
195Bull. Pol. Ac.: Tech. 65(2) 2017

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 65, No. 2, 2017
DOI: 10.1515/bpasts-2017-0024

*e-mail: sgepner@meil.pw.edu.pl

Abstract. The present paper discusses an effective adaptive methods suited for use in parallel environment. An in-house, parallel flow solver
based on the residual distribution method is used for the solution of flow problems. Simulation is parallelized based on the domain decomposition
approach. Adaptive changes to the mesh are achieved by two distinctive techniques. Mesh refinement is performed by dividing element edges
and a subsequent application of pre defined splitting templates. Mesh regularization and derefinement is achieved through topology conserving
node movement (r-adaptivity). Parallel implementations of an adaptive use the dynamic load balancing technique.

Key words: parallel CFD, adaptation, dynamic load balancing, mesh refinement, parallel efficiency.

Parallel anisotropic mesh refinement with dynamic load balancing for
transonic flow simulations

S. GEPNER*, J. MAJEWSKI, and J. ROKICKI
Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, 24 Nowowiejska St., 00-665 Warsaw, Poland

the reconstructed gradient [1, 18‒22]. Still another possibility
is a goal oriented method striving to improve only the accuracy
of a selected integral value of interest (e.g., drag of the wing,
see [23‒27]).

The adaptive changes can be achieved by different means.
Remeshing methods employ global reconstruction of the mesh
in the entire computational domain, making use of the standard
meshing techniques [28‒32]. In general, this approach yields
high quality meshes for arbitrarily complex geometries [4,
33‒36]. Nevertheless this approach is difficult to implement
in parallel simulations because of the global nature of the re-
meshing operation.

An alternative approach is to apply modifications to the
computational mesh only in the regions of interest. Either by
local mesh modification operators (edge splits, edge collapses
and edge swaps) [37‒40] or element bisection (e.g., based on
template refinement) [10, 41‒47]. Locality of these methods
makes them especially attractive for application in parallel com-
puting, as the necessary communication volume and frequency
become limited, boosting parallel performance.

Another possibility is brought by the r-adaptive methods,
in which grid nodes are allowed to move without changing the
topology of the mesh. This technique is used either to augment
local refinement methods [48, 49], or as an adaptive tool in
itself [50‒52]. Application of r-adaptive algorithms might be
beneficial in parallel computations, as neither the grid topology
nor the load balance become affected.

Although adaptive methods are well recognised in the ac-
ademic community, the broader application of adaptation for
industrial problems has been limited. This paper presents an
approach towards fully parallel and automatic mesh adaptation
method that can be used for 3D industrial cases. The h-r adap-
tive method is developed, suitable for parallel simulation of
transonic flows. Adaptivity is accomplished by anisotropic tem-
plate-based element bisection method. The coarsening step is
carried out via an elastic analogy node movement. Anisotropic
mesh modifications are driven by a Hessian based approach.

1.	 Introduction

Adaptive techniques allow, in principle, for accurate compu-
tation of localized phenomena (boundary layers, shock waves,
etc.). This is achieved by enriching the mesh where necessary
and by limiting the resolution in the less interesting regions.
This approach increases the effectiveness of computations, as
the number of mesh cells and therefore the computational cost
are kept limited. Further benefits can be achieved if the adaptive
procedure takes into account the anisotropy of the flow phe-
nomena. [1–4]. The adaptation may thus be regarded as a ge-
neric tool either to reduce the computational cost or to increase
the quality of solution at a given numerical cost.

On the other hand the large scale simulations require highly
efficient parallelization in order to converge in a reasonable
time. Commonly used domain decomposition approach requires
that the flow field is partitioned into subdomains, prior to the
simulations. To maximize the performance of parallelization
the partitioning should minimize both the processor idle time
as well as the volume of interprocessor communication. This is
achieved by equidistribution of the numerical load (represented
by the distribution of mesh entities), and at the same time, by
minimization of the number of cut edges. To this end, a range
of partitioning methods, based on graph partitioning algorithms,
have been developed [5‒8]. Since adaptivity delivers a dynamic
change to the distribution of mesh entities among processors
a dynamic load balancing strategy must be used to maintain
high performance of parallelization [9‒16].

An adaptive algorithm requires some driving mechanism to
enforce mesh modification. Often this is achieved through the
use of a metric field defining an optimal mesh spacing. Com-
monly, and quite successfully this metric field is generated by
the Hessian of the current solution [1, 3, 4, 17]. An alternative
is the application of the Zienkiewicz-Zhu mechanism based on

196 Bull. Pol. Ac.: Tech. 65(2) 2017

S. Gepner, J. Majewski, and J. Rokicki

Due to the template based refinement, there is no need to calcu-
late the metric field directly, instead an adaptive indicator [12,
53] is used to trigger edge splits. The dynamic load balancing
strategy (DLB) [11, 16] is applied to maximize the parallel
effectiveness of calculations.

This paper is organized as follows. Section 2 briefly spec-
ifies an in-house residual distribution based flow solver used
for solution of the flow problem. Section 3 recalls notion of the
error estimation process and specifies an adaptive indicator used
to drive the adaptive process. Section 4 outlines the template
splitting approach and provides descriptions of the possible
refinement templates used in this work. Section 5 discuses an
r-adaptive method used. Section 6 illustrates application of the
application of the DLB on to the overall parallel performance.
Section7 presents computational results calculated with the the
adaptive methods described in this paper. Conclusions are pre-
sented in Section 8.

2.	 The flow solver

In the present paper adaptation is applied to stationary, advec-
tion dominated problems discretized with a node centred re-
sidual distribution scheme [54‒58]. In all cases unstructured
simplex meshes are used.

Parallelization of the solver is achieved through mesh par-
titioning with a single element overlap between neighbouring
subdomains. The inter-process communication is achieved
through the exchange of the corresponding nodal data. Each
process stores communication data structure containing infor-
mation on the local nodes shared with a neighbouring processes.
A similar data structure describes nodes that the process re-
ceives from its neighbours.

For the node centred approach, the ownership of mesh
nodes is well defined and results directly from the partitioning
(the mesh entities are owned by the process with the lowest
parallel rank index). The notion of ownership is important for
calculation of the adaptive indicator as well as in the refine-
ment step.

The present implementation of the residual distribution
scheme requires that the computational meshes have no hanging
nodes. Similarly the elements connected through the face in 3D
or the edge in 2D must connect through a single (edge or face)
entity. These requirements impose additional constrains on the
refinement step, in particular in the parallel overlap regions.

3.	 An adaptive indicator

In general, the adaptive procedure establishes the desired el-
ement spacing basing on the information recovered from the
numerical solution obtained on the current mesh. Often, and
quite successfully the Hessian of the solution is used to recon-
struct the interpolation error on a given mesh (see e.g., [3, 59]).
Indeed for the second order discretization the leading term of
the error contains the norm of the Hessian.For the grid cell E
this error can be estimated as:

	

S. Gepner, J. Majewski, and J. Rokicki

parallel effectiveness of calculations.
This paper is organized as follows. Section 2 briefly spec-

ifies an in-house Residual Distribution based flow solver used
for solution of the flow problem. Section 3 recalls notion of
the error estimation process and specifies an adaptive indicator
used to drive the adaptive process. Section 4 outlines the tem-
plate splitting approach and provides descriptions of the possi-
ble refinement templates used in this work. Section 5 discuses
an r-adaptive method used. Section 6 illustrates application
of the application of the DLB on to the overall parallel per-
formance. Section 7 presents computational results calculated
with the the adaptive methods described in this paper. Conclu-
sions are presented in Section 8.

2. The flow solver
In the present paper adaptation is applied to stationary, ad-
vection dominated problems discretized with a node centred
Residual Distribution scheme [54, 55, 56, 57, 58]. In all cases
unstructured simplex meshes are used.

Parallelization of the solver is achieved through mesh par-
titioning with a single element overlap between neighbour-
ing subdomains. The inter-process communication is achieved
through the exchange of the corresponding nodal data. Each
process stores communication data structure containing infor-
mation on the local nodes shared with a neighbouring pro-
cesses. A similar data structure describes nodes that the pro-
cess receives from its neighbours.

For the node centred approach, the ownership of mesh nodes
is well defined and results directly from the partitioning (the
mesh entities are owned by the process with the lowest parallel
rank index). The notion of ownership is important for calcula-
tion of the adaptive indicator as well as in the refinement step.

The present implementation of the Residual Distribution
scheme requires that the computational meshes have no hang-
ing nodes. Similarly the elements connected through the face
in 3D or the edge in 2D must connect through a single (edge or
face) entity. These requirements impose additional constrains
on the refinement step, in particular in the parallel overlap re-
gions.

3. An adaptive indicator
In general, the adaptive procedure establishes the desired el-
ement spacing basing on the information recovered from the
numerical solution obtained on the current mesh. Often, and
quite successfully the Hessian of the solution is used to recon-
struct the interpolation error on a given mesh (see e.g., [3, 59]).
Indeed for the second order discretization the leading term of
the error contains the norm of the Hessian. For the grid cell E
this error can be estimated as:

εE ∼ max
x∈E

(x−xc)
T |H |(x−xc) (1)

where H is the Hessian and xc stands for the center of the cell.
The refinement procedure presented in this work (see Sec-

tion 4) operates by first splitting the edges of mesh elements,

and then by applying appropriate split templates to divide ele-
ments. These are local operations and their application is bene-
ficial in a parallel simulation. At the same time, error indicator
(based on (1)) is also locally calculated for each edge.

