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Abstract. The present paper discusses an effective adaptive methods suited for use in parallel environment. An in-house, parallel flow solver 
based on the residual distribution method is used for the solution of flow problems. Simulation is parallelized based on the domain decomposition 
approach. Adaptive changes to the mesh are achieved by two distinctive techniques. Mesh refinement is performed by dividing element edges 
and a subsequent application of pre defined splitting templates. Mesh regularization and derefinement is achieved through topology conserving 
node movement (r-adaptivity). Parallel implementations of an adaptive use the dynamic load balancing technique.
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the reconstructed gradient [1, 18‒22]. Still another possibility 
is a goal oriented method striving to improve only the accuracy 
of a selected integral value of interest (e.g., drag of the wing, 
see [23‒27]).

The adaptive changes can be achieved by different means. 
Remeshing methods employ global reconstruction of the mesh 
in the entire computational domain, making use of the standard 
meshing techniques [28‒32]. In general, this approach yields 
high quality meshes for arbitrarily complex geometries [4,  
33‒36]. Nevertheless this approach is difficult to implement 
in parallel simulations because of the global nature of the re-
meshing operation.

An alternative approach is to apply modifications to the 
computational mesh only in the regions of interest. Either by 
local mesh modification operators (edge splits, edge collapses 
and edge swaps) [37‒40] or element bisection (e.g., based on 
template refinement) [10, 41‒47]. Locality of these methods 
makes them especially attractive for application in parallel com-
puting, as the necessary communication volume and frequency 
become limited, boosting parallel performance.

Another possibility is brought by the r-adaptive methods, 
in which grid nodes are allowed to move without changing the 
topology of the mesh. This technique is used either to augment 
local refinement methods [48, 49], or as an adaptive tool in 
itself [50‒52]. Application of r-adaptive algorithms might be 
beneficial in parallel computations, as neither the grid topology 
nor the load balance become affected.

Although adaptive methods are well recognised in the ac-
ademic community, the broader application of adaptation for 
industrial problems has been limited. This paper presents an 
approach towards fully parallel and automatic mesh adaptation 
method that can be used for 3D industrial cases. The h-r adap-
tive method is developed, suitable for parallel simulation of 
transonic flows. Adaptivity is accomplished by anisotropic tem-
plate-based element bisection method. The coarsening step is 
carried out via an elastic analogy node movement. Anisotropic 
mesh modifications are driven by a Hessian based approach. 

1.	 Introduction

Adaptive techniques allow, in principle, for accurate compu-
tation of localized phenomena (boundary layers, shock waves, 
etc.). This is achieved by enriching the mesh where necessary 
and by limiting the resolution in the less interesting regions. 
This approach increases the effectiveness of computations, as 
the number of mesh cells and therefore the computational cost 
are kept limited. Further benefits can be achieved if the adaptive 
procedure takes into account the anisotropy of the flow phe-
nomena. [1–4]. The adaptation may thus be regarded as a ge-
neric tool either to reduce the computational cost or to increase 
the quality of solution at a given numerical cost.

On the other hand the large scale simulations require highly 
efficient parallelization in order to converge in a reasonable 
time. Commonly used domain decomposition approach requires 
that the flow field is partitioned into subdomains, prior to the 
simulations. To maximize the performance of parallelization 
the partitioning should minimize both the processor idle time 
as well as the volume of interprocessor communication. This is 
achieved by equidistribution of the numerical load (represented 
by the distribution of mesh entities), and at the same time, by 
minimization of the number of cut edges. To this end, a range 
of partitioning methods, based on graph partitioning algorithms, 
have been developed [5‒8]. Since adaptivity delivers a dynamic 
change to the distribution of mesh entities among processors 
a dynamic load balancing strategy must be used to maintain 
high performance of parallelization [9‒16].

An adaptive algorithm requires some driving mechanism to 
enforce mesh modification. Often this is achieved through the 
use of a metric field defining an optimal mesh spacing. Com-
monly, and quite successfully this metric field is generated by 
the Hessian of the current solution [1, 3, 4, 17]. An alternative 
is the application of the Zienkiewicz-Zhu mechanism based on 
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Due to the template based refinement, there is no need to calcu-
late the metric field directly, instead an adaptive indicator [12, 
53] is used to trigger edge splits. The dynamic load balancing 
strategy (DLB) [11, 16] is applied to maximize the parallel 
effectiveness of calculations.

This paper is organized as follows. Section 2 briefly spec-
ifies an in-house residual distribution based flow solver used 
for solution of the flow problem. Section 3 recalls notion of the 
error estimation process and specifies an adaptive indicator used 
to drive the adaptive process. Section 4 outlines the template 
splitting approach and provides descriptions of the possible 
refinement templates used in this work. Section 5 discuses an 
r-adaptive method used. Section 6 illustrates application of the 
application of the DLB on to the overall parallel performance. 
Section7 presents computational results calculated with the the 
adaptive methods described in this paper. Conclusions are pre-
sented in Section 8.

2.	 The flow solver

In the present paper adaptation is applied to stationary, advec-
tion dominated problems discretized with a node centred re-
sidual distribution scheme [54‒58]. In all cases unstructured 
simplex meshes are used.

Parallelization of the solver is achieved through mesh par-
titioning with a single element overlap between neighbouring 
subdomains. The inter-process communication is achieved 
through the exchange of the corresponding nodal data. Each 
process stores communication data structure containing infor-
mation on the local nodes shared with a neighbouring processes. 
A similar data structure describes nodes that the process re-
ceives from its neighbours.

For the node centred approach, the ownership of mesh 
nodes is well defined and results directly from the partitioning 
(the mesh entities are owned by the process with the lowest 
parallel rank index). The notion of ownership is important for 
calculation of the adaptive indicator as well as in the refine-
ment step.

The present implementation of the residual distribution 
scheme requires that the computational meshes have no hanging 
nodes. Similarly the elements connected through the face in 3D 
or the edge in 2D must connect through a single (edge or face) 
entity. These requirements impose additional constrains on the 
refinement step, in particular in the parallel overlap regions.

3.	 An adaptive indicator

In general, the adaptive procedure establishes the desired el-
ement spacing basing on the information recovered from the 
numerical solution obtained on the current mesh. Often, and 
quite successfully the Hessian of the solution is used to recon-
struct the interpolation error on a given mesh (see e.g., [3, 59]). 
Indeed for the second order discretization the leading term of 
the error contains the norm of the Hessian.For the grid cell E 
this error can be estimated as:
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εE ∼ max
x∈E

(x−xc)
T |H |(x−xc) (1)

where H is the Hessian and xc stands for the center of the cell.
The refinement procedure presented in this work (see Sec-

tion 4) operates by first splitting the edges of mesh elements,

and then by applying appropriate split templates to divide ele-
ments. These are local operations and their application is bene-
ficial in a parallel simulation. At the same time, error indicator
(based on (1)) is also locally calculated for each edge.

The key problem in the evaluation of such adaptive indicator
(or a metric tensor) consists in the reconstruction of the Hes-
sian [60]. The present approach is based on a very robust and
efficient Green formula.

The function u, on which adaptation is based, is known only
at the grid nodes. By the Green formula the gradient can be
calculated as:

∇u =
1
Ω

∮

∂Ω
u n dS (2)

where Ω denotes the control volume consisting of cells neigh-
bouring to a node at which Hessian is being estimated. This
procedure is repeated twice, first to estimate ∇u, and subse-
quently to estimate H = ∇(∇u).

