
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Note that (29)-(30) can only estimate 2x  with its order as 
1, therefore it is a first-order linear observer (FOLO) from 
the second-order extended system (24). The observer gain 
l  can be denoted as the observer bandwidth o . With a 
well-tuned observer, one can obtain 2 2z x . Hence 2z  
can be utilised to mitigate the target manoeuvre in a 
straightforward way: the desired guidance command (14) 
can be implemented as 
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1 ( sign( )
cos( )

sign( ) ) / (2 )
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M
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s dt Rq c R R z





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    


In order to avoid 2Mq    , a defending measure 

is setting Mq     when Mq    .  Here   is 
constant just less than 2 , for example 

/ 2 80/90   . 
Remark 1 Since V  can be calculated via V Rq   with 
measurable R  and q , 1x  can be obtained in real time as 

1 0x V c R   where 0c  is a given positive constant. 
Therefore 1x  is available. Furthermore, the observation of 

1x  is not needed any more, and only the extended state 2x  
needs to be estimated by (29)-(30). Although this observer 
contains two equations (one is differential and the other is 
algebraic), its order is 1 because the order of an observer 
is defined as its differential order. In this case, only 2x  is 
estimated for the ( 1x , 2x ) system wherein a second-order 
observer is generally needed. From this point of view, we 
can declare it is a reduced-order observer. In such a way, 
the phase lag triggered by the estimator can be reduced 
and the proposed method can enhance the closed-loop 
robustness effectively. 
Remark 2 In (31), the flight path angle M  can be 
calculated by using the horizontal velocity xV  and vertical 
velocity yV  from the on-board inertial navigation system 
(INS). Nevertheless, it is well known that the sole INS 
vertical position solution is dynamically exponential 
unstable since the computer must use the vertical position 
to compute and compensate measured accelerations for 
normal gravity. This problem can be solved by using 
some improved compensation algorithms. The gravity can 
be fixed as a constant, because the terminal guidance 
period is generally quite short. The anomalous gravity 
field map can also be used in a map-matching mode to 
bound the vertical velocity error [28]. Through these ways, 
a sufficiently accurate vertical velocity can be obtained, 
and the flight path angle M  can be obtained as  

arctan ( )M y xV V  

Remark 3 Although there are two sign functions in (31), 
the guidance command is still continuous (not smooth) 
[13]. The first sign function ensures that the square root 
function makes sense for each real number s  while still 
maintaining the sign thereof. The second sign function 
takes effect with an integral operator; hence its role is 
demonstrated in a continuously incremental form. It is 
remarkable that these fundamental characteristics of the 
second-order sliding mode approach can check the 
chattering phenomenon by eliminating the direct sign 
terms. 

4. Stability analysis 

In this section, the stability of the proposed guidance 
law is analysed.  

Substituting the guidance law (31) into (11), the 
closed-loop system is given as  

1/2
1 2 20

- sign( ) sign( ) ( )
t

s s s s dt f t z     

which can be rewritten as  
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1 1 1 1 2

2 2 1

sign( )
sign( )

e    
  
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

 


where 1 s  , 2 20
sign( )

t
s dt   , and 2( )e f t z   

represents the observer error.  
Choose the Lyapunov function of [13]  

1
2
2

1 20
sign( )

2
V t dt


   

The derivative of 1V  is 

1 2 2 2 1 1

2 2 1 2 1
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1 1 1 2

1/ 2
1 2 1 2

sign( )
sign( ) sign( )

( sign( ) )
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e
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    
    

   

   

 
  

 

  



With respect to (36), we cannot immediately confirm 
whether the system is stable when employing the 
Lyapunov function in [13]. 

Because the target manoeuvrability is finite, it can be 
effectively captured by a sufficiently fast observer. Note 
that strong manoeuvrability generally means a large 
amplitude instead of a high-frequency variation in order 
for the target acceleration to evade interception in reality. 
In other words, ( )f t  can be regarded as a low-frequency 

,� (34)

where υ1 = s, υ2 = –∫0
tα2sign(s)dt, and e = f(t) ¡ z2 represents 

the observer error.
Choose the Lyapunov function of [13]
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Note that (29)-(30) can only estimate 2x  with its order as 
1, therefore it is a first-order linear observer (FOLO) from 
the second-order extended system (24). The observer gain 
l  can be denoted as the observer bandwidth o . With a 
well-tuned observer, one can obtain 2 2z x . Hence 2z  
can be utilised to mitigate the target manoeuvre in a 
straightforward way: the desired guidance command (14) 
can be implemented as 

1/2
1

2 0 20

1 ( sign( )
cos( )

sign( ) ) / (2 )

M
M

t

a s s
q

s dt Rq c R R z






  

    


In order to avoid 2Mq    , a defending measure 

is setting Mq     when Mq    .  Here   is 
constant just less than 2 , for example 

/ 2 80/90   . 
Remark 1 Since V  can be calculated via V Rq   with 
measurable R  and q , 1x  can be obtained in real time as 

1 0x V c R   where 0c  is a given positive constant. 
Therefore 1x  is available. Furthermore, the observation of 

1x  is not needed any more, and only the extended state 2x  
needs to be estimated by (29)-(30). Although this observer 
contains two equations (one is differential and the other is 
algebraic), its order is 1 because the order of an observer 
is defined as its differential order. In this case, only 2x  is 
estimated for the ( 1x , 2x ) system wherein a second-order 
observer is generally needed. From this point of view, we 
can declare it is a reduced-order observer. In such a way, 
the phase lag triggered by the estimator can be reduced 
and the proposed method can enhance the closed-loop 
robustness effectively. 
Remark 2 In (31), the flight path angle M  can be 
calculated by using the horizontal velocity xV  and vertical 
velocity yV  from the on-board inertial navigation system 
(INS). Nevertheless, it is well known that the sole INS 
vertical position solution is dynamically exponential 
unstable since the computer must use the vertical position 
to compute and compensate measured accelerations for 
normal gravity. This problem can be solved by using 
some improved compensation algorithms. The gravity can 
be fixed as a constant, because the terminal guidance 
period is generally quite short. The anomalous gravity 
field map can also be used in a map-matching mode to 
bound the vertical velocity error [28]. Through these ways, 
a sufficiently accurate vertical velocity can be obtained, 
and the flight path angle M  can be obtained as  

arctan ( )M y xV V  

Remark 3 Although there are two sign functions in (31), 
the guidance command is still continuous (not smooth) 
[13]. The first sign function ensures that the square root 
function makes sense for each real number s  while still 
maintaining the sign thereof. The second sign function 
takes effect with an integral operator; hence its role is 
demonstrated in a continuously incremental form. It is 
remarkable that these fundamental characteristics of the 
second-order sliding mode approach can check the 
chattering phenomenon by eliminating the direct sign 
terms. 

4. Stability analysis 

In this section, the stability of the proposed guidance 
law is analysed.  

Substituting the guidance law (31) into (11), the 
closed-loop system is given as  

1/2
1 2 20

- sign( ) sign( ) ( )
t

s s s s dt f t z     

which can be rewritten as  

1/2
1 1 1 1 2

2 2 1

sign( )
sign( )

e    
  

    


 


where 1 s  , 2 20
sign( )

t
s dt   , and 2( )e f t z   

represents the observer error.  
Choose the Lyapunov function of [13]  

1
2
2

1 20
sign( )

2
V t dt


   

The derivative of 1V  is 

1 2 2 2 1 1

2 2 1 2 1
1/ 2

1 1 1 2

1/ 2
1 2 1 2

sign( )
sign( ) sign( )

( sign( ) )

.

V

e

e

    
    

   

   

 
  

 

  



With respect to (36), we cannot immediately confirm 
whether the system is stable when employing the 
Lyapunov function in [13]. 