The key problem in the evaluation of such adaptive indicator
(or a metric tensor) consists in the reconstruction of the Hes-
sian [60]. The present approach is based on a very robust and
efficient Green formula.

The function u, on which adaptation is based, is known only
at the grid nodes. By the Green formula the gradient can be
calculated as:

∇u =
1
Ω

∮

∂Ω
u n dS (2)

where Ω denotes the control volume consisting of cells neigh-
bouring to a node at which Hessian is being estimated. This
procedure is repeated twice, first to estimate ∇u, and subse-
quently to estimate H = ∇(∇u).

The Hessian matrix is symmetric and therefore it is diago-
nalisable and has real eigenvalues λ1, λ2 and λ3. The matrix
|H | is defined as:

|H |= R ·




|λ1| 0 0
0 |λ2| 0
0 0 |λ3|


 ·R−1 (3)

where matrix R consists of eigenvectors of H as its columns.
The error indicator (for an edge ei j connecting nodes i and j)
is defined now as:

IH ei j =CheT
i j|Hei j |ei j (4)

where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
ary mesh element, which has at least one edge divided.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (1)

where

S. Gepner, J. Majewski, and J. Rokicki

parallel effectiveness of calculations.
This paper is organized as follows. Section 2 briefly spec-

ifies an in-house Residual Distribution based flow solver used
for solution of the flow problem. Section 3 recalls notion of
the error estimation process and specifies an adaptive indicator
used to drive the adaptive process. Section 4 outlines the tem-
plate splitting approach and provides descriptions of the possi-
ble refinement templates used in this work. Section 5 discuses
an r-adaptive method used. Section 6 illustrates application
of the application of the DLB on to the overall parallel per-
formance. Section 7 presents computational results calculated
with the the adaptive methods described in this paper. Conclu-
sions are presented in Section 8.

2. The flow solver
In the present paper adaptation is applied to stationary, ad-
vection dominated problems discretized with a node centred
Residual Distribution scheme [54, 55, 56, 57, 58]. In all cases
unstructured simplex meshes are used.

Parallelization of the solver is achieved through mesh par-
titioning with a single element overlap between neighbour-
ing subdomains. The inter-process communication is achieved
through the exchange of the corresponding nodal data. Each
process stores communication data structure containing infor-
mation on the local nodes shared with a neighbouring pro-
cesses. A similar data structure describes nodes that the pro-
cess receives from its neighbours.

For the node centred approach, the ownership of mesh nodes
is well defined and results directly from the partitioning (the
mesh entities are owned by the process with the lowest parallel
rank index). The notion of ownership is important for calcula-
tion of the adaptive indicator as well as in the refinement step.

The present implementation of the Residual Distribution
scheme requires that the computational meshes have no hang-
ing nodes. Similarly the elements connected through the face
in 3D or the edge in 2D must connect through a single (edge or
face) entity. These requirements impose additional constrains
on the refinement step, in particular in the parallel overlap re-
gions.

3. An adaptive indicator
In general, the adaptive procedure establishes the desired el-
ement spacing basing on the information recovered from the
numerical solution obtained on the current mesh. Often, and
quite successfully the Hessian of the solution is used to recon-
struct the interpolation error on a given mesh (see e.g., [3, 59]).
Indeed for the second order discretization the leading term of
the error contains the norm of the Hessian. For the grid cell E
this error can be estimated as:

εE ∼ max
x∈E

(x−xc)
T |H |(x−xc) (1)

where H is the Hessian and xc stands for the center of the cell.
The refinement procedure presented in this work (see Sec-

tion 4) operates by first splitting the edges of mesh elements,

and then by applying appropriate split templates to divide ele-
ments. These are local operations and their application is bene-
ficial in a parallel simulation. At the same time, error indicator
(based on (1)) is also locally calculated for each edge.

The key problem in the evaluation of such adaptive indicator
(or a metric tensor) consists in the reconstruction of the Hes-
sian [60]. The present approach is based on a very robust and
efficient Green formula.

The function u, on which adaptation is based, is known only
at the grid nodes. By the Green formula the gradient can be
calculated as:

∇u =
1
Ω

∮

∂Ω
u n dS (2)

where Ω denotes the control volume consisting of cells neigh-
bouring to a node at which Hessian is being estimated. This
procedure is repeated twice, first to estimate ∇u, and subse-
quently to estimate H = ∇(∇u).

The Hessian matrix is symmetric and therefore it is diago-
nalisable and has real eigenvalues λ1, λ2 and λ3. The matrix
|H | is defined as:

|H |= R ·




|λ1| 0 0
0 |λ2| 0
0 0 |λ3|


 ·R−1 (3)

where matrix R consists of eigenvectors of H as its columns.
The error indicator (for an edge ei j connecting nodes i and j)
is defined now as:

IH ei j =CheT
i j|Hei j |ei j (4)

where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
ary mesh element, which has at least one edge divided.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

 is the Hessian and xc stands for the center of the cell.
The refinement procedure presented in this work (see Sec-

tion 4) operates by first splitting the edges of mesh elements,
and then by applying appropriate split templates to divide ele-
ments. These are local operations and their application is bene-
ficial in a parallel simulation. At the same time, error indicator
(based on (1)) is also locally calculated for each edge.

The key problem in the evaluation of such adaptive indi-
cator (or a metric tensor) consists in the reconstruction of the
Hessian [60]. The present approach is based on a very robust
and efficient Green formula.

The function u, on which adaptation is based, is known only
at the grid nodes. Using the Green formula, the gradient can
be calculated as:

	

S. Gepner, J. Majewski, and J. Rokicki

parallel effectiveness of calculations.
This paper is organized as follows. Section 2 briefly spec-

ifies an in-house Residual Distribution based flow solver used
for solution of the flow problem. Section 3 recalls notion of
the error estimation process and specifies an adaptive indicator
used to drive the adaptive process. Section 4 outlines the tem-
plate splitting approach and provides descriptions of the possi-
ble refinement templates used in this work. Section 5 discuses
an r-adaptive method used. Section 6 illustrates application
of the application of the DLB on to the overall parallel per-
formance. Section 7 presents computational results calculated
with the the adaptive methods described in this paper. Conclu-
sions are presented in Section 8.

2. The flow solver
In the present paper adaptation is applied to stationary, ad-
vection dominated problems discretized with a node centred
Residual Distribution scheme [54, 55, 56, 57, 58]. In all cases
unstructured simplex meshes are used.

Parallelization of the solver is achieved through mesh par-
titioning with a single element overlap between neighbour-
ing subdomains. The inter-process communication is achieved
through the exchange of the corresponding nodal data. Each
process stores communication data structure containing infor-
mation on the local nodes shared with a neighbouring pro-
cesses. A similar data structure describes nodes that the pro-
cess receives from its neighbours.

For the node centred approach, the ownership of mesh nodes
is well defined and results directly from the partitioning (the
mesh entities are owned by the process with the lowest parallel
rank index). The notion of ownership is important for calcula-
tion of the adaptive indicator as well as in the refinement step.

The present implementation of the Residual Distribution
scheme requires that the computational meshes have no hang-
ing nodes. Similarly the elements connected through the face
in 3D or the edge in 2D must connect through a single (edge or
face) entity. These requirements impose additional constrains
on the refinement step, in particular in the parallel overlap re-
gions.

3. An adaptive indicator
In general, the adaptive procedure establishes the desired el-
ement spacing basing on the information recovered from the
numerical solution obtained on the current mesh. Often, and
quite successfully the Hessian of the solution is used to recon-
struct the interpolation error on a given mesh (see e.g., [3, 59]).
Indeed for the second order discretization the leading term of
the error contains the norm of the Hessian. For the grid cell E
this error can be estimated as:

εE ∼ max
x∈E

(x−xc)
T |H |(x−xc) (1)

where H is the Hessian and xc stands for the center of the cell.
The refinement procedure presented in this work (see Sec-

tion 4) operates by first splitting the edges of mesh elements,

and then by applying appropriate split templates to divide ele-
ments. These are local operations and their application is bene-
ficial in a parallel simulation. At the same time, error indicator
(based on (1)) is also locally calculated for each edge.

The key problem in the evaluation of such adaptive indicator
(or a metric tensor) consists in the reconstruction of the Hes-
sian [60]. The present approach is based on a very robust and
efficient Green formula.

The function u, on which adaptation is based, is known only
at the grid nodes. By the Green formula the gradient can be
calculated as:

∇u =
1
Ω

∮

∂Ω
u n dS (2)

where Ω denotes the control volume consisting of cells neigh-
bouring to a node at which Hessian is being estimated. This
procedure is repeated twice, first to estimate ∇u, and subse-
quently to estimate H = ∇(∇u).