The Hessian matrix is symmetric and therefore it is diago-
nalisable and has real eigenvalues λ1, λ2 and λ3. The matrix
|H | is defined as:

|H |= R ·




|λ1| 0 0
0 |λ2| 0
0 0 |λ3|


 ·R−1 (3)

where matrix R consists of eigenvectors of H as its columns.
The error indicator (for an edge ei j connecting nodes i and j)
is defined now as:

IH ei j =CheT
i j|Hei j |ei j (4)

where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
ary mesh element, which has at least one edge divided.
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tion of the adaptive indicator as well as in the refinement step.

The present implementation of the Residual Distribution
scheme requires that the computational meshes have no hang-
ing nodes. Similarly the elements connected through the face
in 3D or the edge in 2D must connect through a single (edge or
face) entity. These requirements impose additional constrains
on the refinement step, in particular in the parallel overlap re-
gions.

3. An adaptive indicator
In general, the adaptive procedure establishes the desired el-
ement spacing basing on the information recovered from the
numerical solution obtained on the current mesh. Often, and
quite successfully the Hessian of the solution is used to recon-
struct the interpolation error on a given mesh (see e.g., [3, 59]).
Indeed for the second order discretization the leading term of
the error contains the norm of the Hessian. For the grid cell E
this error can be estimated as:

εE ∼ max
x∈E

(x−xc)
T |H |(x−xc) (1)

where H is the Hessian and xc stands for the center of the cell.
The refinement procedure presented in this work (see Sec-

tion 4) operates by first splitting the edges of mesh elements,

and then by applying appropriate split templates to divide ele-
ments. These are local operations and their application is bene-
ficial in a parallel simulation. At the same time, error indicator
(based on (1)) is also locally calculated for each edge.

The key problem in the evaluation of such adaptive indicator
(or a metric tensor) consists in the reconstruction of the Hes-
sian [60]. The present approach is based on a very robust and
efficient Green formula.

The function u, on which adaptation is based, is known only
at the grid nodes. By the Green formula the gradient can be
calculated as:

∇u =
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where Ω denotes the control volume consisting of cells neigh-
bouring to a node at which Hessian is being estimated. This
procedure is repeated twice, first to estimate ∇u, and subse-
quently to estimate H = ∇(∇u).

The Hessian matrix is symmetric and therefore it is diago-
nalisable and has real eigenvalues λ1, λ2 and λ3. The matrix
|H | is defined as:
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|λ1| 0 0
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where matrix R consists of eigenvectors of H as its columns.
The error indicator (for an edge ei j connecting nodes i and j)
is defined now as:

IH ei j =CheT
i j|Hei j |ei j (4)

where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
ary mesh element, which has at least one edge divided.
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where matrix R consists of eigenvectors of H as its columns.
The error indicator (for an edge ei j connecting nodes i and j)
is defined now as:

IH ei j =CheT
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where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
ary mesh element, which has at least one edge divided.
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where Ω denotes the control volume consisting of cells neigh-
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where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
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2. Enrich the mesh with the new nodes inserted at the edges
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3. Use the appropriate template to split each internal or bound-
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is defined now as:
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where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
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(based on (1)) is also locally calculated for each edge.
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(or a metric tensor) consists in the reconstruction of the Hes-
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quently to estimate H = ∇(∇u).
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where matrix R consists of eigenvectors of H as its columns.
The error indicator (for an edge ei j connecting nodes i and j)
is defined now as:

IH ei j =CheT
i j|Hei j |ei j (4)

where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
ary mesh element, which has at least one edge divided.
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sidered for splitting. The refinement process consists of the 
following steps:
1.	 Select the mesh edges for splitting, basing on the value of 

the error indicator (4).
2.	 Enrich the mesh with the new nodes inserted at the edges 

centres.
3.	 Use the appropriate template to split each internal or bound-

ary mesh element, which has at least one edge divided.
4.	 Remove all split mesh elements from the mesh data struc-

ture.
5.	 Add elements resulting from the splitting to the mesh data 

structure.
6.	 In case of a parallel simulations, negotiate the inter-proces-

sor communication.
The possible splitting templates are grouped in categories, 

based on the number of edges being divided (1‒3 for triangles 
and 1‒6 for tetrahedra). Within each category different, variants 
are identified by the indices of the split edges. The index of an 
edge within an element is based on the nodal indices within an 
element. The numbering convention is shown in Fig. 1.

4.1. Tetrahedron refinement templates. Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic division 
categories are used. Within each category different variants are 
possible, depending on the relative location of the split edges.

In contrast to the 2D meshes, the refinement of the 3D 
meshes may lead to unsplittable (sometimes referred to as 
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from 
the third category (three edges being split, variants: 012, 135, 
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neigh-
bouring elements should share the same face. To illustrate this 
problem, consider splitting of tetrahedral elements connected by 
a triangular face shown in Fig. 2. Should the tetrahedral split-
ting produce incompatible faces (by applying both variants of 
template 2‒01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the 
variant with the shorter edge is always selected for splitting. In 
case both edges are equal, the decision is based on the nodal 
indices of the edges.

In case of a parallel application the modification of this 
procedure is required in the overlap region. First, the process 
owning an element must be identified. At the present implemen-
tation it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The 
results of splitting are then communicated to the neighbouring 
processes, should any changes be required. The compatibility 
of elements in the overlap region is ensured by the use of global 
nodal numbering.

Category one templates result in refinement into two new 
tetrahedra. Figure 4 illustrates application of 1‒1 template.

Fig. 1. The numbering of edges, allowing to distinguish between 
different splitting templates
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Fig. 2. Two variants of element splitting according to template 2-01
(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D
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Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.
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problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).
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Fig. 2. Two variants of element splitting according to template 2-01
(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D
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Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.

meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neighbour-
ing elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).
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(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D

a) b) c) d)

Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.

meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neighbour-
ing elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).
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(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D

a) b) c) d)

Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.

meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neighbour-
ing elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).
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(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D
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Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.

meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neighbour-
ing elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).
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Fig. 2. Two variants of element splitting according to template 2-01
(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D
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Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.

meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neighbour-
ing elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).
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Fig. 2. Two variants of element splitting according to template 2-01
(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D
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Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.

meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neighbour-
ing elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).
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Fig. 2. Two variants of element splitting according to template 2-01
(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D
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Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.

meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neighbour-
ing elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).
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Fig. 6. Splitting template 3-245. a) The initial split results in a tetra-
hedron and a polyhedron requiring further processing. b) Splitting of
the resulting polyhedron, if possible. c) In case of the Schoenhardt
polyhedron an additional Steiner node is inserted. d) Eight additional
tetrahedra, resulting from splitting.

The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.
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These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.
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case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.
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These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.
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three of four split edges connect through a common node (Fig.
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when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
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The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.
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These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.
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The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.
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These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.
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The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.
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These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.
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used to enable tetrahedralization (Fig. 6c and 6d). The total of 
nine tetrahedra are then produced. If this is not the case, three 
new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face 
(variants 3‒013, 3‒024, 3‒125, 3‒345) four new tetrahedra are 
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig. 7b.