Because the target manoeuvrability is finite, it can be 
effectively captured by a sufficiently fast observer. Note 
that strong manoeuvrability generally means a large 
amplitude instead of a high-frequency variation in order 
for the target acceleration to evade interception in reality. 
In other words, ( )f t  can be regarded as a low-frequency 

.� (35)

The derivative of V1 is
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Note that (29)-(30) can only estimate 2x  with its order as 
1, therefore it is a first-order linear observer (FOLO) from 
the second-order extended system (24). The observer gain 
l  can be denoted as the observer bandwidth o . With a 
well-tuned observer, one can obtain 2 2z x . Hence 2z  
can be utilised to mitigate the target manoeuvre in a 
straightforward way: the desired guidance command (14) 
can be implemented as 
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In order to avoid 2Mq    , a defending measure 

is setting Mq     when Mq    .  Here   is 
constant just less than 2 , for example 

/ 2 80/90   . 
Remark 1 Since V  can be calculated via V Rq   with 
measurable R  and q , 1x  can be obtained in real time as 

1 0x V c R   where 0c  is a given positive constant. 
Therefore 1x  is available. Furthermore, the observation of 

1x  is not needed any more, and only the extended state 2x  
needs to be estimated by (29)-(30). Although this observer 
contains two equations (one is differential and the other is 
algebraic), its order is 1 because the order of an observer 
is defined as its differential order. In this case, only 2x  is 
estimated for the ( 1x , 2x ) system wherein a second-order 
observer is generally needed. From this point of view, we 
can declare it is a reduced-order observer. In such a way, 
the phase lag triggered by the estimator can be reduced 
and the proposed method can enhance the closed-loop 
robustness effectively. 
Remark 2 In (31), the flight path angle M  can be 
calculated by using the horizontal velocity xV  and vertical 
velocity yV  from the on-board inertial navigation system 
(INS). Nevertheless, it is well known that the sole INS 
vertical position solution is dynamically exponential 
unstable since the computer must use the vertical position 
to compute and compensate measured accelerations for 
normal gravity. This problem can be solved by using 
some improved compensation algorithms. The gravity can 
be fixed as a constant, because the terminal guidance 
period is generally quite short. The anomalous gravity 
field map can also be used in a map-matching mode to 
bound the vertical velocity error [28]. Through these ways, 
a sufficiently accurate vertical velocity can be obtained, 
and the flight path angle M  can be obtained as  

arctan ( )M y xV V  

Remark 3 Although there are two sign functions in (31), 
the guidance command is still continuous (not smooth) 
[13]. The first sign function ensures that the square root 
function makes sense for each real number s  while still 
maintaining the sign thereof. The second sign function 
takes effect with an integral operator; hence its role is 
demonstrated in a continuously incremental form. It is 
remarkable that these fundamental characteristics of the 
second-order sliding mode approach can check the 
chattering phenomenon by eliminating the direct sign 
terms. 

4. Stability analysis 

In this section, the stability of the proposed guidance 
law is analysed.  

Substituting the guidance law (31) into (11), the 
closed-loop system is given as  
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- sign( ) sign( ) ( )
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s s s s dt f t z     

which can be rewritten as  
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e    
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where 1 s  , 2 20
sign( )

t
s dt   , and 2( )e f t z   

represents the observer error.  
Choose the Lyapunov function of [13]  
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
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The derivative of 1V  is 
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 

  



With respect to (36), we cannot immediately confirm 
whether the system is stable when employing the 
Lyapunov function in [13]. 

Because the target manoeuvrability is finite, it can be 
effectively captured by a sufficiently fast observer. Note 
that strong manoeuvrability generally means a large 
amplitude instead of a high-frequency variation in order 
for the target acceleration to evade interception in reality. 
In other words, ( )f t  can be regarded as a low-frequency 

� (36)

With respect to (36), we cannot immediately confirm whether the 
system is stable when employing the Lyapunov function in [13].

Because the target manoeuvrability is finite, it can be effec-
tively captured by a sufficiently fast observer. Note that strong 
manoeuvrability generally means a large amplitude instead of 
a high-frequency variation in order for the target acceleration 
to evade interception in reality. In other words, f(t) can be re-
garded as a low-frequency signal and it is reasonable to give 
the following assumption.

Assumption 1. The derivative of the target normal acceleration 
aT? is assumed to be bounded as
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signal and it is reasonable to give the following 
assumption. 
Assumption 1.  
The derivative of the target normal acceleration Ta


 is 

assumed to be bounded as  

( ) ff t  

where f  is an unknown constant.  
Theorem 2  

The sliding mode 1  and the observer error e  in the 
closed-loop system (33) or (34) are uniformly ultimately 
bounded (UUB) [29] as  

2 2
1 1 2( )     

and  

2/ ( ) / (2 )o f oe        

respectively when the interception time is sufficiently 
large, where 

2 1
2= (4 )f o    （ ） 

Proof: 
For the closed-loop system (33) or (34), choose an 

improved Lyapunov function  

1
2 2
2

2 20
sign( )

2 2
eV t dt


   

Note that 1

20
sign( ) 0t dt


  , so 2V  is positive definite. 

According to (36), the derivative of 2V  can be derived as 

1/ 2
2 1 2 1 2V e ee       

Combining (30) and the differential formula of (29) 
yields 

2 1

2

c o

c o o

z z x
z z bu


 

 
   



As 1 2x x bu  , (43) can be simplified as 

2 2 2( )
.

o

o

z bu z x bu
e




    




Substituting (37) and (44) into (42) yields 

1/2
2 1 2 1 2

1/2 2
1 2 1 2

1/2 2
1 2 1 2

1/2 2 2
1 2 1

( ( ) )

( )

( )
2

o

f o

o f

f
o

o

V e e f t e

e e e

e e

e

    

     

     

 
    



    

    

    


    



According to the Lyapunov stability theory, the closed-
loop system will be stable when 2V  is strictly negative 
definite. Via some derivations of the terms of the last line 
in (45), one can obtain 2 0V   with 

2/ ( ) / (2 )o f oe         or 
2 2

1 1 2( )     . For 
the sake of simplicity, we merely consider the case of e. 
With the definition of  

2/ ( ) / (2 )o f oc        

2V  will be negative in the set  e c . In this set, 2V  will 

decrease monotonically; and e  will decrease 

simultaneously until e  enters  e c ,  and then e  will 

not leave the set  e c  because 2V  is negative on the 

boundary e c . Thereafter, it can be concluded that e  
is uniformly ultimately bounded with an ultimate bound 

2/ ( ) / (2 )o f oe        . Note that (46) represents 
the ultimate bound of the observer error. The similar 
analysis can also be applied to 1 . This completes the 
proof. In addition, these two compact bounds can be small 
enough with a sufficiently large o . 

5. Numerical simulations 

In this section, several comparative simulation results 
are presented, including the tail chase and the head-on 
interception scenarios. For comparisons, we perform 
simulations using the proposed guidance laws in this 
paper and in [13], where a HOSMO-based sliding mode 
guidance law was designed. Both methods are almost 
identical except the observer design.  

Assume that the target has a constant velocity of 600 
m/s. The maximal normalised acceleration of the missile 
is 25 g and the target manoeuvres are 8sin(0.85 )Ta t  g 
and 8sign(sin(0.85 ))Ta t  g, respectively, where g is the 
gravitational constant. 

5.1 Aerodynamic interceptor model 
The numerical simulations are performed in order to 

validate the proposed guidance law in conjunction with an 
aerodynamic missile controlled by a classical three-loop 
autopilot. The mathematical model of the missile used 

,� (37)

where εf is an unknown constant.

Theorem 2. The sliding mode υ1 and the observer error e in 
the closed-loop system (33) or (34) are uniformly ultimately 
bounded (UUB) [29] as

	

6 

signal and it is reasonable to give the following 
assumption. 
Assumption 1.  
The derivative of the target normal acceleration Ta


 is 

assumed to be bounded as  

( ) ff t  

where f  is an unknown constant.  
Theorem 2  

The sliding mode 1  and the observer error e  in the 
closed-loop system (33) or (34) are uniformly ultimately 
bounded (UUB) [29] as  

2 2
1 1 2( )     

and  

2/ ( ) / (2 )o f oe        

respectively when the interception time is sufficiently 
large, where 

2 1
2= (4 )f o    （ ） 

Proof: 
For the closed-loop system (33) or (34), choose an 

improved Lyapunov function  

1
2 2
2

2 20
sign( )

2 2
eV t dt


   

Note that 1

20
sign( ) 0t dt


  , so 2V  is positive definite. 