The Hessian matrix is symmetric and therefore it is diago-
nalisable and has real eigenvalues λ1, λ2 and λ3. The matrix
|H | is defined as:

|H |= R ·




|λ1| 0 0
0 |λ2| 0
0 0 |λ3|


 ·R−1 (3)

where matrix R consists of eigenvectors of H as its columns.
The error indicator (for an edge ei j connecting nodes i and j)
is defined now as:

IH ei j =CheT
i j|Hei j |ei j (4)

where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
ary mesh element, which has at least one edge divided.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (2)

where Ω denotes the control volume consisting of cells neigh-
bouring to a node at which Hessian is being estimated. This
procedure is repeated twice, first to estimate (u), and subse-
quently to estimate

S. Gepner, J. Majewski, and J. Rokicki

parallel effectiveness of calculations.
This paper is organized as follows. Section 2 briefly spec-

ifies an in-house Residual Distribution based flow solver used
for solution of the flow problem. Section 3 recalls notion of
the error estimation process and specifies an adaptive indicator
used to drive the adaptive process. Section 4 outlines the tem-
plate splitting approach and provides descriptions of the possi-
ble refinement templates used in this work. Section 5 discuses
an r-adaptive method used. Section 6 illustrates application
of the application of the DLB on to the overall parallel per-
formance. Section 7 presents computational results calculated
with the the adaptive methods described in this paper. Conclu-
sions are presented in Section 8.

2. The flow solver
In the present paper adaptation is applied to stationary, ad-
vection dominated problems discretized with a node centred
Residual Distribution scheme [54, 55, 56, 57, 58]. In all cases
unstructured simplex meshes are used.

Parallelization of the solver is achieved through mesh par-
titioning with a single element overlap between neighbour-
ing subdomains. The inter-process communication is achieved
through the exchange of the corresponding nodal data. Each
process stores communication data structure containing infor-
mation on the local nodes shared with a neighbouring pro-
cesses. A similar data structure describes nodes that the pro-
cess receives from its neighbours.

For the node centred approach, the ownership of mesh nodes
is well defined and results directly from the partitioning (the
mesh entities are owned by the process with the lowest parallel
rank index). The notion of ownership is important for calcula-
tion of the adaptive indicator as well as in the refinement step.

The present implementation of the Residual Distribution
scheme requires that the computational meshes have no hang-
ing nodes. Similarly the elements connected through the face
in 3D or the edge in 2D must connect through a single (edge or
face) entity. These requirements impose additional constrains
on the refinement step, in particular in the parallel overlap re-
gions.

3. An adaptive indicator
In general, the adaptive procedure establishes the desired el-
ement spacing basing on the information recovered from the
numerical solution obtained on the current mesh. Often, and
quite successfully the Hessian of the solution is used to recon-
struct the interpolation error on a given mesh (see e.g., [3, 59]).
Indeed for the second order discretization the leading term of
the error contains the norm of the Hessian. For the grid cell E
this error can be estimated as:

εE ∼ max
x∈E

(x−xc)
T |H |(x−xc) (1)

where H is the Hessian and xc stands for the center of the cell.
The refinement procedure presented in this work (see Sec-

tion 4) operates by first splitting the edges of mesh elements,

and then by applying appropriate split templates to divide ele-
ments. These are local operations and their application is bene-
ficial in a parallel simulation. At the same time, error indicator
(based on (1)) is also locally calculated for each edge.

The key problem in the evaluation of such adaptive indicator
(or a metric tensor) consists in the reconstruction of the Hes-
sian [60]. The present approach is based on a very robust and
efficient Green formula.

The function u, on which adaptation is based, is known only
at the grid nodes. By the Green formula the gradient can be
calculated as:

∇u =
1
Ω

∮

∂Ω
u n dS (2)

where Ω denotes the control volume consisting of cells neigh-
bouring to a node at which Hessian is being estimated. This
procedure is repeated twice, first to estimate ∇u, and subse-
quently to estimate H = ∇(∇u).

The Hessian matrix is symmetric and therefore it is diago-
nalisable and has real eigenvalues λ1, λ2 and λ3. The matrix
|H | is defined as:

|H |= R ·




|λ1| 0 0
0 |λ2| 0
0 0 |λ3|


 ·R−1 (3)

where matrix R consists of eigenvectors of H as its columns.
The error indicator (for an edge ei j connecting nodes i and j)
is defined now as:

IH ei j =CheT
i j|Hei j |ei j (4)

where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
ary mesh element, which has at least one edge divided.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

 =  (u).
The Hessian matrix is symmetric and therefore it is diago-

nalisable and has real eigenvalues λ1, λ2 and λ3. The matrix j

S. Gepner, J. Majewski, and J. Rokicki

parallel effectiveness of calculations.
This paper is organized as follows. Section 2 briefly spec-

ifies an in-house Residual Distribution based flow solver used
for solution of the flow problem. Section 3 recalls notion of
the error estimation process and specifies an adaptive indicator
used to drive the adaptive process. Section 4 outlines the tem-
plate splitting approach and provides descriptions of the possi-
ble refinement templates used in this work. Section 5 discuses
an r-adaptive method used. Section 6 illustrates application
of the application of the DLB on to the overall parallel per-
formance. Section 7 presents computational results calculated
with the the adaptive methods described in this paper. Conclu-
sions are presented in Section 8.

2. The flow solver
In the present paper adaptation is applied to stationary, ad-
vection dominated problems discretized with a node centred
Residual Distribution scheme [54, 55, 56, 57, 58]. In all cases
unstructured simplex meshes are used.

Parallelization of the solver is achieved through mesh par-
titioning with a single element overlap between neighbour-
ing subdomains. The inter-process communication is achieved
through the exchange of the corresponding nodal data. Each
process stores communication data structure containing infor-
mation on the local nodes shared with a neighbouring pro-
cesses. A similar data structure describes nodes that the pro-
cess receives from its neighbours.

For the node centred approach, the ownership of mesh nodes
is well defined and results directly from the partitioning (the
mesh entities are owned by the process with the lowest parallel
rank index). The notion of ownership is important for calcula-
tion of the adaptive indicator as well as in the refinement step.

The present implementation of the Residual Distribution
scheme requires that the computational meshes have no hang-
ing nodes. Similarly the elements connected through the face
in 3D or the edge in 2D must connect through a single (edge or
face) entity. These requirements impose additional constrains
on the refinement step, in particular in the parallel overlap re-
gions.

3. An adaptive indicator
In general, the adaptive procedure establishes the desired el-
ement spacing basing on the information recovered from the
numerical solution obtained on the current mesh. Often, and
quite successfully the Hessian of the solution is used to recon-
struct the interpolation error on a given mesh (see e.g., [3, 59]).
Indeed for the second order discretization the leading term of
the error contains the norm of the Hessian. For the grid cell E
this error can be estimated as:

εE ∼ max
x∈E

(x−xc)
T |H |(x−xc) (1)

where H is the Hessian and xc stands for the center of the cell.
The refinement procedure presented in this work (see Sec-

tion 4) operates by first splitting the edges of mesh elements,

and then by applying appropriate split templates to divide ele-
ments. These are local operations and their application is bene-
ficial in a parallel simulation. At the same time, error indicator
(based on (1)) is also locally calculated for each edge.

The key problem in the evaluation of such adaptive indicator
(or a metric tensor) consists in the reconstruction of the Hes-
sian [60]. The present approach is based on a very robust and
efficient Green formula.

The function u, on which adaptation is based, is known only
at the grid nodes. By the Green formula the gradient can be
calculated as:

∇u =
1
Ω

∮

∂Ω
u n dS (2)

where Ω denotes the control volume consisting of cells neigh-
bouring to a node at which Hessian is being estimated. This
procedure is repeated twice, first to estimate ∇u, and subse-
quently to estimate H = ∇(∇u).

The Hessian matrix is symmetric and therefore it is diago-
nalisable and has real eigenvalues λ1, λ2 and λ3. The matrix
|H | is defined as:

|H |= R ·




|λ1| 0 0
0 |λ2| 0
0 0 |λ3|


 ·R−1 (3)

where matrix R consists of eigenvectors of H as its columns.
The error indicator (for an edge ei j connecting nodes i and j)
is defined now as:

IH ei j =CheT
i j|Hei j |ei j (4)

where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
ary mesh element, which has at least one edge divided.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

 j
is defined as:

	

S. Gepner, J. Majewski, and J. Rokicki

parallel effectiveness of calculations.
This paper is organized as follows. Section 2 briefly spec-

ifies an in-house Residual Distribution based flow solver used
for solution of the flow problem. Section 3 recalls notion of
the error estimation process and specifies an adaptive indicator
used to drive the adaptive process. Section 4 outlines the tem-
plate splitting approach and provides descriptions of the possi-
ble refinement templates used in this work. Section 5 discuses
an r-adaptive method used. Section 6 illustrates application
of the application of the DLB on to the overall parallel per-
formance. Section 7 presents computational results calculated
with the the adaptive methods described in this paper. Conclu-
sions are presented in Section 8.

2. The flow solver
In the present paper adaptation is applied to stationary, ad-
vection dominated problems discretized with a node centred
Residual Distribution scheme [54, 55, 56, 57, 58]. In all cases
unstructured simplex meshes are used.

Parallelization of the solver is achieved through mesh par-
titioning with a single element overlap between neighbour-
ing subdomains. The inter-process communication is achieved
through the exchange of the corresponding nodal data. Each
process stores communication data structure containing infor-
mation on the local nodes shared with a neighbouring pro-
cesses. A similar data structure describes nodes that the pro-
cess receives from its neighbours.