Fifteen possible variants belong to the fourth category. These 
fall into two possible cases. The first takes place when three of 
four split edges connect through a common node (Fig. 8a). This 
results in six new tetrahedra. The second case occurs when each 
of the faces has exactly two split edges (Fig. 8b), resulting in the 
necessity to split the tetrahedron by a plane. The new polyhedra 
presented in Fig. 6c-d may require additional Steiner points to 
enable further splitting.

The split variant of the category five is shown in Fig. 9. 
Similar to categories three and four, the possible Schoenhardt 
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The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.
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These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.
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The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.
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These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.
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The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.
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These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.
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The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.
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These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.
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sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.
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polyhedron is dealt with by insertion of an additional Steiner 
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in 
Fig. 10. The splitting results in formation of eight new tetra-
hedra.

An example of application of the splitting templates for 
the generic 3D mesh is illustrated in Fig. 11. The consecutive 
refinements, of the initially coarse mesh, are performed by di-
viding edges located in the predefined region. In this case an 
adaptive indicator is evaluated for an artificial discontinuity 
having the shape of a unit sphere.

5.	 R adaptivity

The adaptive strategy requires also a mechanism to coarsen the 
mesh and at the same time to eliminate short edges generated 
during the refinement step [42], as well as to break the influence 
of the initial mesh onto the adapted mesh.

Instead of a derefinement procedure, the present approach 
uses a variant of r adaptivity, in which the mesh is regarded 
as elastic and deformable. The deformations are controlled 
by equations of linear elasticity, as well as by the appropriate 
boundary conditions:
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Fig. 11. Consecutive refinement steps obtained by the present ap-
proach. The adaptation indicator is driven by an artificial discontinu-
ity in the form of a unit sphere.

10. The splitting results in formation of eight new tetrahedra.
An example of application of the splitting templates for the

generic 3D mesh is illustrated in Fig. 11. The consecutive re-
finements, of the initially coarse mesh, are performed by divid-
ing edges located in the predefined region. In this case an adap-
tive indicator is evaluated for an artificial discontinuity having
the shape of a unit sphere.

5. R adaptivity
The adaptive strategy requires also a mechanism to coarsen the
mesh and at the same time to eliminate short edges generated
during the refinement step [42], as well as to break the influ-
ence of the initial mesh onto the adapted mesh.

Instead of a derefinement procedure, the present approach
uses a variant of r adaptivity, in which the mesh is regarded
as elastic and deformable. The deformations are controlled
by equations of linear elasticity, as well as by the appropriate
boundary conditions:

{
(λ +µ)∇(∇·u)+µ∇2u+F = 0
u|∂Ω = 0

(5)

where u denotes the displacement field, λ and µ are local
Lamé parameters, while F stands for a prescribed vector field.
The position of all boundary nodes is fixed through a Dirichlet
boundary condition.

The solution of eq. (5) is obtained via the standard Finite
Element method [63], which leads to a symmetric linear alge-
braic problem:

Ku = b (6)

The application of this form of adaptivity is especially attrac-
tive in a parallel framework, since the necessary numerical
tools (mesh and solution data structure, partitioning, assembly
and communication, algebraic solvers, etc.) are already used
by the flow solver.

While the assembly of the stiffness matrix K (6) follows a
well known procedure, the derivation of the right hand side
requires explanation.

In the present work the value of an edge error indicator (4) is
used to calculate nodal forces applied to the mesh nodes. For
the i-th node of the mesh, with N other nodes as neighbors, the
nodal force is calculated as the sum of contributions of corre-
sponding edges:

Fi =Cr

N

∑
k=1

IH ek êk (7)

where IH ek denotes the error indicator calculated by (4), Cr is
a scaling constant while êk stands for the versor parallel to the
edge, and pointing outwards from the central node i. By ap-
plying (7) to all mesh nodes, the right hand side of (6) is eval-
uated. The particular form of (7) is justified by the observation
that the adaptive method should modify the mesh towards the
equidistribution of the estimated error.

6. The load balancing
To obtain a high parallel efficiency the proper balancing of the
numerical load is required. Even if the load is balanced at the
beginning of the simulation, the dynamic changes caused by
the adaptive refinement will significantly lower the efficiency
[10, 16]. This makes direct application of adaptivity unfeasible
for the automated parallel simulations. It is thus necessary to
apply the Dynamic Load Balancing (DLB) strategy throughout
the entire parallel simulation.

In order to quantify the quality of the load balancing sup-
pose that the total computation effort is W = ∑p

i wi (p denotes
the number of processors used and wi is the workload of the
i-th processor). In the homogeneous, parallel computational
environment, an optimal load distribution is such that all com-
putational processors are equally loaded. Therefore optimal
processor load is wopt =W/p. The quality of partitioning can
be then expressed [64] by the coefficient β

β = max
0<i≤p

wi

wopt
(8)

Values, of β close to one, indicate a well balanced partition-
ing. Bigger values of β indicate that the load is un-balanced.
It should be noted, that (8) disregards the influence of commu-
nication overhead, resulting from a given partitioning.

Various approaches are available to obtain a balanced parti-
tion of the computational domain/grid between processors. In
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where u denotes the displacement field, λ and μ are local Lamé 
parameters, while F stands for a prescribed vector field. The 
position of all boundary nodes is fixed through a Dirichlet 
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braic problem:
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Fig. 11. Consecutive refinement steps obtained by the present ap-
proach. The adaptation indicator is driven by an artificial discontinu-
ity in the form of a unit sphere.

10. The splitting results in formation of eight new tetrahedra.
An example of application of the splitting templates for the

generic 3D mesh is illustrated in Fig. 11. The consecutive re-
finements, of the initially coarse mesh, are performed by divid-
ing edges located in the predefined region. In this case an adap-
tive indicator is evaluated for an artificial discontinuity having
the shape of a unit sphere.

5. R adaptivity
The adaptive strategy requires also a mechanism to coarsen the
mesh and at the same time to eliminate short edges generated
during the refinement step [42], as well as to break the influ-
ence of the initial mesh onto the adapted mesh.

Instead of a derefinement procedure, the present approach
uses a variant of r adaptivity, in which the mesh is regarded
as elastic and deformable. The deformations are controlled
by equations of linear elasticity, as well as by the appropriate
boundary conditions:

{
(λ +µ)∇(∇·u)+µ∇2u+F = 0
u|∂Ω = 0

(5)

where u denotes the displacement field, λ and µ are local
Lamé parameters, while F stands for a prescribed vector field.
The position of all boundary nodes is fixed through a Dirichlet
boundary condition.

The solution of eq. (5) is obtained via the standard Finite
Element method [63], which leads to a symmetric linear alge-
braic problem:

Ku = b (6)

The application of this form of adaptivity is especially attrac-
tive in a parallel framework, since the necessary numerical
tools (mesh and solution data structure, partitioning, assembly
and communication, algebraic solvers, etc.) are already used
by the flow solver.

While the assembly of the stiffness matrix K (6) follows a
well known procedure, the derivation of the right hand side
requires explanation.