According to (36), the derivative of 2V  can be derived as 

1/ 2
2 1 2 1 2V e ee       

Combining (30) and the differential formula of (29) 
yields 

2 1

2

c o

c o o

z z x
z z bu


 

 
   



As 1 2x x bu  , (43) can be simplified as 

2 2 2( )
.

o

o

z bu z x bu
e




    




Substituting (37) and (44) into (42) yields 

1/2
2 1 2 1 2

1/2 2
1 2 1 2

1/2 2
1 2 1 2

1/2 2 2
1 2 1

( ( ) )

( )

( )
2

o

f o

o f

f
o

o

V e e f t e

e e e

e e

e

    

     

     

 
    



    

    

    


    



According to the Lyapunov stability theory, the closed-
loop system will be stable when 2V  is strictly negative 
definite. Via some derivations of the terms of the last line 
in (45), one can obtain 2 0V   with 

2/ ( ) / (2 )o f oe         or 
2 2

1 1 2( )     . For 
the sake of simplicity, we merely consider the case of e. 
With the definition of  

2/ ( ) / (2 )o f oc        

2V  will be negative in the set  e c . In this set, 2V  will 

decrease monotonically; and e  will decrease 

simultaneously until e  enters  e c ,  and then e  will 

not leave the set  e c  because 2V  is negative on the 

boundary e c . Thereafter, it can be concluded that e  
is uniformly ultimately bounded with an ultimate bound 

2/ ( ) / (2 )o f oe        . Note that (46) represents 
the ultimate bound of the observer error. The similar 
analysis can also be applied to 1 . This completes the 
proof. In addition, these two compact bounds can be small 
enough with a sufficiently large o . 

5. Numerical simulations 

In this section, several comparative simulation results 
are presented, including the tail chase and the head-on 
interception scenarios. For comparisons, we perform 
simulations using the proposed guidance laws in this 
paper and in [13], where a HOSMO-based sliding mode 
guidance law was designed. Both methods are almost 
identical except the observer design.  

Assume that the target has a constant velocity of 600 
m/s. The maximal normalised acceleration of the missile 
is 25 g and the target manoeuvres are 8sin(0.85 )Ta t  g 
and 8sign(sin(0.85 ))Ta t  g, respectively, where g is the 
gravitational constant. 

5.1 Aerodynamic interceptor model 
The numerical simulations are performed in order to 

validate the proposed guidance law in conjunction with an 
aerodynamic missile controlled by a classical three-loop 
autopilot. The mathematical model of the missile used 

� (38)

and
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signal and it is reasonable to give the following 
assumption. 
Assumption 1.  
The derivative of the target normal acceleration Ta


 is 

assumed to be bounded as  

( ) ff t  

where f  is an unknown constant.  
Theorem 2  

The sliding mode 1  and the observer error e  in the 
closed-loop system (33) or (34) are uniformly ultimately 
bounded (UUB) [29] as  

2 2
1 1 2( )     

and  

2/ ( ) / (2 )o f oe        

respectively when the interception time is sufficiently 
large, where 

2 1
2= (4 )f o    （ ） 

Proof: 
For the closed-loop system (33) or (34), choose an 

improved Lyapunov function  

1
2 2
2

2 20
sign( )

2 2
eV t dt


   

Note that 1

20
sign( ) 0t dt


  , so 2V  is positive definite. 

According to (36), the derivative of 2V  can be derived as 

1/ 2
2 1 2 1 2V e ee       

Combining (30) and the differential formula of (29) 
yields 

2 1

2

c o

c o o

z z x
z z bu


 

 
   



As 1 2x x bu  , (43) can be simplified as 

2 2 2( )
.

o

o

z bu z x bu
e




    




Substituting (37) and (44) into (42) yields 

1/2
2 1 2 1 2

1/2 2
1 2 1 2

1/2 2
1 2 1 2

1/2 2 2
1 2 1

( ( ) )

( )

( )
2

o

f o

o f

f
o

o

V e e f t e

e e e

e e

e

    

     

     

 
    



    

    

    


    



According to the Lyapunov stability theory, the closed-
loop system will be stable when 2V  is strictly negative 
definite. Via some derivations of the terms of the last line 
in (45), one can obtain 2 0V   with 

2/ ( ) / (2 )o f oe         or 
2 2

1 1 2( )     . For 
the sake of simplicity, we merely consider the case of e. 
With the definition of  

2/ ( ) / (2 )o f oc        

2V  will be negative in the set  e c . In this set, 2V  will 

decrease monotonically; and e  will decrease 

simultaneously until e  enters  e c ,  and then e  will 

not leave the set  e c  because 2V  is negative on the 

boundary e c . Thereafter, it can be concluded that e  
is uniformly ultimately bounded with an ultimate bound 

2/ ( ) / (2 )o f oe        . Note that (46) represents 
the ultimate bound of the observer error. The similar 
analysis can also be applied to 1 . This completes the 
proof. In addition, these two compact bounds can be small 
enough with a sufficiently large o . 

5. Numerical simulations 

In this section, several comparative simulation results 
are presented, including the tail chase and the head-on 
interception scenarios. For comparisons, we perform 
simulations using the proposed guidance laws in this 
paper and in [13], where a HOSMO-based sliding mode 
guidance law was designed. Both methods are almost 
identical except the observer design.  

Assume that the target has a constant velocity of 600 
m/s. The maximal normalised acceleration of the missile 
is 25 g and the target manoeuvres are 8sin(0.85 )Ta t  g 
and 8sign(sin(0.85 ))Ta t  g, respectively, where g is the 
gravitational constant. 

5.1 Aerodynamic interceptor model 
The numerical simulations are performed in order to 

validate the proposed guidance law in conjunction with an 
aerodynamic missile controlled by a classical three-loop 
autopilot. The mathematical model of the missile used 

,� (39)

respectively, when the interception time is sufficiently large, 
where
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signal and it is reasonable to give the following 
assumption. 
Assumption 1.  
The derivative of the target normal acceleration Ta


 is 

assumed to be bounded as  

( ) ff t  

where f  is an unknown constant.  
Theorem 2  

The sliding mode 1  and the observer error e  in the 
closed-loop system (33) or (34) are uniformly ultimately 
bounded (UUB) [29] as  

2 2
1 1 2( )     

and  

2/ ( ) / (2 )o f oe        

respectively when the interception time is sufficiently 
large, where 

2 1
2= (4 )f o    （ ） 

Proof: 
For the closed-loop system (33) or (34), choose an 

improved Lyapunov function  

1
2 2
2

2 20
sign( )

2 2
eV t dt


   

Note that 1

20
sign( ) 0t dt


  , so 2V  is positive definite. 

According to (36), the derivative of 2V  can be derived as 

1/ 2
2 1 2 1 2V e ee       

Combining (30) and the differential formula of (29) 
yields 

2 1

2

c o

c o o

z z x
z z bu


 

 
   



As 1 2x x bu  , (43) can be simplified as 

2 2 2( )
.

o

o

z bu z x bu
e




    




Substituting (37) and (44) into (42) yields 

1/2
2 1 2 1 2

1/2 2
1 2 1 2

1/2 2
1 2 1 2

1/2 2 2
1 2 1

( ( ) )
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o

f o

o f

f
o
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V e e f t e

e e e

e e

e
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     

 
    



    

    

    


    



According to the Lyapunov stability theory, the closed-
loop system will be stable when 2V  is strictly negative 
definite. Via some derivations of the terms of the last line 
in (45), one can obtain 2 0V   with 

2/ ( ) / (2 )o f oe         or 
2 2

1 1 2( )     . For 
the sake of simplicity, we merely consider the case of e. 
With the definition of  

2/ ( ) / (2 )o f oc        

2V  will be negative in the set  e c . In this set, 2V  will 

decrease monotonically; and e  will decrease 

simultaneously until e  enters  e c ,  and then e  will 

not leave the set  e c  because 2V  is negative on the 

boundary e c . Thereafter, it can be concluded that e  
is uniformly ultimately bounded with an ultimate bound 

2/ ( ) / (2 )o f oe        . Note that (46) represents 
the ultimate bound of the observer error. The similar 
analysis can also be applied to 1 . This completes the 
proof. In addition, these two compact bounds can be small 
enough with a sufficiently large o . 