For the node centred approach, the ownership of mesh nodes
is well defined and results directly from the partitioning (the
mesh entities are owned by the process with the lowest parallel
rank index). The notion of ownership is important for calcula-
tion of the adaptive indicator as well as in the refinement step.

The present implementation of the Residual Distribution
scheme requires that the computational meshes have no hang-
ing nodes. Similarly the elements connected through the face
in 3D or the edge in 2D must connect through a single (edge or
face) entity. These requirements impose additional constrains
on the refinement step, in particular in the parallel overlap re-
gions.

3. An adaptive indicator
In general, the adaptive procedure establishes the desired el-
ement spacing basing on the information recovered from the
numerical solution obtained on the current mesh. Often, and
quite successfully the Hessian of the solution is used to recon-
struct the interpolation error on a given mesh (see e.g., [3, 59]).
Indeed for the second order discretization the leading term of
the error contains the norm of the Hessian. For the grid cell E
this error can be estimated as:

εE ∼ max
x∈E

(x−xc)
T |H |(x−xc) (1)

where H is the Hessian and xc stands for the center of the cell.
The refinement procedure presented in this work (see Sec-

tion 4) operates by first splitting the edges of mesh elements,

and then by applying appropriate split templates to divide ele-
ments. These are local operations and their application is bene-
ficial in a parallel simulation. At the same time, error indicator
(based on (1)) is also locally calculated for each edge.

The key problem in the evaluation of such adaptive indicator
(or a metric tensor) consists in the reconstruction of the Hes-
sian [60]. The present approach is based on a very robust and
efficient Green formula.

The function u, on which adaptation is based, is known only
at the grid nodes. By the Green formula the gradient can be
calculated as:

∇u =
1
Ω

∮

∂Ω
u n dS (2)

where Ω denotes the control volume consisting of cells neigh-
bouring to a node at which Hessian is being estimated. This
procedure is repeated twice, first to estimate ∇u, and subse-
quently to estimate H = ∇(∇u).

The Hessian matrix is symmetric and therefore it is diago-
nalisable and has real eigenvalues λ1, λ2 and λ3. The matrix
|H | is defined as:

|H |= R ·




|λ1| 0 0
0 |λ2| 0
0 0 |λ3|


 ·R−1 (3)

where matrix R consists of eigenvectors of H as its columns.
The error indicator (for an edge ei j connecting nodes i and j)
is defined now as:

IH ei j =CheT
i j|Hei j |ei j (4)

where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
ary mesh element, which has at least one edge divided.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (3)

where matrix R consists of eigenvectors of

S. Gepner, J. Majewski, and J. Rokicki

parallel effectiveness of calculations.
This paper is organized as follows. Section 2 briefly spec-

ifies an in-house Residual Distribution based flow solver used
for solution of the flow problem. Section 3 recalls notion of
the error estimation process and specifies an adaptive indicator
used to drive the adaptive process. Section 4 outlines the tem-
plate splitting approach and provides descriptions of the possi-
ble refinement templates used in this work. Section 5 discuses
an r-adaptive method used. Section 6 illustrates application
of the application of the DLB on to the overall parallel per-
formance. Section 7 presents computational results calculated
with the the adaptive methods described in this paper. Conclu-
sions are presented in Section 8.

2. The flow solver
In the present paper adaptation is applied to stationary, ad-
vection dominated problems discretized with a node centred
Residual Distribution scheme [54, 55, 56, 57, 58]. In all cases
unstructured simplex meshes are used.

Parallelization of the solver is achieved through mesh par-
titioning with a single element overlap between neighbour-
ing subdomains. The inter-process communication is achieved
through the exchange of the corresponding nodal data. Each
process stores communication data structure containing infor-
mation on the local nodes shared with a neighbouring pro-
cesses. A similar data structure describes nodes that the pro-
cess receives from its neighbours.

For the node centred approach, the ownership of mesh nodes
is well defined and results directly from the partitioning (the
mesh entities are owned by the process with the lowest parallel
rank index). The notion of ownership is important for calcula-
tion of the adaptive indicator as well as in the refinement step.

The present implementation of the Residual Distribution
scheme requires that the computational meshes have no hang-
ing nodes. Similarly the elements connected through the face
in 3D or the edge in 2D must connect through a single (edge or
face) entity. These requirements impose additional constrains
on the refinement step, in particular in the parallel overlap re-
gions.

3. An adaptive indicator
In general, the adaptive procedure establishes the desired el-
ement spacing basing on the information recovered from the
numerical solution obtained on the current mesh. Often, and
quite successfully the Hessian of the solution is used to recon-
struct the interpolation error on a given mesh (see e.g., [3, 59]).
Indeed for the second order discretization the leading term of
the error contains the norm of the Hessian. For the grid cell E
this error can be estimated as:

εE ∼ max
x∈E

(x−xc)
T |H |(x−xc) (1)

where H is the Hessian and xc stands for the center of the cell.
The refinement procedure presented in this work (see Sec-

tion 4) operates by first splitting the edges of mesh elements,

and then by applying appropriate split templates to divide ele-
ments. These are local operations and their application is bene-
ficial in a parallel simulation. At the same time, error indicator
(based on (1)) is also locally calculated for each edge.

The key problem in the evaluation of such adaptive indicator
(or a metric tensor) consists in the reconstruction of the Hes-
sian [60]. The present approach is based on a very robust and
efficient Green formula.

The function u, on which adaptation is based, is known only
at the grid nodes. By the Green formula the gradient can be
calculated as:

∇u =
1
Ω

∮

∂Ω
u n dS (2)

where Ω denotes the control volume consisting of cells neigh-
bouring to a node at which Hessian is being estimated. This
procedure is repeated twice, first to estimate ∇u, and subse-
quently to estimate H = ∇(∇u).

The Hessian matrix is symmetric and therefore it is diago-
nalisable and has real eigenvalues λ1, λ2 and λ3. The matrix
|H | is defined as:

|H |= R ·




|λ1| 0 0
0 |λ2| 0
0 0 |λ3|


 ·R−1 (3)

where matrix R consists of eigenvectors of H as its columns.
The error indicator (for an edge ei j connecting nodes i and j)
is defined now as:

IH ei j =CheT
i j|Hei j |ei j (4)

where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
ary mesh element, which has at least one edge divided.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

 as its columns.
The error indicator (for an edge eij connecting nodes i and j)
is defined now as:

	

S. Gepner, J. Majewski, and J. Rokicki

parallel effectiveness of calculations.
This paper is organized as follows. Section 2 briefly spec-

ifies an in-house Residual Distribution based flow solver used
for solution of the flow problem. Section 3 recalls notion of
the error estimation process and specifies an adaptive indicator
used to drive the adaptive process. Section 4 outlines the tem-
plate splitting approach and provides descriptions of the possi-
ble refinement templates used in this work. Section 5 discuses
an r-adaptive method used. Section 6 illustrates application
of the application of the DLB on to the overall parallel per-
formance. Section 7 presents computational results calculated
with the the adaptive methods described in this paper. Conclu-
sions are presented in Section 8.

2. The flow solver
In the present paper adaptation is applied to stationary, ad-
vection dominated problems discretized with a node centred
Residual Distribution scheme [54, 55, 56, 57, 58]. In all cases
unstructured simplex meshes are used.

Parallelization of the solver is achieved through mesh par-
titioning with a single element overlap between neighbour-
ing subdomains. The inter-process communication is achieved
through the exchange of the corresponding nodal data. Each
process stores communication data structure containing infor-
mation on the local nodes shared with a neighbouring pro-
cesses. A similar data structure describes nodes that the pro-
cess receives from its neighbours.

For the node centred approach, the ownership of mesh nodes
is well defined and results directly from the partitioning (the
mesh entities are owned by the process with the lowest parallel
rank index). The notion of ownership is important for calcula-
tion of the adaptive indicator as well as in the refinement step.

The present implementation of the Residual Distribution
scheme requires that the computational meshes have no hang-
ing nodes. Similarly the elements connected through the face
in 3D or the edge in 2D must connect through a single (edge or
face) entity. These requirements impose additional constrains
on the refinement step, in particular in the parallel overlap re-
gions.

3. An adaptive indicator
In general, the adaptive procedure establishes the desired el-
ement spacing basing on the information recovered from the
numerical solution obtained on the current mesh. Often, and
quite successfully the Hessian of the solution is used to recon-
struct the interpolation error on a given mesh (see e.g., [3, 59]).
Indeed for the second order discretization the leading term of
the error contains the norm of the Hessian. For the grid cell E
this error can be estimated as:

εE ∼ max
x∈E

(x−xc)
T |H |(x−xc) (1)

where H is the Hessian and xc stands for the center of the cell.
The refinement procedure presented in this work (see Sec-

tion 4) operates by first splitting the edges of mesh elements,

and then by applying appropriate split templates to divide ele-
ments. These are local operations and their application is bene-
ficial in a parallel simulation. At the same time, error indicator
(based on (1)) is also locally calculated for each edge.

The key problem in the evaluation of such adaptive indicator
(or a metric tensor) consists in the reconstruction of the Hes-
sian [60]. The present approach is based on a very robust and
efficient Green formula.