In the present work the value of an edge error indicator (4) is
used to calculate nodal forces applied to the mesh nodes. For
the i-th node of the mesh, with N other nodes as neighbors, the
nodal force is calculated as the sum of contributions of corre-
sponding edges:

Fi =Cr

N

∑
k=1

IH ek êk (7)

where IH ek denotes the error indicator calculated by (4), Cr is
a scaling constant while êk stands for the versor parallel to the
edge, and pointing outwards from the central node i. By ap-
plying (7) to all mesh nodes, the right hand side of (6) is eval-
uated. The particular form of (7) is justified by the observation
that the adaptive method should modify the mesh towards the
equidistribution of the estimated error.

6. The load balancing
To obtain a high parallel efficiency the proper balancing of the
numerical load is required. Even if the load is balanced at the
beginning of the simulation, the dynamic changes caused by
the adaptive refinement will significantly lower the efficiency
[10, 16]. This makes direct application of adaptivity unfeasible
for the automated parallel simulations. It is thus necessary to
apply the Dynamic Load Balancing (DLB) strategy throughout
the entire parallel simulation.

In order to quantify the quality of the load balancing sup-
pose that the total computation effort is W = ∑p

i wi (p denotes
the number of processors used and wi is the workload of the
i-th processor). In the homogeneous, parallel computational
environment, an optimal load distribution is such that all com-
putational processors are equally loaded. Therefore optimal
processor load is wopt =W/p. The quality of partitioning can
be then expressed [64] by the coefficient β

β = max
0<i≤p

wi

wopt
(8)

Values, of β close to one, indicate a well balanced partition-
ing. Bigger values of β indicate that the load is un-balanced.
It should be noted, that (8) disregards the influence of commu-
nication overhead, resulting from a given partitioning.

Various approaches are available to obtain a balanced parti-
tion of the computational domain/grid between processors. In
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in a parallel framework, since the necessary numerical tools 
(mesh and solution data structure, partitioning, assembly and 
communication, algebraic solvers, etc.) are already used by the 
flow solver.

While the assembly of the stiffness matrix K (6) follows 
a well known procedure, the derivation of the right hand side 
requires explanation.

In the present work the value of an edge error indicator (4) 
is used to calculate nodal forces applied to the mesh nodes. For 
the i-th node of the mesh, with N other nodes as neighbors, the 
nodal force is calculated as the sum of contributions of corre-
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proach. The adaptation indicator is driven by an artificial discontinu-
ity in the form of a unit sphere.

10. The splitting results in formation of eight new tetrahedra.
An example of application of the splitting templates for the

generic 3D mesh is illustrated in Fig. 11. The consecutive re-
finements, of the initially coarse mesh, are performed by divid-
ing edges located in the predefined region. In this case an adap-
tive indicator is evaluated for an artificial discontinuity having
the shape of a unit sphere.

5. R adaptivity
The adaptive strategy requires also a mechanism to coarsen the
mesh and at the same time to eliminate short edges generated
during the refinement step [42], as well as to break the influ-
ence of the initial mesh onto the adapted mesh.

Instead of a derefinement procedure, the present approach
uses a variant of r adaptivity, in which the mesh is regarded
as elastic and deformable. The deformations are controlled
by equations of linear elasticity, as well as by the appropriate
boundary conditions:

{
(λ +µ)∇(∇·u)+µ∇2u+F = 0
u|∂Ω = 0

(5)

where u denotes the displacement field, λ and µ are local
Lamé parameters, while F stands for a prescribed vector field.
The position of all boundary nodes is fixed through a Dirichlet
boundary condition.

The solution of eq. (5) is obtained via the standard Finite
Element method [63], which leads to a symmetric linear alge-
braic problem:

Ku = b (6)

The application of this form of adaptivity is especially attrac-
tive in a parallel framework, since the necessary numerical
tools (mesh and solution data structure, partitioning, assembly
and communication, algebraic solvers, etc.) are already used
by the flow solver.

While the assembly of the stiffness matrix K (6) follows a
well known procedure, the derivation of the right hand side
requires explanation.

In the present work the value of an edge error indicator (4) is
used to calculate nodal forces applied to the mesh nodes. For
the i-th node of the mesh, with N other nodes as neighbors, the
nodal force is calculated as the sum of contributions of corre-
sponding edges:

Fi =Cr

N

∑
k=1

IH ek êk (7)

where IH ek denotes the error indicator calculated by (4), Cr is
a scaling constant while êk stands for the versor parallel to the
edge, and pointing outwards from the central node i. By ap-
plying (7) to all mesh nodes, the right hand side of (6) is eval-
uated. The particular form of (7) is justified by the observation
that the adaptive method should modify the mesh towards the
equidistribution of the estimated error.

6. The load balancing
To obtain a high parallel efficiency the proper balancing of the
numerical load is required. Even if the load is balanced at the
beginning of the simulation, the dynamic changes caused by
the adaptive refinement will significantly lower the efficiency
[10, 16]. This makes direct application of adaptivity unfeasible
for the automated parallel simulations. It is thus necessary to
apply the Dynamic Load Balancing (DLB) strategy throughout
the entire parallel simulation.

In order to quantify the quality of the load balancing sup-
pose that the total computation effort is W = ∑p

i wi (p denotes
the number of processors used and wi is the workload of the
i-th processor). In the homogeneous, parallel computational
environment, an optimal load distribution is such that all com-
putational processors are equally loaded. Therefore optimal
processor load is wopt =W/p. The quality of partitioning can
be then expressed [64] by the coefficient β

β = max
0<i≤p

wi

wopt
(8)

Values, of β close to one, indicate a well balanced partition-
ing. Bigger values of β indicate that the load is un-balanced.
It should be noted, that (8) disregards the influence of commu-
nication overhead, resulting from a given partitioning.

Various approaches are available to obtain a balanced parti-
tion of the computational domain/grid between processors. In
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parallel effectiveness of calculations.
This paper is organized as follows. Section 2 briefly spec-

ifies an in-house Residual Distribution based flow solver used
for solution of the flow problem. Section 3 recalls notion of
the error estimation process and specifies an adaptive indicator
used to drive the adaptive process. Section 4 outlines the tem-
plate splitting approach and provides descriptions of the possi-
ble refinement templates used in this work. Section 5 discuses
an r-adaptive method used. Section 6 illustrates application
of the application of the DLB on to the overall parallel per-
formance. Section 7 presents computational results calculated
with the the adaptive methods described in this paper. Conclu-
sions are presented in Section 8.

2. The flow solver
In the present paper adaptation is applied to stationary, ad-
vection dominated problems discretized with a node centred
Residual Distribution scheme [54, 55, 56, 57, 58]. In all cases
unstructured simplex meshes are used.

Parallelization of the solver is achieved through mesh par-
titioning with a single element overlap between neighbour-
ing subdomains. The inter-process communication is achieved
through the exchange of the corresponding nodal data. Each
process stores communication data structure containing infor-
mation on the local nodes shared with a neighbouring pro-
cesses. A similar data structure describes nodes that the pro-
cess receives from its neighbours.

For the node centred approach, the ownership of mesh nodes
is well defined and results directly from the partitioning (the
mesh entities are owned by the process with the lowest parallel
rank index). The notion of ownership is important for calcula-
tion of the adaptive indicator as well as in the refinement step.

The present implementation of the Residual Distribution
scheme requires that the computational meshes have no hang-
ing nodes. Similarly the elements connected through the face
in 3D or the edge in 2D must connect through a single (edge or
face) entity. These requirements impose additional constrains
on the refinement step, in particular in the parallel overlap re-
gions.