5. Numerical simulations 

In this section, several comparative simulation results 
are presented, including the tail chase and the head-on 
interception scenarios. For comparisons, we perform 
simulations using the proposed guidance laws in this 
paper and in [13], where a HOSMO-based sliding mode 
guidance law was designed. Both methods are almost 
identical except the observer design.  

Assume that the target has a constant velocity of 600 
m/s. The maximal normalised acceleration of the missile 
is 25 g and the target manoeuvres are 8sin(0.85 )Ta t  g 
and 8sign(sin(0.85 ))Ta t  g, respectively, where g is the 
gravitational constant. 

5.1 Aerodynamic interceptor model 
The numerical simulations are performed in order to 

validate the proposed guidance law in conjunction with an 
aerodynamic missile controlled by a classical three-loop 
autopilot. The mathematical model of the missile used 

.� (40)

Proof. For the closed-loop system (33) or (34), choose an im-
proved Lyapunov function
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signal and it is reasonable to give the following 
assumption. 
Assumption 1.  
The derivative of the target normal acceleration Ta


 is 

assumed to be bounded as  

( ) ff t  

where f  is an unknown constant.  
Theorem 2  

The sliding mode 1  and the observer error e  in the 
closed-loop system (33) or (34) are uniformly ultimately 
bounded (UUB) [29] as  

2 2
1 1 2( )     

and  

2/ ( ) / (2 )o f oe        

respectively when the interception time is sufficiently 
large, where 

2 1
2= (4 )f o    （ ） 

Proof: 
For the closed-loop system (33) or (34), choose an 

improved Lyapunov function  

1
2 2
2

2 20
sign( )

2 2
eV t dt


   

Note that 1

20
sign( ) 0t dt


  , so 2V  is positive definite. 

According to (36), the derivative of 2V  can be derived as 

1/ 2
2 1 2 1 2V e ee       

Combining (30) and the differential formula of (29) 
yields 

2 1

2

c o

c o o

z z x
z z bu


 

 
   



As 1 2x x bu  , (43) can be simplified as 

2 2 2( )
.

o

o

z bu z x bu
e




    




Substituting (37) and (44) into (42) yields 

1/2
2 1 2 1 2

1/2 2
1 2 1 2

1/2 2
1 2 1 2

1/2 2 2
1 2 1

( ( ) )

( )

( )
2

o

f o

o f

f
o

o

V e e f t e

e e e

e e

e

    

     

     

 
    



    

    

    


    



According to the Lyapunov stability theory, the closed-
loop system will be stable when 2V  is strictly negative 
definite. Via some derivations of the terms of the last line 
in (45), one can obtain 2 0V   with 

2/ ( ) / (2 )o f oe         or 
2 2

1 1 2( )     . For 
the sake of simplicity, we merely consider the case of e. 
With the definition of  

2/ ( ) / (2 )o f oc        

2V  will be negative in the set  e c . In this set, 2V  will 

decrease monotonically; and e  will decrease 

simultaneously until e  enters  e c ,  and then e  will 

not leave the set  e c  because 2V  is negative on the 

boundary e c . Thereafter, it can be concluded that e  
is uniformly ultimately bounded with an ultimate bound 

2/ ( ) / (2 )o f oe        . Note that (46) represents 
the ultimate bound of the observer error. The similar 
analysis can also be applied to 1 . This completes the 
proof. In addition, these two compact bounds can be small 
enough with a sufficiently large o . 

5. Numerical simulations 

In this section, several comparative simulation results 
are presented, including the tail chase and the head-on 
interception scenarios. For comparisons, we perform 
simulations using the proposed guidance laws in this 
paper and in [13], where a HOSMO-based sliding mode 
guidance law was designed. Both methods are almost 
identical except the observer design.  

Assume that the target has a constant velocity of 600 
m/s. The maximal normalised acceleration of the missile 
is 25 g and the target manoeuvres are 8sin(0.85 )Ta t  g 
and 8sign(sin(0.85 ))Ta t  g, respectively, where g is the 
gravitational constant. 

5.1 Aerodynamic interceptor model 
The numerical simulations are performed in order to 

validate the proposed guidance law in conjunction with an 
aerodynamic missile controlled by a classical three-loop 
autopilot. The mathematical model of the missile used 

.� (41)

Note that ∫0

υ1α2sign(t)dt ¸ 0, so V2 is positive definite. According 
to (36), the derivative of V2 can be derived as
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signal and it is reasonable to give the following 
assumption. 
Assumption 1.  
The derivative of the target normal acceleration Ta


 is 

assumed to be bounded as  

( ) ff t  

where f  is an unknown constant.  
Theorem 2  

The sliding mode 1  and the observer error e  in the 
closed-loop system (33) or (34) are uniformly ultimately 
bounded (UUB) [29] as  

2 2
1 1 2( )     

and  

2/ ( ) / (2 )o f oe        

respectively when the interception time is sufficiently 
large, where 

2 1
2= (4 )f o    （ ） 

Proof: 
For the closed-loop system (33) or (34), choose an 

improved Lyapunov function  

1
2 2
2

2 20
sign( )

2 2
eV t dt


   

Note that 1

20
sign( ) 0t dt


  , so 2V  is positive definite. 

According to (36), the derivative of 2V  can be derived as 

1/ 2
2 1 2 1 2V e ee       

Combining (30) and the differential formula of (29) 
yields 

2 1

2

c o

c o o

z z x
z z bu


 

 
   



As 1 2x x bu  , (43) can be simplified as 

2 2 2( )
.

o

o

z bu z x bu
e




    




Substituting (37) and (44) into (42) yields 

1/2
2 1 2 1 2

1/2 2
1 2 1 2

1/2 2
1 2 1 2

1/2 2 2
1 2 1

( ( ) )

( )

( )
2

o

f o

o f

f
o

o

V e e f t e

e e e

e e

e

    

     

     

 
    



    

    

    


    



According to the Lyapunov stability theory, the closed-
loop system will be stable when 2V  is strictly negative 
definite. Via some derivations of the terms of the last line 
in (45), one can obtain 2 0V   with 

2/ ( ) / (2 )o f oe         or 
2 2

1 1 2( )     . For 
the sake of simplicity, we merely consider the case of e. 
With the definition of  

2/ ( ) / (2 )o f oc        

2V  will be negative in the set  e c . In this set, 2V  will 

decrease monotonically; and e  will decrease 

simultaneously until e  enters  e c ,  and then e  will 

not leave the set  e c  because 2V  is negative on the 

boundary e c . Thereafter, it can be concluded that e  
is uniformly ultimately bounded with an ultimate bound 

2/ ( ) / (2 )o f oe        . Note that (46) represents 
the ultimate bound of the observer error. The similar 
analysis can also be applied to 1 . This completes the 
proof. In addition, these two compact bounds can be small 
enough with a sufficiently large o . 

5. Numerical simulations 

In this section, several comparative simulation results 
are presented, including the tail chase and the head-on 
interception scenarios. For comparisons, we perform 
simulations using the proposed guidance laws in this 
paper and in [13], where a HOSMO-based sliding mode 
guidance law was designed. Both methods are almost 
identical except the observer design.  

Assume that the target has a constant velocity of 600 
m/s. The maximal normalised acceleration of the missile 
is 25 g and the target manoeuvres are 8sin(0.85 )Ta t  g 
and 8sign(sin(0.85 ))Ta t  g, respectively, where g is the 
gravitational constant. 

5.1 Aerodynamic interceptor model 
The numerical simulations are performed in order to 

validate the proposed guidance law in conjunction with an 
aerodynamic missile controlled by a classical three-loop 
autopilot. The mathematical model of the missile used 

.� (42)

Combining (30) and the differential formula of (29) yields
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signal and it is reasonable to give the following 
assumption. 
Assumption 1.  
The derivative of the target normal acceleration Ta


 is 

assumed to be bounded as  

( ) ff t  

where f  is an unknown constant.  
Theorem 2  

The sliding mode 1  and the observer error e  in the 
closed-loop system (33) or (34) are uniformly ultimately 
bounded (UUB) [29] as  

2 2
1 1 2( )     

and  

2/ ( ) / (2 )o f oe        

respectively when the interception time is sufficiently 
large, where 

2 1
2= (4 )f o    （ ） 

Proof: 
For the closed-loop system (33) or (34), choose an 

improved Lyapunov function  

1
2 2
2

2 20
sign( )

2 2
eV t dt


   

Note that 1

20
sign( ) 0t dt


  , so 2V  is positive definite. 