The function u, on which adaptation is based, is known only
at the grid nodes. By the Green formula the gradient can be
calculated as:

∇u =
1
Ω

∮

∂Ω
u n dS (2)

where Ω denotes the control volume consisting of cells neigh-
bouring to a node at which Hessian is being estimated. This
procedure is repeated twice, first to estimate ∇u, and subse-
quently to estimate H = ∇(∇u).

The Hessian matrix is symmetric and therefore it is diago-
nalisable and has real eigenvalues λ1, λ2 and λ3. The matrix
|H | is defined as:

|H |= R ·




|λ1| 0 0
0 |λ2| 0
0 0 |λ3|


 ·R−1 (3)

where matrix R consists of eigenvectors of H as its columns.
The error indicator (for an edge ei j connecting nodes i and j)
is defined now as:

IH ei j =CheT
i j|Hei j |ei j (4)

where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
ary mesh element, which has at least one edge divided.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (4)

where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to one
and edges selected for refinement are these, for which the indi-
cator I

S. Gepner, J. Majewski, and J. Rokicki

parallel effectiveness of calculations.
This paper is organized as follows. Section 2 briefly spec-

ifies an in-house Residual Distribution based flow solver used
for solution of the flow problem. Section 3 recalls notion of
the error estimation process and specifies an adaptive indicator
used to drive the adaptive process. Section 4 outlines the tem-
plate splitting approach and provides descriptions of the possi-
ble refinement templates used in this work. Section 5 discuses
an r-adaptive method used. Section 6 illustrates application
of the application of the DLB on to the overall parallel per-
formance. Section 7 presents computational results calculated
with the the adaptive methods described in this paper. Conclu-
sions are presented in Section 8.

2. The flow solver
In the present paper adaptation is applied to stationary, ad-
vection dominated problems discretized with a node centred
Residual Distribution scheme [54, 55, 56, 57, 58]. In all cases
unstructured simplex meshes are used.

Parallelization of the solver is achieved through mesh par-
titioning with a single element overlap between neighbour-
ing subdomains. The inter-process communication is achieved
through the exchange of the corresponding nodal data. Each
process stores communication data structure containing infor-
mation on the local nodes shared with a neighbouring pro-
cesses. A similar data structure describes nodes that the pro-
cess receives from its neighbours.

For the node centred approach, the ownership of mesh nodes
is well defined and results directly from the partitioning (the
mesh entities are owned by the process with the lowest parallel
rank index). The notion of ownership is important for calcula-
tion of the adaptive indicator as well as in the refinement step.

The present implementation of the Residual Distribution
scheme requires that the computational meshes have no hang-
ing nodes. Similarly the elements connected through the face
in 3D or the edge in 2D must connect through a single (edge or
face) entity. These requirements impose additional constrains
on the refinement step, in particular in the parallel overlap re-
gions.

3. An adaptive indicator
In general, the adaptive procedure establishes the desired el-
ement spacing basing on the information recovered from the
numerical solution obtained on the current mesh. Often, and
quite successfully the Hessian of the solution is used to recon-
struct the interpolation error on a given mesh (see e.g., [3, 59]).
Indeed for the second order discretization the leading term of
the error contains the norm of the Hessian. For the grid cell E
this error can be estimated as:

εE ∼ max
x∈E

(x−xc)
T |H |(x−xc) (1)

where H is the Hessian and xc stands for the center of the cell.
The refinement procedure presented in this work (see Sec-

tion 4) operates by first splitting the edges of mesh elements,

and then by applying appropriate split templates to divide ele-
ments. These are local operations and their application is bene-
ficial in a parallel simulation. At the same time, error indicator
(based on (1)) is also locally calculated for each edge.

The key problem in the evaluation of such adaptive indicator
(or a metric tensor) consists in the reconstruction of the Hes-
sian [60]. The present approach is based on a very robust and
efficient Green formula.

The function u, on which adaptation is based, is known only
at the grid nodes. By the Green formula the gradient can be
calculated as:

∇u =
1
Ω

∮

∂Ω
u n dS (2)

where Ω denotes the control volume consisting of cells neigh-
bouring to a node at which Hessian is being estimated. This
procedure is repeated twice, first to estimate ∇u, and subse-
quently to estimate H = ∇(∇u).

The Hessian matrix is symmetric and therefore it is diago-
nalisable and has real eigenvalues λ1, λ2 and λ3. The matrix
|H | is defined as:

|H |= R ·




|λ1| 0 0
0 |λ2| 0
0 0 |λ3|


 ·R−1 (3)

where matrix R consists of eigenvectors of H as its columns.
The error indicator (for an edge ei j connecting nodes i and j)
is defined now as:

IH ei j =CheT
i j|Hei j |ei j (4)

where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
ary mesh element, which has at least one edge divided.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

eij
 exceeds a predefined threshold value, calibrated so

that the 25% of edges are split in the refinement step.
In case of a parallel simulation calculation of the adaptive

indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighboring
processes, which share a given edge.

4.	 Template based mesh refinement

In the current approach the mesh is refined through the use of
predefined splitting templates. As only simplex elements are
considered, the templates are limited to triangles and tetrahedra.
Both the boundary and the internal mesh elements are con-

197Bull. Pol. Ac.: Tech. 65(2) 2017

Parallel anisotropic mesh refinement with dynamic load balancing for transonic flow simulations

sidered for splitting. The refinement process consists of the
following steps:
1.	 Select the mesh edges for splitting, basing on the value of

the error indicator (4).
2.	 Enrich the mesh with the new nodes inserted at the edges

centres.
3.	 Use the appropriate template to split each internal or bound-

ary mesh element, which has at least one edge divided.
4.	 Remove all split mesh elements from the mesh data struc-

ture.
5.	 Add elements resulting from the splitting to the mesh data

structure.
6.	 In case of a parallel simulations, negotiate the inter-proces-

sor communication.
The possible splitting templates are grouped in categories,

based on the number of edges being divided (1‒3 for triangles
and 1‒6 for tetrahedra). Within each category different, variants
are identified by the indices of the split edges. The index of an
edge within an element is based on the nodal indices within an
element. The numbering convention is shown in Fig. 1.

4.1. Tetrahedron refinement templates. Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic division
categories are used. Within each category different variants are
possible, depending on the relative location of the split edges.

In contrast to the 2D meshes, the refinement of the 3D
meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neigh-
bouring elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected by
a triangular face shown in Fig. 2. Should the tetrahedral split-
ting produce incompatible faces (by applying both variants of
template 2‒01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this
procedure is required in the overlap region. First, the process
owning an element must be identified. At the present implemen-
tation it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibility
of elements in the overlap region is ensured by the use of global
nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1‒1 template.

Fig. 1. The numbering of edges, allowing to distinguish between
different splitting templates

Parallel approach to an adaptive flow simulation.

a)

0

1

2

0

1

2

b)

0

1

2

3

0
1

2

3

4
5

Fig. 1. The numbering of edges, allowing to distinguish between dif-
ferent splitting templates.

Ni

Nj

Nk

E0

E1

Nj

Nk

Ni

E0

E1

Split tem-
plate 2-01

Nj

Nk

Ni
E0

E1

Fig. 2. Two variants of element splitting according to template 2-01
(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D

a) b) c) d)

Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.

meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neighbour-
ing elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

Parallel approach to an adaptive flow simulation.

a)

0

1

2

0

1

2

b)

0

1

2

3

0
1

2

3

4
5

Fig. 1. The numbering of edges, allowing to distinguish between dif-
ferent splitting templates.

Ni

Nj

Nk

E0

E1

Nj

Nk

Ni

E0

E1

Split tem-
plate 2-01

Nj

Nk

Ni
E0

E1

Fig. 2. Two variants of element splitting according to template 2-01
(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D

a) b) c) d)

Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.

meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neighbour-
ing elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

a) b)

Fig. 2. Two variants of element splitting according to template 2-01
(two edges, 0 and 1 are selected for splitting)

Parallel approach to an adaptive flow simulation.

a)

0

1

2

0

1

2

b)

0

1

2

3

0
1

2

3

4
5

Fig. 1. The numbering of edges, allowing to distinguish between dif-
ferent splitting templates.

Ni

Nj

Nk

E0

E1

Nj

Nk

Ni

E0

E1

Split tem-
plate 2-01

Nj

Nk

Ni
E0

E1

Fig. 2. Two variants of element splitting according to template 2-01
(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D

a) b) c) d)

Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.

meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neighbour-
ing elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

Figure 2 illustrates two possible divisions of a triangular ele-
ment [Ni, Nj, Nk], with edges E0 and E1 selected for splitting. The
splitting templates for triangular elements are shown in Fig. 3.

Split template 2-01

Fig. 3. Triangle splitting templates

a)

Parallel approach to an adaptive flow simulation.

a)

0

1

2

0

1

2

b)

0

1

2

3

0
1

2

3

4
5

Fig. 1. The numbering of edges, allowing to distinguish between dif-
ferent splitting templates.