3. An adaptive indicator
In general, the adaptive procedure establishes the desired el-
ement spacing basing on the information recovered from the
numerical solution obtained on the current mesh. Often, and
quite successfully the Hessian of the solution is used to recon-
struct the interpolation error on a given mesh (see e.g., [3, 59]).
Indeed for the second order discretization the leading term of
the error contains the norm of the Hessian. For the grid cell E
this error can be estimated as:

εE ∼ max
x∈E

(x−xc)
T |H |(x−xc) (1)

where H is the Hessian and xc stands for the center of the cell.
The refinement procedure presented in this work (see Sec-

tion 4) operates by first splitting the edges of mesh elements,

and then by applying appropriate split templates to divide ele-
ments. These are local operations and their application is bene-
ficial in a parallel simulation. At the same time, error indicator
(based on (1)) is also locally calculated for each edge.

The key problem in the evaluation of such adaptive indicator
(or a metric tensor) consists in the reconstruction of the Hes-
sian [60]. The present approach is based on a very robust and
efficient Green formula.

The function u, on which adaptation is based, is known only
at the grid nodes. By the Green formula the gradient can be
calculated as:

∇u =
1
Ω

∮

∂Ω
u n dS (2)

where Ω denotes the control volume consisting of cells neigh-
bouring to a node at which Hessian is being estimated. This
procedure is repeated twice, first to estimate ∇u, and subse-
quently to estimate H = ∇(∇u).

The Hessian matrix is symmetric and therefore it is diago-
nalisable and has real eigenvalues λ1, λ2 and λ3. The matrix
|H | is defined as:

|H |= R ·




|λ1| 0 0
0 |λ2| 0
0 0 |λ3|


 ·R−1 (3)

where matrix R consists of eigenvectors of H as its columns.
The error indicator (for an edge ei j connecting nodes i and j)
is defined now as:

IH ei j =CheT
i j|Hei j |ei j (4)

where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
ary mesh element, which has at least one edge divided.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

ek
 denotes the error indicator calculated by (4), Cr is 

a scaling constant while 

Parallel approach to an adaptive flow simulation.

Fig. 11. Consecutive refinement steps obtained by the present ap-
proach. The adaptation indicator is driven by an artificial discontinu-
ity in the form of a unit sphere.

10. The splitting results in formation of eight new tetrahedra.
An example of application of the splitting templates for the

generic 3D mesh is illustrated in Fig. 11. The consecutive re-
finements, of the initially coarse mesh, are performed by divid-
ing edges located in the predefined region. In this case an adap-
tive indicator is evaluated for an artificial discontinuity having
the shape of a unit sphere.

5. R adaptivity
The adaptive strategy requires also a mechanism to coarsen the
mesh and at the same time to eliminate short edges generated
during the refinement step [42], as well as to break the influ-
ence of the initial mesh onto the adapted mesh.

Instead of a derefinement procedure, the present approach
uses a variant of r adaptivity, in which the mesh is regarded
as elastic and deformable. The deformations are controlled
by equations of linear elasticity, as well as by the appropriate
boundary conditions:

{
(λ +µ)∇(∇·u)+µ∇2u+F = 0
u|∂Ω = 0

(5)

where u denotes the displacement field, λ and µ are local
Lamé parameters, while F stands for a prescribed vector field.
The position of all boundary nodes is fixed through a Dirichlet
boundary condition.

The solution of eq. (5) is obtained via the standard Finite
Element method [63], which leads to a symmetric linear alge-
braic problem:

Ku = b (6)

The application of this form of adaptivity is especially attrac-
tive in a parallel framework, since the necessary numerical
tools (mesh and solution data structure, partitioning, assembly
and communication, algebraic solvers, etc.) are already used
by the flow solver.

While the assembly of the stiffness matrix K (6) follows a
well known procedure, the derivation of the right hand side
requires explanation.

In the present work the value of an edge error indicator (4) is
used to calculate nodal forces applied to the mesh nodes. For
the i-th node of the mesh, with N other nodes as neighbors, the
nodal force is calculated as the sum of contributions of corre-
sponding edges:

Fi =Cr

N

∑
k=1

IH ek êk (7)

where IH ek denotes the error indicator calculated by (4), Cr is
a scaling constant while êk stands for the versor parallel to the
edge, and pointing outwards from the central node i. By ap-
plying (7) to all mesh nodes, the right hand side of (6) is eval-
uated. The particular form of (7) is justified by the observation
that the adaptive method should modify the mesh towards the
equidistribution of the estimated error.

6. The load balancing
To obtain a high parallel efficiency the proper balancing of the
numerical load is required. Even if the load is balanced at the
beginning of the simulation, the dynamic changes caused by
the adaptive refinement will significantly lower the efficiency
[10, 16]. This makes direct application of adaptivity unfeasible
for the automated parallel simulations. It is thus necessary to
apply the Dynamic Load Balancing (DLB) strategy throughout
the entire parallel simulation.

In order to quantify the quality of the load balancing sup-
pose that the total computation effort is W = ∑p

i wi (p denotes
the number of processors used and wi is the workload of the
i-th processor). In the homogeneous, parallel computational
environment, an optimal load distribution is such that all com-
putational processors are equally loaded. Therefore optimal
processor load is wopt =W/p. The quality of partitioning can
be then expressed [64] by the coefficient β

β = max
0<i≤p

wi

wopt
(8)

Values, of β close to one, indicate a well balanced partition-
ing. Bigger values of β indicate that the load is un-balanced.
It should be noted, that (8) disregards the influence of commu-
nication overhead, resulting from a given partitioning.

Various approaches are available to obtain a balanced parti-
tion of the computational domain/grid between processors. In
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Fig. 6. Splitting template 3-245. a) The initial split results in a tetra-
hedron and a polyhedron requiring further processing. b) Splitting of
the resulting polyhedron, if possible. c) In case of the Schoenhardt
polyhedron an additional Steiner node is inserted. d) Eight additional
tetrahedra, resulting from splitting.

The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.
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These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.
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Fig. 11. Consecutive refinement steps obtained by the present ap-
proach. The adaptation indicator is driven by an artificial discontinu-
ity in the form of a unit sphere.

10. The splitting results in formation of eight new tetrahedra.
An example of application of the splitting templates for the

generic 3D mesh is illustrated in Fig. 11. The consecutive re-
finements, of the initially coarse mesh, are performed by divid-
ing edges located in the predefined region. In this case an adap-
tive indicator is evaluated for an artificial discontinuity having
the shape of a unit sphere.

5. R adaptivity
The adaptive strategy requires also a mechanism to coarsen the
mesh and at the same time to eliminate short edges generated
during the refinement step [42], as well as to break the influ-
ence of the initial mesh onto the adapted mesh.

Instead of a derefinement procedure, the present approach
uses a variant of r adaptivity, in which the mesh is regarded
as elastic and deformable. The deformations are controlled
by equations of linear elasticity, as well as by the appropriate
boundary conditions:

{
(λ +µ)∇(∇·u)+µ∇2u+F = 0
u|∂Ω = 0

(5)

where u denotes the displacement field, λ and µ are local
Lamé parameters, while F stands for a prescribed vector field.
The position of all boundary nodes is fixed through a Dirichlet
boundary condition.