According to (36), the derivative of 2V  can be derived as 

1/ 2
2 1 2 1 2V e ee       

Combining (30) and the differential formula of (29) 
yields 

2 1

2

c o

c o o

z z x
z z bu


 

 
   



As 1 2x x bu  , (43) can be simplified as 

2 2 2( )
.

o

o

z bu z x bu
e




    




Substituting (37) and (44) into (42) yields 

1/2
2 1 2 1 2

1/2 2
1 2 1 2

1/2 2
1 2 1 2

1/2 2 2
1 2 1

( ( ) )

( )

( )
2

o

f o

o f

f
o

o

V e e f t e

e e e

e e

e

    

     

     

 
    



    

    

    


    



According to the Lyapunov stability theory, the closed-
loop system will be stable when 2V  is strictly negative 
definite. Via some derivations of the terms of the last line 
in (45), one can obtain 2 0V   with 

2/ ( ) / (2 )o f oe         or 
2 2

1 1 2( )     . For 
the sake of simplicity, we merely consider the case of e. 
With the definition of  

2/ ( ) / (2 )o f oc        

2V  will be negative in the set  e c . In this set, 2V  will 

decrease monotonically; and e  will decrease 

simultaneously until e  enters  e c ,  and then e  will 

not leave the set  e c  because 2V  is negative on the 

boundary e c . Thereafter, it can be concluded that e  
is uniformly ultimately bounded with an ultimate bound 

2/ ( ) / (2 )o f oe        . Note that (46) represents 
the ultimate bound of the observer error. The similar 
analysis can also be applied to 1 . This completes the 
proof. In addition, these two compact bounds can be small 
enough with a sufficiently large o . 

5. Numerical simulations 

In this section, several comparative simulation results 
are presented, including the tail chase and the head-on 
interception scenarios. For comparisons, we perform 
simulations using the proposed guidance laws in this 
paper and in [13], where a HOSMO-based sliding mode 
guidance law was designed. Both methods are almost 
identical except the observer design.  

Assume that the target has a constant velocity of 600 
m/s. The maximal normalised acceleration of the missile 
is 25 g and the target manoeuvres are 8sin(0.85 )Ta t  g 
and 8sign(sin(0.85 ))Ta t  g, respectively, where g is the 
gravitational constant. 

5.1 Aerodynamic interceptor model 
The numerical simulations are performed in order to 

validate the proposed guidance law in conjunction with an 
aerodynamic missile controlled by a classical three-loop 
autopilot. The mathematical model of the missile used 

.� (43)

As x ̇ 1 = x2 + bu–, (43) can be simplified as
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signal and it is reasonable to give the following 
assumption. 
Assumption 1.  
The derivative of the target normal acceleration Ta


 is 

assumed to be bounded as  

( ) ff t  

where f  is an unknown constant.  
Theorem 2  

The sliding mode 1  and the observer error e  in the 
closed-loop system (33) or (34) are uniformly ultimately 
bounded (UUB) [29] as  

2 2
1 1 2( )     

and  

2/ ( ) / (2 )o f oe        

respectively when the interception time is sufficiently 
large, where 

2 1
2= (4 )f o    （ ） 

Proof: 
For the closed-loop system (33) or (34), choose an 

improved Lyapunov function  

1
2 2
2

2 20
sign( )

2 2
eV t dt


   

Note that 1

20
sign( ) 0t dt


  , so 2V  is positive definite. 

According to (36), the derivative of 2V  can be derived as 

1/ 2
2 1 2 1 2V e ee       

Combining (30) and the differential formula of (29) 
yields 

2 1

2

c o

c o o

z z x
z z bu


 

 
   



As 1 2x x bu  , (43) can be simplified as 

2 2 2( )
.

o

o

z bu z x bu
e




    




Substituting (37) and (44) into (42) yields 

1/2
2 1 2 1 2

1/2 2
1 2 1 2

1/2 2
1 2 1 2

1/2 2 2
1 2 1

( ( ) )

( )

( )
2

o

f o

o f

f
o

o

V e e f t e

e e e

e e

e

    

     

     

 
    



    

    

    


    



According to the Lyapunov stability theory, the closed-
loop system will be stable when 2V  is strictly negative 
definite. Via some derivations of the terms of the last line 
in (45), one can obtain 2 0V   with 

2/ ( ) / (2 )o f oe         or 
2 2

1 1 2( )     . For 
the sake of simplicity, we merely consider the case of e. 
With the definition of  

2/ ( ) / (2 )o f oc        

2V  will be negative in the set  e c . In this set, 2V  will 

decrease monotonically; and e  will decrease 

simultaneously until e  enters  e c ,  and then e  will 

not leave the set  e c  because 2V  is negative on the 

boundary e c . Thereafter, it can be concluded that e  
is uniformly ultimately bounded with an ultimate bound 

2/ ( ) / (2 )o f oe        . Note that (46) represents 
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proof. In addition, these two compact bounds can be small 
enough with a sufficiently large o . 

5. Numerical simulations 

In this section, several comparative simulation results 
are presented, including the tail chase and the head-on 
interception scenarios. For comparisons, we perform 
simulations using the proposed guidance laws in this 
paper and in [13], where a HOSMO-based sliding mode 
guidance law was designed. Both methods are almost 
identical except the observer design.  

Assume that the target has a constant velocity of 600 
m/s. The maximal normalised acceleration of the missile 
is 25 g and the target manoeuvres are 8sin(0.85 )Ta t  g 
and 8sign(sin(0.85 ))Ta t  g, respectively, where g is the 
gravitational constant. 

5.1 Aerodynamic interceptor model 
The numerical simulations are performed in order to 

validate the proposed guidance law in conjunction with an 
aerodynamic missile controlled by a classical three-loop 
autopilot. The mathematical model of the missile used 

� (44)



238 Bull.  Pol.  Ac.:  Tech.  65(2)  2017

Y. Wang, M. Sun, S. Du, and Z. Chen

Substituting (37) and (44) into (42) yields

	

6 

signal and it is reasonable to give the following 
assumption. 
Assumption 1.  
The derivative of the target normal acceleration Ta


 is 

assumed to be bounded as  

( ) ff t  

where f  is an unknown constant.  
Theorem 2  

The sliding mode 1  and the observer error e  in the 
closed-loop system (33) or (34) are uniformly ultimately 
bounded (UUB) [29] as  

2 2
1 1 2( )     

and  

2/ ( ) / (2 )o f oe        

respectively when the interception time is sufficiently 
large, where 

2 1
2= (4 )f o    （ ） 

Proof: 
For the closed-loop system (33) or (34), choose an 

improved Lyapunov function  

1
2 2
2

2 20
sign( )

2 2
eV t dt


   

Note that 1

20
sign( ) 0t dt


  , so 2V  is positive definite. 
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According to the Lyapunov stability theory, the closed-
loop system will be stable when 2V  is strictly negative 
definite. Via some derivations of the terms of the last line 
in (45), one can obtain 2 0V   with 
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the sake of simplicity, we merely consider the case of e. 
With the definition of  

2/ ( ) / (2 )o f oc        

2V  will be negative in the set  e c . In this set, 2V  will 

decrease monotonically; and e  will decrease 

simultaneously until e  enters  e c ,  and then e  will 

not leave the set  e c  because 2V  is negative on the 

boundary e c . Thereafter, it can be concluded that e  
is uniformly ultimately bounded with an ultimate bound 

2/ ( ) / (2 )o f oe        . Note that (46) represents 
the ultimate bound of the observer error. The similar 
analysis can also be applied to 1 . This completes the 
proof. In addition, these two compact bounds can be small 
enough with a sufficiently large o . 
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are presented, including the tail chase and the head-on 
interception scenarios. For comparisons, we perform 
simulations using the proposed guidance laws in this 
paper and in [13], where a HOSMO-based sliding mode 
guidance law was designed. Both methods are almost 
identical except the observer design.  