Ni

Nj

Nk

E0

E1

Nj

Nk

Ni

E0

E1

Split tem-
plate 2-01

Nj

Nk

Ni
E0

E1

Fig. 2. Two variants of element splitting according to template 2-01
(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D

a) b) c) d)

Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.

meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neighbour-
ing elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

b)

Parallel approach to an adaptive flow simulation.

a)

0

1

2

0

1

2

b)

0

1

2

3

0
1

2

3

4
5

Fig. 1. The numbering of edges, allowing to distinguish between dif-
ferent splitting templates.

Ni

Nj

Nk

E0

E1

Nj

Nk

Ni

E0

E1

Split tem-
plate 2-01

Nj

Nk

Ni
E0

E1

Fig. 2. Two variants of element splitting according to template 2-01
(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D

a) b) c) d)

Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.

meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neighbour-
ing elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

c)

Parallel approach to an adaptive flow simulation.

a)

0

1

2

0

1

2

b)

0

1

2

3

0
1

2

3

4
5

Fig. 1. The numbering of edges, allowing to distinguish between dif-
ferent splitting templates.

Ni

Nj

Nk

E0

E1

Nj

Nk

Ni

E0

E1

Split tem-
plate 2-01

Nj

Nk

Ni
E0

E1

Fig. 2. Two variants of element splitting according to template 2-01
(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D

a) b) c) d)

Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.

meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neighbour-
ing elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

d)

Parallel approach to an adaptive flow simulation.

a)

0

1

2

0

1

2

b)

0

1

2

3

0
1

2

3

4
5

Fig. 1. The numbering of edges, allowing to distinguish between dif-
ferent splitting templates.

Ni

Nj

Nk

E0

E1

Nj

Nk

Ni

E0

E1

Split tem-
plate 2-01

Nj

Nk

Ni
E0

E1

Fig. 2. Two variants of element splitting according to template 2-01
(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D

a) b) c) d)

Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.

meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neighbour-
ing elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

Fig. 4. Category-one element splitting

Parallel approach to an adaptive flow simulation.

a)

0

1

2

0

1

2

b)

0

1

2

3

0
1

2

3

4
5

Fig. 1. The numbering of edges, allowing to distinguish between dif-
ferent splitting templates.

Ni

Nj

Nk

E0

E1

Nj

Nk

Ni

E0

E1

Split tem-
plate 2-01

Nj

Nk

Ni
E0

E1

Fig. 2. Two variants of element splitting according to template 2-01
(two edges, 0 and 1 are selected for splitting).

4. Remove all split mesh elements from the mesh data struc-
ture.

5. Add elements resulting from the splitting to the mesh data
structure.

6. In case of a parallel simulations, negotiate the inter-
processor communication.

The possible splitting templates are grouped in categories,
based on the number of edges being divided (1-3 for triangles
and 1-6 for tetrahedra). Within each category different, vari-
ants are identified by the indices of the split edges. The index
of an edge within an element is based on the nodal indices
within an element. The numbering convention is shown in Fig.
1.

Figure 2 illustrates two possible divisions of a triangular el-
ement [Ni,Nj,Nk], with edges E0 and E1 selected for splitting.
The splitting templates for triangular elements are shown in
Fig. 3.

4.1. Tetrahedron refinement templates Similar logic is ap-
plied to the splitting templates for tetrahedra. Six basic divi-
sion categories are used. Within each category different vari-
ants are possible, depending on the relative location of the split
edges.

In contrast to the 2D meshes, the refinement of the 3D

a) b) c) d)

Fig. 3. Triangle splitting templates.

Fig. 4. Category-one element splitting.

meshes may lead to unsplittable (sometimes referred to as
Schoenhardt) polyhedra [61, 62], necessitating the use of ad-
ditional Steiner nodes. This happens for some templates from
the third category (three edges being split, variants: 012, 135,
245, 345) and for almost all category four and five divisions.

Another difficulty lies in the requirement that the neighbour-
ing elements should share the same face. To illustrate this
problem, consider splitting of tetrahedral elements connected
by a triangular face shown in Fig. 2. Should the tetrahedral
splitting produce incompatible faces (by applying both variants
of template 2-01), the resulting mesh would becomes unusable.

To guarantee compatibility of the neighbouring elements the
variant with the shorter edge is always selected for splitting. In
case both edges are equal, the decision is based on the nodal
indices of the edges.

In case of a parallel application the modification of this pro-
cedure is required in the overlap region. First, the process own-
ing an element must be identified. At the present implementa-
tion it is the one with the lowest parallel rank index. The over-
lapping elements are split by their owning processes only. The
results of splitting are then communicated to the neighbouring
processes, should any changes be required. The compatibil-
ity of elements in the overlap region is ensured by the use of
global nodal numbering.

Category one templates result in refinement into two new
tetrahedra. Figure 4 illustrates application of 1-1 template.

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2-05,
2-14, 2-23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new ele-
ments.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the
edges after splitting connect through a common node (variants
3-012, 3-034, 3-135, 3-245) - see Fig. 6. In this case a tetrahe-
dron and a possibly unsplittable polyhedron [61, 62], (shown
in Fig. 6c) can apprear. This happens when splitting regu-
lar tetrahedra, and requires an additional, internal node, which
has to be used to enable tetrahedralization (Fig. 6c and 6d).

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

The second category contains fifteen division variants. Tem-
plates corresponding to the splitting of opposite edges (2‒05,
2‒14, 2‒23; Fig. 5c and 5d) result in four new tetrahedra. The
remaining variants produce three (Fig. 5a and 5b) new elements.

Twenty variants exist in the third category. These variants
can be grouped into three subcategories. Firstly, when the edges

198 Bull. Pol. Ac.: Tech. 65(2) 2017

S. Gepner, J. Majewski, and J. Rokicki

S. Gepner, J. Majewski, and J. Rokicki

a)

Template 2-01

1

2

3

b)

Template 2-45

1

2

3

c)

Template 2-05

1

2

3

d)

Template 2-23

1

2

3

Fig. 5. Selected splitting templates of the second category. a)-b) for-
mation of three new elements. c)-d) formation of four elements.

a)

Template 3-245

1

2

3

b)

c)

d)

Fig. 6. Splitting template 3-245. a) The initial split results in a tetra-
hedron and a polyhedron requiring further processing. b) Splitting of
the resulting polyhedron, if possible. c) In case of the Schoenhardt
polyhedron an additional Steiner node is inserted. d) Eight additional
tetrahedra, resulting from splitting.

The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.

a)

Template 3-013

0

1

2

3

b)

Template 3-014

0

1

2

3

Fig. 7. Variants of category 3 splitting templates.

a)

Template 4-0123

1

2

3

a)

Template 4-0145

1

2

3

Fig. 8. Two possible variants of the fourth category.

Template 5-01234

0

1

2

3

Fig. 9. Category five split template 5-01234.

Template
6-012345

0

1

2

3

Fig. 10. Single split template of the sixth category.

These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

after splitting connect through a common node (variants 3‒012,
3‒034, 3‒135, 3‒245) – see Fig. 6. In this case a tetrahedron
and a possibly unsplittable polyhedron [61, 62], (shown in
Fig. 6c) can apprear. This happens when splitting regular tetra-
hedra, and requires an additional, internal node, which has to be

Fig. 5. Selected splitting templates of the second category. a)–b)
formation of three new elements. c)–d) formation of four elements

S. Gepner, J. Majewski, and J. Rokicki

a)

Template 2-01

1

2

3

b)

Template 2-45

1

2

3

c)

Template 2-05

1

2

3

d)

Template 2-23

1

2

3

Fig. 5. Selected splitting templates of the second category. a)-b) for-
mation of three new elements. c)-d) formation of four elements.

a)

Template 3-245

1

2

3

b)

c)

d)

Fig. 6. Splitting template 3-245. a) The initial split results in a tetra-
hedron and a polyhedron requiring further processing. b) Splitting of
the resulting polyhedron, if possible. c) In case of the Schoenhardt
polyhedron an additional Steiner node is inserted. d) Eight additional
tetrahedra, resulting from splitting.

The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.

a)

Template 3-013

0

1

2

3

b)

Template 3-014

0

1

2

3

Fig. 7. Variants of category 3 splitting templates.

a)

Template 4-0123

1

2

3

a)

Template 4-0145

1

2

3

Fig. 8. Two possible variants of the fourth category.

Template 5-01234

0

1

2

3

Fig. 9. Category five split template 5-01234.

Template
6-012345

0

1

2

3

Fig. 10. Single split template of the sixth category.

These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

a)

c)

b)

d)

Fig. 6. Splitting template 3‒245. a) The initial split results in a tetra-
hedron and a polyhedron requiring further processing. b) Splitting of
the resulting polyhedron, if possible. c) In case of the Schoenhardt
polyhedron an additional Steiner node is inserted. d) Eight additional

tetrahedra, resulting from splitting

S. Gepner, J. Majewski, and J. Rokicki

a)

Template 2-01

1

2

3

b)

Template 2-45

1

2

3

c)

Template 2-05

1

2

3

d)

Template 2-23

1

2

3

Fig. 5. Selected splitting templates of the second category. a)-b) for-
mation of three new elements. c)-d) formation of four elements.

a)

Template 3-245

1

2

3

b)

c)

d)

Fig. 6. Splitting template 3-245. a) The initial split results in a tetra-
hedron and a polyhedron requiring further processing. b) Splitting of
the resulting polyhedron, if possible. c) In case of the Schoenhardt
polyhedron an additional Steiner node is inserted. d) Eight additional
tetrahedra, resulting from splitting.