The solution of eq. (5) is obtained via the standard Finite
Element method [63], which leads to a symmetric linear alge-
braic problem:

Ku = b (6)

The application of this form of adaptivity is especially attrac-
tive in a parallel framework, since the necessary numerical
tools (mesh and solution data structure, partitioning, assembly
and communication, algebraic solvers, etc.) are already used
by the flow solver.

While the assembly of the stiffness matrix K (6) follows a
well known procedure, the derivation of the right hand side
requires explanation.

In the present work the value of an edge error indicator (4) is
used to calculate nodal forces applied to the mesh nodes. For
the i-th node of the mesh, with N other nodes as neighbors, the
nodal force is calculated as the sum of contributions of corre-
sponding edges:

Fi =Cr

N

∑
k=1

IH ek êk (7)

where IH ek denotes the error indicator calculated by (4), Cr is
a scaling constant while êk stands for the versor parallel to the
edge, and pointing outwards from the central node i. By ap-
plying (7) to all mesh nodes, the right hand side of (6) is eval-
uated. The particular form of (7) is justified by the observation
that the adaptive method should modify the mesh towards the
equidistribution of the estimated error.

6. The load balancing
To obtain a high parallel efficiency the proper balancing of the
numerical load is required. Even if the load is balanced at the
beginning of the simulation, the dynamic changes caused by
the adaptive refinement will significantly lower the efficiency
[10, 16]. This makes direct application of adaptivity unfeasible
for the automated parallel simulations. It is thus necessary to
apply the Dynamic Load Balancing (DLB) strategy throughout
the entire parallel simulation.

In order to quantify the quality of the load balancing sup-
pose that the total computation effort is W = ∑p

i wi (p denotes
the number of processors used and wi is the workload of the
i-th processor). In the homogeneous, parallel computational
environment, an optimal load distribution is such that all com-
putational processors are equally loaded. Therefore optimal
processor load is wopt =W/p. The quality of partitioning can
be then expressed [64] by the coefficient β

β = max
0<i≤p

wi

wopt
(8)

Values, of β close to one, indicate a well balanced partition-
ing. Bigger values of β indicate that the load is un-balanced.
It should be noted, that (8) disregards the influence of commu-
nication overhead, resulting from a given partitioning.

Various approaches are available to obtain a balanced parti-
tion of the computational domain/grid between processors. In
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While the assembly of the stiffness matrix K (6) follows a
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uated. The particular form of (7) is justified by the observation
that the adaptive method should modify the mesh towards the
equidistribution of the estimated error.

6. The load balancing
To obtain a high parallel efficiency the proper balancing of the
numerical load is required. Even if the load is balanced at the
beginning of the simulation, the dynamic changes caused by
the adaptive refinement will significantly lower the efficiency
[10, 16]. This makes direct application of adaptivity unfeasible
for the automated parallel simulations. It is thus necessary to
apply the Dynamic Load Balancing (DLB) strategy throughout
the entire parallel simulation.

In order to quantify the quality of the load balancing sup-
pose that the total computation effort is W = ∑p

i wi (p denotes
the number of processors used and wi is the workload of the
i-th processor). In the homogeneous, parallel computational
environment, an optimal load distribution is such that all com-
putational processors are equally loaded. Therefore optimal
processor load is wopt =W/p. The quality of partitioning can
be then expressed [64] by the coefficient β

β = max
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tioning. Bigger values of β indicate that the load is un-balanced. 
It should be noted, that (8) disregards the influence of commu-
nication overhead, resulting from a given partitioning.

Various approaches are available to obtain a balanced par-
tition of the computational domain/grid between processors. In 
this work we make use of the approach described earlier in [12] 
and [16]. The impact of this particular DLB implementation on 
the load balance indicator β, and in consequence on the parallel 
performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling 
plots obtained for a parallel simulation of supersonic flow 
through a Scramjet like geometry. Additionally values of β 
registered for each case are added to the scaling plot (Fig. 13). 
One might notice that increase in the value of β results in the 
deterioration of performance.

The lines marked with ( ) correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem 
containing 8.0∙105 DOFs [16]. For this particular configuration 
superlinear speed-up has been achieved (smaller tasks better 
fit into the processor cache memory). Influence of mesh re-
finement, with no load balancing, results in a significant per-
formance drop. This is illustrated by ( ). The reader should 
also notice that, as the parallel performance drops, the values 
of β increase. The results registered for the adaptation coupled 
with load balancing are represented by ( ).

The load re-balancing process is triggered when the parallel 
efficiency is expected to drop below the accepted level (this 
usually takes place after the refinement step). As a result the 
improved domain partitioning is established. The full algorithm 
consists then of the following steps:
1.	 The elements of the mesh receive a global numbering 

throughout the whole domain. This makes mesh elements 
easily distinguishable within the parallel environment.

2.	 The improved partitioning is found using procedures of the 
ParMETIS [65] graph library.

3.	 According to the new partitioning, the mesh entities (nodes, 
elements, boundary faces) are marked to be sent/deleted 
from the process data structure.

4.	 The mesh and the solution data is migrated between pro-
cessors.

5.	 Finally, the parallel overlap layer is reconstructed and the 
simulation process is restarted.

7.	 Computational examples

To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced. 
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow 
for which 3D aspects of the method are verified and (iii) the 
DLR-F6 case which represents the industrial multiscale 3D 
geometry.
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balanced case ( ). Results measured using unadapted meshes are 

provided for reference ( )
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this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with ( ) correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by ( ). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ( ).

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.
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Fig. 13. Parallel scaling registered for an adapted case with load bal-
ancing ( ), compared with the results for the adapted, but unbal-
anced case ( ). For the reference the unmodified case is shown
( ). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.



∂u
∂y +

∂
∂x

( 1
2 u2

)
= 0

u(x,y = 0) =




1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-
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this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with ( ) correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by ( ). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ( ).

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.
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4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.
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1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-
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this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with ( ) correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by ( ). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ( ).

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.
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each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.
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Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-
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this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with ( ) correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by ( ). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ( ).

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.
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Fig. 13. Parallel scaling registered for an adapted case with load bal-
ancing ( ), compared with the results for the adapted, but unbal-
anced case ( ). For the reference the unmodified case is shown
( ). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.



∂u
∂y +

∂
∂x

( 1
2 u2

)
= 0

u(x,y = 0) =




1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-
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this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with ( ) correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by ( ). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ( ).

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.
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ancing ( ), compared with the results for the adapted, but unbal-
anced case ( ). For the reference the unmodified case is shown
( ). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.
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1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-
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this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with ( ) correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by ( ). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ( ).

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.
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Fig. 13. Parallel scaling registered for an adapted case with load bal-
ancing ( ), compared with the results for the adapted, but unbal-
anced case ( ). For the reference the unmodified case is shown
( ). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.
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1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-
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this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with ( ) correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by ( ). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ( ).

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.
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Fig. 13. Parallel scaling registered for an adapted case with load bal-
ancing ( ), compared with the results for the adapted, but unbal-
anced case ( ). For the reference the unmodified case is shown
( ). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.

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1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-
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this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with ( ) correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by ( ). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ( ).

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.