Assume that the target has a constant velocity of 600 
m/s. The maximal normalised acceleration of the missile 
is 25 g and the target manoeuvres are 8sin(0.85 )Ta t  g 
and 8sign(sin(0.85 ))Ta t  g, respectively, where g is the 
gravitational constant. 

5.1 Aerodynamic interceptor model 
The numerical simulations are performed in order to 

validate the proposed guidance law in conjunction with an 
aerodynamic missile controlled by a classical three-loop 
autopilot. The mathematical model of the missile used 
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According to the Lyapunov stability theory, the closed-
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definite. Via some derivations of the terms of the last line 
in (45), one can obtain 2 0V   with 

2/ ( ) / (2 )o f oe         or 
2 2

1 1 2( )     . For 
the sake of simplicity, we merely consider the case of e. 
With the definition of  

2/ ( ) / (2 )o f oc        

2V  will be negative in the set  e c . In this set, 2V  will 

decrease monotonically; and e  will decrease 

simultaneously until e  enters  e c ,  and then e  will 

not leave the set  e c  because 2V  is negative on the 

boundary e c . Thereafter, it can be concluded that e  
is uniformly ultimately bounded with an ultimate bound 

2/ ( ) / (2 )o f oe        . Note that (46) represents 
the ultimate bound of the observer error. The similar 
analysis can also be applied to 1 . This completes the 
proof. In addition, these two compact bounds can be small 
enough with a sufficiently large o . 

5. Numerical simulations 
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are presented, including the tail chase and the head-on 
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simulations using the proposed guidance laws in this 
paper and in [13], where a HOSMO-based sliding mode 
guidance law was designed. Both methods are almost 
identical except the observer design.  

Assume that the target has a constant velocity of 600 
m/s. The maximal normalised acceleration of the missile 
is 25 g and the target manoeuvres are 8sin(0.85 )Ta t  g 
and 8sign(sin(0.85 ))Ta t  g, respectively, where g is the 
gravitational constant. 

5.1 Aerodynamic interceptor model 
The numerical simulations are performed in order to 

validate the proposed guidance law in conjunction with an 
aerodynamic missile controlled by a classical three-loop 
autopilot. The mathematical model of the missile used 
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According to the Lyapunov stability theory, the closed-loop 
system will be stable when V ̇

2 is strictly negative definite. 
Via some derivations of the terms of the last line in (45), 
one can obtain V ̇

2 < 0 with jej >  ε/ωo + (α2 + εf)/(2ωo) or 
jυ1j > ε2(α1α2)

–2. For the sake of simplicity, we merely con-
sider the case of e. With the definition of
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According to the Lyapunov stability theory, the closed-
loop system will be stable when 2V  is strictly negative 
definite. Via some derivations of the terms of the last line 
in (45), one can obtain 2 0V   with 
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2 2
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2V  will be negative in the set  e c . In this set, 2V  will 

decrease monotonically; and e  will decrease 

simultaneously until e  enters  e c ,  and then e  will 

not leave the set  e c  because 2V  is negative on the 

boundary e c . Thereafter, it can be concluded that e  
is uniformly ultimately bounded with an ultimate bound 

2/ ( ) / (2 )o f oe        . Note that (46) represents 
the ultimate bound of the observer error. The similar 
analysis can also be applied to 1 . This completes the 
proof. In addition, these two compact bounds can be small 
enough with a sufficiently large o . 

5. Numerical simulations 

In this section, several comparative simulation results 
are presented, including the tail chase and the head-on 
interception scenarios. For comparisons, we perform 
simulations using the proposed guidance laws in this 
paper and in [13], where a HOSMO-based sliding mode 
guidance law was designed. Both methods are almost 
identical except the observer design.  

Assume that the target has a constant velocity of 600 
m/s. The maximal normalised acceleration of the missile 
is 25 g and the target manoeuvres are 8sin(0.85 )Ta t  g 
and 8sign(sin(0.85 ))Ta t  g, respectively, where g is the 
gravitational constant. 

5.1 Aerodynamic interceptor model 
The numerical simulations are performed in order to 

validate the proposed guidance law in conjunction with an 
aerodynamic missile controlled by a classical three-loop 
autopilot. The mathematical model of the missile used 
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V ̇2 will be negative in the set {jej > c–}. In this set, V2 will de-
crease monotonically; and jej will decrease simultaneously until 
jej enters {jej ∙ c–}, and then jej will not leave the set {jej ∙ c–} 
because V ̇2 is negative on the boundary jej = c–. Thereafter, it 
can be concluded that jej is uniformly ultimately bounded with 
an ultimate bound jej ∙  ε/ωo + (α2 + εf)/(2ωo). Note that (46) 
represents the ultimate bound of the observer error. The similar 
analysis can also be applied to jυ1j. This completes the proof. In 
addition, these two compact bounds can be small enough with 
a sufficiently large ωo.

5.	 Numerical simulations

In this section, several comparative simulation results are 
presented, including the tail chase and head-on interception 
scenarios. For comparisons, we perform simulations using 
the proposed guidance laws in this paper and in [13], where 
a HOSMO-based sliding mode guidance law was designed. 
Both methods are almost identical except the observer de-
sign.

Assume that the target has a constant velocity of 600 m/s. 
The maximal normalised acceleration of the missile is 
25 g and the target manoeuvres are aT = 8sin(0.85t) g and 
aT = 8sign(sin(0.85t)) g, respectively, where g is the gravita-
tional constant.

5.1. Aerodynamic interceptor model. The numerical simula-
tions are performed in order to validate the proposed guidance 
law in conjunction with an aerodynamic missile controlled 
by a classical three-loop autopilot. The mathematical model 
of the missile used here describes the dynamics of a highly 
maneuverable antiaircraft missile around its pitch axis. The 
longitudinal equations, which govern the missile dynamics, 
are [19]
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where Q  is the pitch rate,   is the angle of attack, M  is 
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where c  is the control input. Here, the elevator 
amplitude saturation is 25 25   . The control task is 
to ensure the missile vertical acceleration, za , to track the 
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5.2 Tuning process 
Firstly, the parameters of the guidance law need to be 
tuned. Similar to the proportional gain in the PI controller, 
faster convergence of the sliding mode in (13) can be 
achieved with a larger 1  as shown in Fig. 2 for a fixed 

2 1  . Nonetheless, a larger 1  will cause more severe 
oscillations to the sliding mode as demonstrated in an 
enlarged plot because the equivalent gain in the steady 
state is amplified. Hence, 1  is chosen as 1.20 to make a 
compromise. The common sliding modes in terms of 
variations of 2  are depicted in Fig. 3. Clearly the sliding 
mode error is decreased with a larger 2  but there are 
minor variations. In such a way, 2  is chosen as 0.95, 
approximately based on the parameter selection principle 
in [11] where 1 1.5 f   and 2 1.1 f   with 

8 g/sf  , which assumes that the acceleration of the 
target can vary 8 g per second, which is a general 
specification for the surface-bound missile. Although a 
high o  is helpful for obtaining a small enough error 
compact set and achieving an accurate estimation, it may 
cause high-frequency oscillations in practice [19]. 
Considering both the robustness and the aerodynamic 
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where Q is the pitch rate, α is the angle of attack, M is the Mach 
number, δ is the elevator deflection angle, Vs is the ground ve-
locity, Cn and Cm are the aerodynamic force and moment coef-
ficients, respectively, ax  and az  are the longitudinal acceleration 
and vertical acceleration, respectively. The elevator model is
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here describes the dynamics of a highly maneuverable 
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where c  is the control input. Here, the elevator 
amplitude saturation is 25 25   . The control task is 
to ensure the missile vertical acceleration, za , to track the 
real guidance command, Ma , using the rudder deflection 
angle,  . The parameters of the aerodynamic model are 
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5.2 Tuning process 
Firstly, the parameters of the guidance law need to be 
tuned. Similar to the proportional gain in the PI controller, 
faster convergence of the sliding mode in (13) can be 
achieved with a larger 1  as shown in Fig. 2 for a fixed 