The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.

a)

Template 3-013

0

1

2

3

b)

Template 3-014

0

1

2

3

Fig. 7. Variants of category 3 splitting templates.

a)

Template 4-0123

1

2

3

a)

Template 4-0145

1

2

3

Fig. 8. Two possible variants of the fourth category.

Template 5-01234

0

1

2

3

Fig. 9. Category five split template 5-01234.

Template
6-012345

0

1

2

3

Fig. 10. Single split template of the sixth category.

These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

S. Gepner, J. Majewski, and J. Rokicki

a)

Template 2-01

1

2

3

b)

Template 2-45

1

2

3

c)

Template 2-05

1

2

3

d)

Template 2-23

1

2

3

Fig. 5. Selected splitting templates of the second category. a)-b) for-
mation of three new elements. c)-d) formation of four elements.

a)

Template 3-245

1

2

3

b)

c)

d)

Fig. 6. Splitting template 3-245. a) The initial split results in a tetra-
hedron and a polyhedron requiring further processing. b) Splitting of
the resulting polyhedron, if possible. c) In case of the Schoenhardt
polyhedron an additional Steiner node is inserted. d) Eight additional
tetrahedra, resulting from splitting.

The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.

a)

Template 3-013

0

1

2

3

b)

Template 3-014

0

1

2

3

Fig. 7. Variants of category 3 splitting templates.

a)

Template 4-0123

1

2

3

a)

Template 4-0145

1

2

3

Fig. 8. Two possible variants of the fourth category.

Template 5-01234

0

1

2

3

Fig. 9. Category five split template 5-01234.

Template
6-012345

0

1

2

3

Fig. 10. Single split template of the sixth category.

These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

S. Gepner, J. Majewski, and J. Rokicki

a)

Template 2-01

1

2

3

b)

Template 2-45

1

2

3

c)

Template 2-05

1

2

3

d)

Template 2-23

1

2

3

Fig. 5. Selected splitting templates of the second category. a)-b) for-
mation of three new elements. c)-d) formation of four elements.

a)

Template 3-245

1

2

3

b)

c)

d)

Fig. 6. Splitting template 3-245. a) The initial split results in a tetra-
hedron and a polyhedron requiring further processing. b) Splitting of
the resulting polyhedron, if possible. c) In case of the Schoenhardt
polyhedron an additional Steiner node is inserted. d) Eight additional
tetrahedra, resulting from splitting.

The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.

a)

Template 3-013

0

1

2

3

b)

Template 3-014

0

1

2

3

Fig. 7. Variants of category 3 splitting templates.

a)

Template 4-0123

1

2

3

a)

Template 4-0145

1

2

3

Fig. 8. Two possible variants of the fourth category.

Template 5-01234

0

1

2

3

Fig. 9. Category five split template 5-01234.

Template
6-012345

0

1

2

3

Fig. 10. Single split template of the sixth category.

These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

S. Gepner, J. Majewski, and J. Rokicki

a)

Template 2-01

1

2

3

b)

Template 2-45

1

2

3

c)

Template 2-05

1

2

3

d)

Template 2-23

1

2

3

Fig. 5. Selected splitting templates of the second category. a)-b) for-
mation of three new elements. c)-d) formation of four elements.

a)

Template 3-245

1

2

3

b)

c)

d)

Fig. 6. Splitting template 3-245. a) The initial split results in a tetra-
hedron and a polyhedron requiring further processing. b) Splitting of
the resulting polyhedron, if possible. c) In case of the Schoenhardt
polyhedron an additional Steiner node is inserted. d) Eight additional
tetrahedra, resulting from splitting.

The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.

a)

Template 3-013

0

1

2

3

b)

Template 3-014

0

1

2

3

Fig. 7. Variants of category 3 splitting templates.

a)

Template 4-0123

1

2

3

a)

Template 4-0145

1

2

3

Fig. 8. Two possible variants of the fourth category.

Template 5-01234

0

1

2

3

Fig. 9. Category five split template 5-01234.

Template
6-012345

0

1

2

3

Fig. 10. Single split template of the sixth category.

These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

a)

c)

b)

d)

used to enable tetrahedralization (Fig. 6c and 6d). The total of
nine tetrahedra are then produced. If this is not the case, three
new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3‒013, 3‒024, 3‒125, 3‒345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig. 7b.

Fifteen possible variants belong to the fourth category. These
fall into two possible cases. The first takes place when three of
four split edges connect through a common node (Fig. 8a). This
results in six new tetrahedra. The second case occurs when each
of the faces has exactly two split edges (Fig. 8b), resulting in the
necessity to split the tetrahedron by a plane. The new polyhedra
presented in Fig. 6c-d may require additional Steiner points to
enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt

Fig. 7. Variants of category 3 splitting templates

a)
S. Gepner, J. Majewski, and J. Rokicki

a)

Template 2-01

1

2

3

b)

Template 2-45

1

2

3

c)

Template 2-05

1

2

3

d)

Template 2-23

1

2

3

Fig. 5. Selected splitting templates of the second category. a)-b) for-
mation of three new elements. c)-d) formation of four elements.

a)

Template 3-245

1

2

3

b)

c)

d)

Fig. 6. Splitting template 3-245. a) The initial split results in a tetra-
hedron and a polyhedron requiring further processing. b) Splitting of
the resulting polyhedron, if possible. c) In case of the Schoenhardt
polyhedron an additional Steiner node is inserted. d) Eight additional
tetrahedra, resulting from splitting.

The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.

a)

Template 3-013

0

1

2

3

b)

Template 3-014

0

1

2

3

Fig. 7. Variants of category 3 splitting templates.

a)

Template 4-0123

1

2

3

a)

Template 4-0145

1

2

3

Fig. 8. Two possible variants of the fourth category.

Template 5-01234

0

1

2

3

Fig. 9. Category five split template 5-01234.

Template
6-012345

0

1

2

3

Fig. 10. Single split template of the sixth category.

These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

b)
S. Gepner, J. Majewski, and J. Rokicki

a)

Template 2-01

1

2

3

b)

Template 2-45

1

2

3

c)

Template 2-05

1

2

3

d)

Template 2-23

1

2

3

Fig. 5. Selected splitting templates of the second category. a)-b) for-
mation of three new elements. c)-d) formation of four elements.

a)

Template 3-245

1

2

3

b)

c)

d)

Fig. 6. Splitting template 3-245. a) The initial split results in a tetra-
hedron and a polyhedron requiring further processing. b) Splitting of
the resulting polyhedron, if possible. c) In case of the Schoenhardt
polyhedron an additional Steiner node is inserted. d) Eight additional
tetrahedra, resulting from splitting.

The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.

a)

Template 3-013

0

1

2

3

b)

Template 3-014

0

1

2

3

Fig. 7. Variants of category 3 splitting templates.

a)

Template 4-0123

1

2

3

a)

Template 4-0145

1

2

3

Fig. 8. Two possible variants of the fourth category.

Template 5-01234

0

1

2

3

Fig. 9. Category five split template 5-01234.

Template
6-012345

0

1

2

3

Fig. 10. Single split template of the sixth category.

These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

S. Gepner, J. Majewski, and J. Rokicki

a)

Template 2-01

1

2

3

b)

Template 2-45

1

2

3

c)

Template 2-05

1

2

3

d)

Template 2-23

1

2

3

Fig. 5. Selected splitting templates of the second category. a)-b) for-
mation of three new elements. c)-d) formation of four elements.

a)

Template 3-245

1

2

3

b)

c)

d)

Fig. 6. Splitting template 3-245. a) The initial split results in a tetra-
hedron and a polyhedron requiring further processing. b) Splitting of
the resulting polyhedron, if possible. c) In case of the Schoenhardt
polyhedron an additional Steiner node is inserted. d) Eight additional
tetrahedra, resulting from splitting.

The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.

a)

Template 3-013

0

1

2

3

b)

Template 3-014

0

1

2

3

Fig. 7. Variants of category 3 splitting templates.

a)

Template 4-0123

1

2

3

a)

Template 4-0145

1

2

3

Fig. 8. Two possible variants of the fourth category.

Template 5-01234

0

1

2

3

Fig. 9. Category five split template 5-01234.

Template
6-012345

0

1

2

3

Fig. 10. Single split template of the sixth category.

These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

S. Gepner, J. Majewski, and J. Rokicki

a)

Template 2-01

1

2

3

b)

Template 2-45

1

2

3

c)

Template 2-05

1

2

3

d)

Template 2-23

1

2

3

Fig. 5. Selected splitting templates of the second category. a)-b) for-
mation of three new elements. c)-d) formation of four elements.

a)

Template 3-245

1

2

3

b)

c)

d)

Fig. 6. Splitting template 3-245. a) The initial split results in a tetra-
hedron and a polyhedron requiring further processing. b) Splitting of
the resulting polyhedron, if possible. c) In case of the Schoenhardt
polyhedron an additional Steiner node is inserted. d) Eight additional
tetrahedra, resulting from splitting.