20 21 22 23 24 25 26

101

102

103

104

1.0
0

1.0
0

1.0
0

1.0
1

1.0
4

1.0
4

1.0
4

1.0
5

1.0

1.1
6

1.2
2

1.2
8

1.4
9

1.7

2.0
4

2.0
4

1.0
0

1.0
0

1.0
4

1.0
4

1.0
5

1.0
6

1.0
5

1.0
6

Number of processors p

Ti
m

e
[s
]

Fig. 13. Parallel scaling registered for an adapted case with load bal-
ancing ( ), compared with the results for the adapted, but unbal-
anced case ( ). For the reference the unmodified case is shown
( ). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.

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∂y +
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)
= 0

u(x,y = 0) =
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1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-
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where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively 
refined meshes, have been computed using the Residual Dis-
tribution method PSI scheme [54, 55, 57]. Each simulation was 
performed using four concurrent computational processes. For 
adaptive cases no user interaction was necessary. The automatic 
adaptive simulation cycle incorporated a DLB algorithm.

The meshes generated during the parallel adaptive simula-
tion are shown in Fig. 15. The L2 norm of error as a function 
of the number of degrees of freedom is plotted in Fig. 16 for 
the case of uniform refinement and for the adaptive algorithm. 
One may observe that application of adaptive methods leads 
to a much faster convergence. For the L2 error uniform refine-
ment converges proportionally to DOF –0.55, while application 
of adaptivity leads to convergence proportional to around 
DOF –1.3. Occasionally the error is decreased without changing 
the number of DOFs. This results solely from the mesh move-
ment step (r-adaptation).

Fig. 15. Computational meshes generated throughout the parallel adaptive simulation. The top row presents, from the left the initial mesh and 
the mesh obtained after third and sixth adaptation. The bottom row meshes are obtained at the eighth, twelfth and fifteenth iteration
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Fig. 14. Characteristics and the strong discontinuity of the analytical
solution of the Burgers equation (9).

Fig. 15. Computational meshes generated throughout the parallel
adaptive simulation. The top row presents, from the left the initial
mesh and the mesh obtained after third and sixth adaptation. The
bottom row meshes are obtained at the eighth, twelfth and fifteenth
iteration.
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adaptations/load balancing steps, for the 3D channel-wedge test case
(Number of processors p = 412).

bution method PSI scheme [57, 54, 66]. Each simulation was
performed using four concurrent computational processes. For
adaptive cases no user interaction was necessary. The auto-
matic adaptive simulation cycle incorporated a DLB algorithm.

The meshes generated during the parallel adaptive simula-
tion are shown in Fig. 15. The L2 norm of error as a func-
tion of the number of degrees of freedom is plotted in Fig. 16
for the case of uniform refinement and for the adaptive algo-
rithm. One may observe that application of adaptive meth-
ods leads to a much faster convergence. For the L2 error uni-
form refinement converges proportionally to DOF−0.55, while
application of adaptivity leads to convergence proportional to
around DOF−1.3. Occasionally the error is decreased without
changing the number of DOFs. This results solely from the
mesh movement step (r-adaptation).

7.2. 3D Channel-Wedge Much more challenging test con-
sists in simulation of a supersonic flow through the 3D
Channel-Wedge geometry. Flow conditions correspond to
Mach 2 at the inlet. The resulting solution contains discontinu-
ities in a form of a sequence of reflected oblique shock waves.
Additionally in the proximity of the upper wall the triple point
(line in 3D) is formed with a contact discontinuity appearing
behind it.

The Euler equations are discretized in a 3D domain using
Residual Distribution LDAN scheme [57, 54, 66]. Parallel
simulation employed 412 concurrent computational processes.
The mesh was adapted through six automatic adaptive cycles,
using mesh refinement and mesh movement techniques out-
lined in this paper. An adaptive indicator (4) was used to trig-
ger adaptive changes. The necessary DLB was applied, to keep
the parallel efficiency at the desired level. Cost of the error
estimation, adaptive changes and load balancing is negligible
compared to the cost of converging the simulation on a given
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bution method PSI scheme [57, 54, 66]. Each simulation was
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adaptive cases no user interaction was necessary. The auto-
matic adaptive simulation cycle incorporated a DLB algorithm.

The meshes generated during the parallel adaptive simula-
tion are shown in Fig. 15. The L2 norm of error as a func-
tion of the number of degrees of freedom is plotted in Fig. 16
for the case of uniform refinement and for the adaptive algo-
rithm. One may observe that application of adaptive meth-
ods leads to a much faster convergence. For the L2 error uni-
form refinement converges proportionally to DOF−0.55, while
application of adaptivity leads to convergence proportional to
around DOF−1.3. Occasionally the error is decreased without
changing the number of DOFs. This results solely from the
mesh movement step (r-adaptation).

7.2. 3D Channel-Wedge Much more challenging test con-
sists in simulation of a supersonic flow through the 3D
Channel-Wedge geometry. Flow conditions correspond to
Mach 2 at the inlet. The resulting solution contains discontinu-
ities in a form of a sequence of reflected oblique shock waves.
Additionally in the proximity of the upper wall the triple point
(line in 3D) is formed with a contact discontinuity appearing
behind it.

The Euler equations are discretized in a 3D domain using
Residual Distribution LDAN scheme [57, 54, 66]. Parallel
simulation employed 412 concurrent computational processes.
The mesh was adapted through six automatic adaptive cycles,
using mesh refinement and mesh movement techniques out-
lined in this paper. An adaptive indicator (4) was used to trig-
ger adaptive changes. The necessary DLB was applied, to keep
the parallel efficiency at the desired level. Cost of the error
estimation, adaptive changes and load balancing is negligible
compared to the cost of converging the simulation on a given
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application of adaptivity leads to convergence proportional to
around DOF−1.3. Occasionally the error is decreased without
changing the number of DOFs. This results solely from the
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balanced case ( ). Results measured using unadapted meshes are
provided for reference ( )

this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with ( ) correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by ( ). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ( ).

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.
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Fig. 13. Parallel scaling registered for an adapted case with load bal-
ancing ( ), compared with the results for the adapted, but unbal-
anced case ( ). For the reference the unmodified case is shown
( ). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.



∂u
∂y +

∂
∂x

( 1
2 u2

)
= 0

u(x,y = 0) =




1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-
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7.2. 3D channel-wedge. Much more challenging test consists in 
simulation of a supersonic flow through the 3D channel-wedge 
geometry. Flow conditions correspond to Mach 2 at the inlet. 
The resulting solution contains discontinuities in a form of 
a sequence of reflected oblique shock waves. Additionally in 
the proximity of the upper wall the triple point (line in 3D) is 
formed with a contact discontinuity appearing behind it.

The Euler equations are discretized in a 3D domain using 
residual distribution LDAN scheme [54, 55, 57]. Parallel sim-
ulation employed 412 concurrent computational processes. The 

Fig. 17. Load balance indicator β (8), registered after consecutive 
adaptations/load balancing steps, for the 3D channel-wedge test case 
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solution of the Burgers equation (9).

Fig. 15. Computational meshes generated throughout the parallel
adaptive simulation. The top row presents, from the left the initial
mesh and the mesh obtained after third and sixth adaptation. The
bottom row meshes are obtained at the eighth, twelfth and fifteenth
iteration.
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bution method PSI scheme [57, 54, 66]. Each simulation was
performed using four concurrent computational processes. For
adaptive cases no user interaction was necessary. The auto-
matic adaptive simulation cycle incorporated a DLB algorithm.