2 1  . Nonetheless, a larger 1  will cause more severe 
oscillations to the sliding mode as demonstrated in an 
enlarged plot because the equivalent gain in the steady 
state is amplified. Hence, 1  is chosen as 1.20 to make a 
compromise. The common sliding modes in terms of 
variations of 2  are depicted in Fig. 3. Clearly the sliding 
mode error is decreased with a larger 2  but there are 
minor variations. In such a way, 2  is chosen as 0.95, 
approximately based on the parameter selection principle 
in [11] where 1 1.5 f   and 2 1.1 f   with 

8 g/sf  , which assumes that the acceleration of the 
target can vary 8 g per second, which is a general 
specification for the surface-bound missile. Although a 
high o  is helpful for obtaining a small enough error 
compact set and achieving an accurate estimation, it may 
cause high-frequency oscillations in practice [19]. 
Considering both the robustness and the aerodynamic 
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where δc is the control input. Here, the elevator amplitude satu-
ration is –25° ∙ δ ∙ 25° The control task is to ensure the missile 
vertical acceleration az  to track the real guidance command 
aM , using the rudder deflection angle δ. The parameters of the 
aerodynamic model are summarised in Table 1. The operating 

Table 1 
Characteristic parameters

Coefficient Symbol Value Unit

constant

Ka 0.02069 s–1

Kq 1.23219 s–2

Kz 0.66623 s–2

Force
coefficient

an 0.000103 deg–3

bn –0.00945 deg–2

cn –0.16960 deg–1

dn –0.0340 deg–1

moment
coefficient

am 0.000215 deg–3

bm –0.0195 deg–2

cm 0.051 deg–1

dm –0.206 deg–1

static pressure at 6096 m P0 46601.6 N/m2

reference area S 0.040877 m2

Mass m 204.01 kg

speed of sound vs 315.89 m/s

drag coefficient Ca –0.3
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range is –20° ∙ α ∙ 20° and 1.5 ∙ M ∙ 3. The three-loop ac-
celeration autopilot [30] is
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where Q  is the pitch rate,   is the angle of attack, M  is 
the Mach number,   is the elevator deflection angle, sV  
is the ground velocity, nC  and mC  are the aerodynamic 
force and moment coefficients, respectively, xa  and za  
are the longitudinal acceleration and vertical acceleration, 
respectively. The elevator model is  
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where c  is the control input. Here, the elevator 
amplitude saturation is 25 25   . The control task is 
to ensure the missile vertical acceleration, za , to track the 
real guidance command, Ma , using the rudder deflection 
angle,  . The parameters of the aerodynamic model are 
summarised in Table 1. The operating range is 
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5.2 Tuning process 
Firstly, the parameters of the guidance law need to be 
tuned. Similar to the proportional gain in the PI controller, 
faster convergence of the sliding mode in (13) can be 
achieved with a larger 1  as shown in Fig. 2 for a fixed 

2 1  . Nonetheless, a larger 1  will cause more severe 
oscillations to the sliding mode as demonstrated in an 
enlarged plot because the equivalent gain in the steady 
state is amplified. Hence, 1  is chosen as 1.20 to make a 
compromise. The common sliding modes in terms of 
variations of 2  are depicted in Fig. 3. Clearly the sliding 
mode error is decreased with a larger 2  but there are 
minor variations. In such a way, 2  is chosen as 0.95, 
approximately based on the parameter selection principle 
in [11] where 1 1.5 f   and 2 1.1 f   with 

8 g/sf  , which assumes that the acceleration of the 
target can vary 8 g per second, which is a general 
specification for the surface-bound missile. Although a 
high o  is helpful for obtaining a small enough error 
compact set and achieving an accurate estimation, it may 
cause high-frequency oscillations in practice [19]. 
Considering both the robustness and the aerodynamic 
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here describes the dynamics of a highly maneuverable 
antiaircraft missile around its pitch axis. The longitudinal 
equations, which govern the missile dynamics, are [19] 
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where Q  is the pitch rate,   is the angle of attack, M  is 
the Mach number,   is the elevator deflection angle, sV  
is the ground velocity, nC  and mC  are the aerodynamic 
force and moment coefficients, respectively, xa  and za  
are the longitudinal acceleration and vertical acceleration, 
respectively. The elevator model is  
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where c  is the control input. Here, the elevator 
amplitude saturation is 25 25   . The control task is 
to ensure the missile vertical acceleration, za , to track the 
real guidance command, Ma , using the rudder deflection 
angle,  . The parameters of the aerodynamic model are 
summarised in Table 1. The operating range is 

20 20   and 1.5 3M  . The three-loop 
acceleration autopilot [30] is  

( )c i p M z w dk k a a k Q dt k Q       

 
 
 
 
 
 
 
 
 
 
 
 

Table 1 
Characteristic parameters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2 Tuning process 
Firstly, the parameters of the guidance law need to be 
tuned. Similar to the proportional gain in the PI controller, 
faster convergence of the sliding mode in (13) can be 
achieved with a larger 1  as shown in Fig. 2 for a fixed 

2 1  . Nonetheless, a larger 1  will cause more severe 
oscillations to the sliding mode as demonstrated in an 
enlarged plot because the equivalent gain in the steady 
state is amplified. Hence, 1  is chosen as 1.20 to make a 
compromise. The common sliding modes in terms of 
variations of 2  are depicted in Fig. 3. Clearly the sliding 
mode error is decreased with a larger 2  but there are 
minor variations. In such a way, 2  is chosen as 0.95, 
approximately based on the parameter selection principle 
in [11] where 1 1.5 f   and 2 1.1 f   with 

8 g/sf  , which assumes that the acceleration of the 
target can vary 8 g per second, which is a general 
specification for the surface-bound missile. Although a 
high o  is helpful for obtaining a small enough error 
compact set and achieving an accurate estimation, it may 
cause high-frequency oscillations in practice [19]. 
Considering both the robustness and the aerodynamic 
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5.2. Tuning process. Firstly, the parameters of the guidance 
law need to be tuned. Similar to the proportional gain in the PI 
controller, faster convergence of the sliding mode in (13) can be 
achieved with a larger α1 , as shown in Fig. 2 for a fixed α2 = 1. 
Nonetheless, a larger α1 will cause more severe oscillations to 
the sliding mode as demonstrated in an enlarged plot, because 
the equivalent gain in the steady state is amplified. Hence, α1 
is chosen as 1.20 to make a compromise. The common sliding 
modes in terms of variations of α2 are depicted in Fig. 3. 
Clearly, the sliding mode error is decreased with a larger α2, 
but there are minor variations. In such way, α2 is chosen as 0.95, 

approximately based on the parameter selection principle in 
[11], where α1 = 1.5 εf  and α2 = 1.1εf with εf = 8 g/s, which as-
sumes that the acceleration of the target can vary 8 g per second, 
which is a general specification for the surface-bound missile. 
Although a high ωo is helpful for obtaining a small enough 
error compact set and achieving an accurate estimation, it may 
cause high-frequency oscillations in practice [19]. Considering 
both the robustness and the aerodynamic performance require-
ments, an appropriate trade-off can be achieved by selecting 
ωo = 10 rad/s, according to the empirical experience, because 
the bandwidth of guidance dynamics is much slower than that 
of aerodynamics in general, and ωo = 10 rad/s is sufficient for 
most flight dynamics [19]. The boundary of jq ¡ θMj in the 
denominator of (31) is chosen as μ = π/2£80/90. To be con-
sistent with [13], c0 is chosen as 0.1. The observer gain L in 
HOSMO is approximately determined as L = εf [13]. Generally, 
the settling time of the step response in the three-loop acceler-
ation control system needs to be less than one second. Based 
on this principle, the parameters of the autopilot (49) are tuned 
as kp = 4.61, ki = 2.892, kd = 1.34, kw = 8.359 and the control 
performance can be shown in Fig. 4, which meets the control 
system specifications.

5.3. Tail chase scenario. The initial positions of the interceptor 
and the target are set at (0 km, 0 km) and (3 km, 3 km), and 
the initial flight path angles are 15 deg and 0 deg, respectively.