The meshes generated during the parallel adaptive simula-
tion are shown in Fig. 15. The L2 norm of error as a func-
tion of the number of degrees of freedom is plotted in Fig. 16
for the case of uniform refinement and for the adaptive algo-
rithm. One may observe that application of adaptive meth-
ods leads to a much faster convergence. For the L2 error uni-
form refinement converges proportionally to DOF−0.55, while
application of adaptivity leads to convergence proportional to
around DOF−1.3. Occasionally the error is decreased without
changing the number of DOFs. This results solely from the
mesh movement step (r-adaptation).

7.2. 3D Channel-Wedge Much more challenging test con-
sists in simulation of a supersonic flow through the 3D
Channel-Wedge geometry. Flow conditions correspond to
Mach 2 at the inlet. The resulting solution contains discontinu-
ities in a form of a sequence of reflected oblique shock waves.
Additionally in the proximity of the upper wall the triple point
(line in 3D) is formed with a contact discontinuity appearing
behind it.

The Euler equations are discretized in a 3D domain using
Residual Distribution LDAN scheme [57, 54, 66]. Parallel
simulation employed 412 concurrent computational processes.
The mesh was adapted through six automatic adaptive cycles,
using mesh refinement and mesh movement techniques out-
lined in this paper. An adaptive indicator (4) was used to trig-
ger adaptive changes. The necessary DLB was applied, to keep
the parallel efficiency at the desired level. Cost of the error
estimation, adaptive changes and load balancing is negligible
compared to the cost of converging the simulation on a given
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Fig. 18. Initial mesh (a) and the one generated through adaptive simulation (b). Domain partitioning corresponding to the load balanced 
distribution for an adapted mesh (c)

a) b)

c)

mesh was adapted through six automatic adaptive cycles, using 
mesh refinement and mesh movement techniques outlined in 
this paper. An adaptive indicator (4) was used to trigger adap-
tive changes. The necessary DLB was applied, to keep the par-
allel efficiency at the desired level. Cost of the error estimation, 
adaptive changes and load balancing is negligible compared to 
the cost of converging the simulation on a given mesh (less than 
3% of the total simulation time).

Figure 17 illustrates values of load balance indicator β mea-
sured at the consecutive adaptive steps. As a result, the initial 
mesh of 1.0 ∙105 tetrahedral elements and 2.4 ∙104 nodes, was 
refined to a mesh of around 5.9∙106 elements and 1.2∙106 nodes. 
The entire simulation was performed automatically without an 
interaction with the user.

Figure 18 shows the initial and the final meshes (after the 
sixth adaptation), as well as the boundaries of mesh partitions 
for the adapted case. One can observe that partitions, initially 
evenly distributed, concentrate in the proximity of shocks, 
where the mesh is refined. Comparison of the initial and the 
adapted results against evenly refined mesh of 7.9∙106 elements 
and 1.3∙106 nodes, in the form of Mach field contours is shown 
in Fig. 19. Figure 19a-c shows results obtained using the orig-
inal mesh with the contact discontinuity zone magnified in 
Fig. 19c. The improvement in shock resolution is well visible 
in Fig. 19d-f where solutions obtained on the mesh generated 
through adaptation process are shown, with Fig. 19f illustrating 
the contact discontinuity region. As a reference Figs. 19g-i il-
lustrate results obtained using an isotropic, but larger mesh. 
Comparison of Figs. 19c, 19f and 19i indicates that, although 
corresponding to a larger number of DOFs, the isotropic large 
mesh produces less resolved flow field than the anisotropic one 
obtained through the adaption procedure.
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7.3. Onera M6 wing. Finally we show the results of parallel 
and adaptive simulations of a transonic flow around Onera 
M6 wing [66]. Flow conditions correspond to Mach number 
0.8395 and angle of attack 3.06°. As before Euler equations 
are discretized using Residual Distribution LDAN scheme. 
Computational mesh was adapted through four automatic 
adaptive cycles, using mesh refinement and mesh movement 
techniques outlined in this paper. Adaptive changes resulted 
from application of an adaptive indicator (4). The necessary 
DLB was applied, to keep the parallel efficiency at the desired 
level. Cost of the error estimation, adaptive changes and load 
balancing is negligible compared to the cost of converging 
the simulation on a given mesh (as earlier it is less than 3% 
of the total simulation time). As a result the initial mesh of 
3.2∙104 nodes, was refined to a mesh of around 4.6∙105 nodes. 
The entire simulation was performed automatically without an 
interaction with the user.

Figure 20 shows Mach field contours obtained using the ini-
tial (Fig. 20a) and adapted (resulting from the fourth adaptation) 

Fig. 19. Mach number contours calculated on the initial mesh (a-c) and 
using the mesh generated through six adaptive cycles (d-f) compared 
with results obtained using a large isotropic one (g-i). The planar view 
(b, e and h) corresponds to the mid-channel crosssection (obtained via 
interpolation from the 3D terahedral mesh). The marked region (c, f 

and i) shows the contact discontinuity region

e)

a)

b)

c)

d)

f)

i)

g)

h)

Fig. 20. Mach number contours on the initial (a) and adaptively gen-
erated mesh (b)

a)

b)
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meshes. Adaptively generated meshes and corresponding, load 
balanced partitionings are shown in Fig. 21.

Figure 22 illustrates distribution of the Cp coefficients calcu-
lated at selected positions throughout the wing. Results obtained 
on the initial mesh are marked with red colour, while results 
obtained on adaptively generated mesh are shown in black. As 
reference we use experimental results marked with ( ), and 
results obtained using a different adaptive strategy (global re-
meshing) calculated by Majewski [34] (green line), using a full 
Navier–Stokes solver with turbulence modelling.

8.	 Conclusions

In this paper we have presented an approach to automatic mesh 
adaptivity, applicable to parallel simulation. Two techniques, 
suitable for application in parallel simulation, used in this work 
for mesh modification, are (i) the elastic mesh movement and 
(ii) the element bisection method.

We have proposed an alternative to the commonly used, 
metric based, mesh spacing definition, in the form the of 
edge adaptive indicator. This form is more suitable to allow 
for the required mesh modification. Proposed method allows 
for a natural linear interpolation of solution to an adapted 
mesh.

Applicability of the methods described in this paper was 
illustrated on a sequence of advection dominated problems. 
It was shown that, for Burgers equation, significant improve-
ment in the rate of convergence is achievable using the adap-
tive approach. For the 3D flow problems the resolution of 
important flow features (shocks, slip lines) was significantly 
improved. Application of DLB strategy allowed to maintain 
low values of the β indicator, and in consequence high parallel 
performance.

Promising initial results obtained for complex curvilinear 
3D geometries have been presented. The robust boundary re-
construction is still required to augment the refinement pro-
cess.

Fig. 22. Comparison of the Cp distribution obtained for Onera M6 wing geometry.  – experimental data, red – initial mesh results, black – final 
adapted mesh, green – reference computations [34], obtained for a viscous case at M = 0.8395, Re = 11.72∙106, α = 3.06° – Navier–Stokes 

solver with turbulence modelling

y/b = 0.2 y/b = 0.65

Fig. 21. Meshes at selected adaptive steps with corresponding, 
load balanced domain decompositions
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