The homing trajectories are shown in Fig. 5. The miss 
distances are 0.029 m and 0.055 m for the FOLO and HOS-
MO-based methods, respectively. Although the miss distances 
of these two methods are very similar, the normalised acceler-
ations in the proposed method are smaller and smoother than 
those of the HOSMO-based method, as depicted in Fig. 6. These 
commands lead to different elevator deflection needs, as shown 
in Fig. 7. Here, the limits of the elevator deflection and its rate 
are given as 25° and 200°/s, respectively, a specification com-
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bination for the conventional interceptor at present. It is evident 
that the proposed method has significantly weak requirements 
for both indices, which are quite favourable for practical im-
plementation because a lower performance actuator is sufficient 
for the objective such that the research, development, and man-
ufacturing costs can be reduced. Now we attempt to seek the 
reason behind this key difference. Both methods differ only in 
the selection of observers. Hence, the sole source of the differ-
ence is the observer. To further investigate this, the estimation 
from the previous HOSMO is illustrated in Fig. 8, where the 
oscillatory response can be clearly observed during the initial 
phase, even with the recommended optimal observer gains of 
[13]. This phenomenon can also be found in [13] with a large 
amplitude of oscillation. As stated in [31], the homogeneity of 
the HOSMO, which has been proved in Theorem 1, gives rise 
to a slow convergent rate of HOSMO when the initial observer 
errors are large. Although the fractional power in this homo-
geneous observer is less than 1, which can ensure finite-time 
convergence, “it makes the convergence time grow unbounded 

Fig. 6. Normalised missile accelerations in the tail chase scenarioFig. 5. Homing trajectories in the tail chase scenario

Fig. 8. Disturbance estimation based on HOSMO in the tail chase 
scenario

Fig. 7. Elevator responses in the tail chase scenario

(a) elevator deflection angle (b) elevator deflection rate
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as the initial observer errors grow” [26]. Therefore, a uniform 
convergence cannot be achieved in HOSMO. Moreover, the 
simulations for HOSMO estimations, apart from the guidance 
dynamics, with respect to different observer gains, are shown 
in Fig. 9. It is evident that the convergent rate cannot be signifi-
cantly raised, even if the observer gain L is greatly increased, 
which limits the application of HOSMO.

With regard to the proposed FOLO, the combination of (24) 
and (44) yields
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which can avoid the oscillation in the initial period as 
shown in the utilization of HOSMO. As illustrated in Fig. 
10, a uniform estimation of the performance can be 
generated by using the proposed FOLO. 

Thereafter, FOLO can achieve a faster convergent rate 
and smoother estimation results than HOSMO. 
Consequently, the smooth and small amplitude guidance 
command can be generated directly by the FOLO-based 
method.  

Here, we attempt to seek the reason behind the 
different elevator deflection requirements of these two 
methods. The block diagram of the three-loop acceleration 
control configuration is depicted in Fig. 11. The small 
perturbation theory is used to linearize the longitudinal 
dynamics (47), and one can obtain the following two 
transfer functions [19] 
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According to (54), the elevator deflection requirement 
is approximately proportional to the amplitude of Ma . 
Since the guidance command from the FOLO method 
is much smaller at the initial period than that of the  
HOSMO method, the proposed method has a weaker 
elevator deflection requirement in contrast with the 
HOSMO-based method.  
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where e = f  ¡ z2. Hence, one can obtain
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.� (51)

It is evident that the convergent rate of FOLO is mainly affected 
by the observer gain ωo. Meanwhile, since FOLO is a linear 
observer, it possesses the inherent characteristic of insensitivity 

to the initial observer errors, which can avoid the oscillation in 
the initial period, as shown in the utilization of HOSMO. As 
illustrated in Fig. 10, a uniform estimation of the performance 
can be generated by using the proposed FOLO.

Thereafter, FOLO can achieve a faster convergent rate and 
smoother estimation results than HOSMO. Consequently, the 
smooth and small amplitude guidance command can be gener-
ated directly by the FOLO-based method.

Here, we attempt to seek the reason behind the different el-
evator deflection requirements of these two methods. The block 
diagram of the three-loop acceleration control configuration is 
depicted in Fig. 11. The small perturbation theory is used to 
linearize the longitudinal dynamics (47), and one can obtain 
the following two transfer functions [19]:
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where a0, a1, b0, b1 and c1 are the characteristic parameters. 
According to Fig. 11, we can obtain the transfer function from 
the guidance command aM to the elevator deflection δ as
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elevator deflection requirement in contrast with the 
HOSMO-based method.  
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.� (55)

According to (54), the elevator deflection requirement is ap-
proximately proportional to the amplitude of aM . Since the guid-

Fig. 10. Disturbance estimation based on FOLO in the tail chase 
scenario

Fig. 11. Block diagram of three-loop acceleration control configuration

Fig. 9. Simulation results of HOSMO with f(t) = 10cos t
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ance command from the FOLO method is much smaller at the 
initial period than that of the HOSMO method, the proposed 
method has a weaker elevator deflection requirement in contrast 
with the HOSMO-based method.

5.4. Head-on interception scenario. In this sub-section, two 
head-on interception scenarios are considered. The initial 
positions and flight path angles of the interceptor and target 
are listed in Table 2. Like the results shown in Fig. 12, the 
two guidance laws also obtain similar trajectories in these 
two cases, respectively. The miss distances are 0.101 m and 
0.085 m for case 1, and 0.092 m and 0.134 m for case 2, 
when the FOLO method and the HOSMO-based method are 
used, respectively. For simplicity, only the results of case 1 
are investigated in detail. The normalised missile accelerations 
are illustrated in Fig. 13 for these two approaches. A weaker 
requirement of the elevator deflection rate using the proposed 
method is still maintained, as illustrated in Fig. 14, comparing 
with the HOSMO-based method. The disturbance estimations 
using these two observers are shown in Figs. 15 and 16, re-

spectively, which are consistent with the analysis results of 
section 5.3.

Fig. 13. Normalised missile accelerations in the head-on interception 
scenario

Fig. 15. Disturbance estimation based on HOSMO in the head-on 
interception scenario

Fig. 14. Elevator deflection rate responses in the head-on interception 
scenario

Fig. 12. Homing trajectories in the head-on interception scenario

(a) case 1 (b) case 2
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Table 2 
Initial information

Case 1 Case 2

Interceptor Target Interceptor Target

(0 km, 0 km)
8 deg

(20 km, 2 km)
180 deg

(0 km, 0km)
45 deg

(10 km, 10 km)
–135 deg

Fig. 17. Homing trajectories with a bang-bang manoeuvring target

Fig. 19. Normalised missile accelerations with a bang-bang manoeu-
vring target

Fig. 18. Disturbance estimations with a bang-bang manoeuvring target

Fig. 20. Elevator deflection rate responses with a bang-bang manoeu-
vring target

Fig. 16. Disturbance estimation based on FOLO in the head-on inter-
ception scenario

5.5. Target manoeuvre with bang-bang acceleration. Assume 
aT = 8sign(sin(0.85t)) g. The initial positions of the interceptor 
and the target are set at (0 km, 0 km) and (4.5 km, 4.5 km), and 
the initial flight path angles are 10 deg and 25 deg, respectively. 
The homing trajectories are depicted in Fig. 17 for the FOLO 
method and the HOSMO-based method with the miss distances 
of 0.132 m and 0.205 m, respectively. As shown in Fig. 18, the 
oscillatory response in the estimation results can still be found 
during the initial phase of the HOSMO-based method, leading 
to large amplitudes of normalised missile acceleration and fast 
elevator deflection as depicted in Figs. 19 and 20 respectively.
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Generally, the guidance system is unacceptable if it is 
fairly sensitive to the measurement noises on LOS rate. To test 
whether the systems are sensitive to the noise, we assume that 
the LOS rate has additional white noises as its measurement 
noises with an intensity of 2°/s. The responses of the elevator 
deflection angle are shown in Fig. 21 for these two methods. It 
is evident that both methods have the identical level of noise 
sensitivities. This is because q ̇  is not entirely contained in the 
disturbance f(t), and the observer has no effect on the noise 
filtering for q ̇ . As depicted in (14), q ̇  explicitly exists in the 
guidance command in a straightforward manner no matter 
what observers are employed. Therefore, the FOLO-based and 
HOSMO-based methods have comparable sensitivities to the 
measurement noises on q ̇ . As a result, the applicability of the 
FOLO-based guidance law is not weaker than the original non-
linear observer based one.
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