The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.

a)

Template 3-013

0

1

2

3

b)

Template 3-014

0

1

2

3

Fig. 7. Variants of category 3 splitting templates.

a)

Template 4-0123

1

2

3

a)

Template 4-0145

1

2

3

Fig. 8. Two possible variants of the fourth category.

Template 5-01234

0

1

2

3

Fig. 9. Category five split template 5-01234.

Template
6-012345

0

1

2

3

Fig. 10. Single split template of the sixth category.

These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

b)a)

Fig. 8. Two possible variants of the fourth category

Fig. 9. Category five split template 5‒01234

S. Gepner, J. Majewski, and J. Rokicki

a)

Template 2-01

1

2

3

b)

Template 2-45

1

2

3

c)

Template 2-05

1

2

3

d)

Template 2-23

1

2

3

Fig. 5. Selected splitting templates of the second category. a)-b) for-
mation of three new elements. c)-d) formation of four elements.

a)

Template 3-245

1

2

3

b)

c)

d)

Fig. 6. Splitting template 3-245. a) The initial split results in a tetra-
hedron and a polyhedron requiring further processing. b) Splitting of
the resulting polyhedron, if possible. c) In case of the Schoenhardt
polyhedron an additional Steiner node is inserted. d) Eight additional
tetrahedra, resulting from splitting.

The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.

a)

Template 3-013

0

1

2

3

b)

Template 3-014

0

1

2

3

Fig. 7. Variants of category 3 splitting templates.

a)

Template 4-0123

1

2

3

a)

Template 4-0145

1

2

3

Fig. 8. Two possible variants of the fourth category.

Template 5-01234

0

1

2

3

Fig. 9. Category five split template 5-01234.

Template
6-012345

0

1

2

3

Fig. 10. Single split template of the sixth category.

These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

199Bull. Pol. Ac.: Tech. 65(2) 2017

Parallel anisotropic mesh refinement with dynamic load balancing for transonic flow simulations

polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in
Fig. 10. The splitting results in formation of eight new tetra-
hedra.

An example of application of the splitting templates for
the generic 3D mesh is illustrated in Fig. 11. The consecutive
refinements, of the initially coarse mesh, are performed by di-
viding edges located in the predefined region. In this case an
adaptive indicator is evaluated for an artificial discontinuity
having the shape of a unit sphere.

5.	 R adaptivity

The adaptive strategy requires also a mechanism to coarsen the
mesh and at the same time to eliminate short edges generated
during the refinement step [42], as well as to break the influence
of the initial mesh onto the adapted mesh.

Instead of a derefinement procedure, the present approach
uses a variant of r adaptivity, in which the mesh is regarded
as elastic and deformable. The deformations are controlled
by equations of linear elasticity, as well as by the appropriate
boundary conditions:

	

Parallel approach to an adaptive flow simulation.

Fig. 11. Consecutive refinement steps obtained by the present ap-
proach. The adaptation indicator is driven by an artificial discontinu-
ity in the form of a unit sphere.

10. The splitting results in formation of eight new tetrahedra.
An example of application of the splitting templates for the

generic 3D mesh is illustrated in Fig. 11. The consecutive re-
finements, of the initially coarse mesh, are performed by divid-
ing edges located in the predefined region. In this case an adap-
tive indicator is evaluated for an artificial discontinuity having
the shape of a unit sphere.

5. R adaptivity
The adaptive strategy requires also a mechanism to coarsen the
mesh and at the same time to eliminate short edges generated
during the refinement step [42], as well as to break the influ-
ence of the initial mesh onto the adapted mesh.

Instead of a derefinement procedure, the present approach
uses a variant of r adaptivity, in which the mesh is regarded
as elastic and deformable. The deformations are controlled
by equations of linear elasticity, as well as by the appropriate
boundary conditions:

{
(λ +µ)∇(∇·u)+µ∇2u+F = 0
u|∂Ω = 0

(5)

where u denotes the displacement field, λ and µ are local
Lamé parameters, while F stands for a prescribed vector field.
The position of all boundary nodes is fixed through a Dirichlet
boundary condition.

The solution of eq. (5) is obtained via the standard Finite
Element method [63], which leads to a symmetric linear alge-
braic problem:

Ku = b (6)

The application of this form of adaptivity is especially attrac-
tive in a parallel framework, since the necessary numerical
tools (mesh and solution data structure, partitioning, assembly
and communication, algebraic solvers, etc.) are already used
by the flow solver.

While the assembly of the stiffness matrix K (6) follows a
well known procedure, the derivation of the right hand side
requires explanation.

In the present work the value of an edge error indicator (4) is
used to calculate nodal forces applied to the mesh nodes. For
the i-th node of the mesh, with N other nodes as neighbors, the
nodal force is calculated as the sum of contributions of corre-
sponding edges:

Fi =Cr

N

∑
k=1

IH ek êk (7)

where IH ek denotes the error indicator calculated by (4), Cr is
a scaling constant while êk stands for the versor parallel to the
edge, and pointing outwards from the central node i. By ap-
plying (7) to all mesh nodes, the right hand side of (6) is eval-
uated. The particular form of (7) is justified by the observation
that the adaptive method should modify the mesh towards the
equidistribution of the estimated error.

6. The load balancing
To obtain a high parallel efficiency the proper balancing of the
numerical load is required. Even if the load is balanced at the
beginning of the simulation, the dynamic changes caused by
the adaptive refinement will significantly lower the efficiency
[10, 16]. This makes direct application of adaptivity unfeasible
for the automated parallel simulations. It is thus necessary to
apply the Dynamic Load Balancing (DLB) strategy throughout
the entire parallel simulation.

In order to quantify the quality of the load balancing sup-
pose that the total computation effort is W = ∑p

i wi (p denotes
the number of processors used and wi is the workload of the
i-th processor). In the homogeneous, parallel computational
environment, an optimal load distribution is such that all com-
putational processors are equally loaded. Therefore optimal
processor load is wopt =W/p. The quality of partitioning can
be then expressed [64] by the coefficient β

β = max
0<i≤p

wi

wopt
(8)

Values, of β close to one, indicate a well balanced partition-
ing. Bigger values of β indicate that the load is un-balanced.
It should be noted, that (8) disregards the influence of commu-
nication overhead, resulting from a given partitioning.

Various approaches are available to obtain a balanced parti-
tion of the computational domain/grid between processors. In

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

� (5)

where u denotes the displacement field, λ and μ are local Lamé
parameters, while F stands for a prescribed vector field. The
position of all boundary nodes is fixed through a Dirichlet
boundary condition.

The solution of eq. (5) is obtained via the standard finite
element method [63], which leads to a symmetric linear alge-
braic problem:

	

Parallel approach to an adaptive flow simulation.

Fig. 11. Consecutive refinement steps obtained by the present ap-
proach. The adaptation indicator is driven by an artificial discontinu-
ity in the form of a unit sphere.

10. The splitting results in formation of eight new tetrahedra.
An example of application of the splitting templates for the

generic 3D mesh is illustrated in Fig. 11. The consecutive re-
finements, of the initially coarse mesh, are performed by divid-
ing edges located in the predefined region. In this case an adap-
tive indicator is evaluated for an artificial discontinuity having
the shape of a unit sphere.

5. R adaptivity
The adaptive strategy requires also a mechanism to coarsen the
mesh and at the same time to eliminate short edges generated
during the refinement step [42], as well as to break the influ-
ence of the initial mesh onto the adapted mesh.

Instead of a derefinement procedure, the present approach
uses a variant of r adaptivity, in which the mesh is regarded
as elastic and deformable. The deformations are controlled
by equations of linear elasticity, as well as by the appropriate
boundary conditions:

{
(λ +µ)∇(∇·u)+µ∇2u+F = 0
u|∂Ω = 0

(5)

where u denotes the displacement field, λ and µ are local
Lamé parameters, while F stands for a prescribed vector field.
The position of all boundary nodes is fixed through a Dirichlet
boundary condition.

The solution of eq. (5) is obtained via the standard Finite
Element method [63], which leads to a symmetric linear alge-
braic problem:

Ku = b (6)

The application of this form of adaptivity is especially attrac-
tive in a parallel framework, since the necessary numerical
tools (mesh and solution data structure, partitioning, assembly
and communication, algebraic solvers, etc.) are already used
by the flow solver.

While the assembly of the stiffness matrix K (6) follows a
well known procedure, the derivation of the right hand side
requires explanation.

In the present work the value of an edge error indicator (4) is
used to calculate nodal forces applied to the mesh nodes. For
the i-th node of the mesh, with N other nodes as neighbors, the
nodal force is calculated as the sum of contributions of corre-
sponding edges:

Fi =Cr

N

∑
k=1

IH ek êk (7)

where IH ek denotes the error indicator calculated by (4), Cr is
a scaling constant while êk stands for the versor parallel to the
edge, and pointing outwards from the central node i. By ap-
plying (7) to all mesh nodes, the right hand side of (6) is eval-
uated. The particular form of (7) is justified by the observation
that the adaptive method should modify the mesh towards the
equidistribution of the estimated error.

6. The load balancing
To obtain a high parallel efficiency the proper balancing of the
numerical load is required. Even if the load is balanced at the
beginning of the simulation, the dynamic changes caused by
the adaptive refinement will significantly lower the efficiency
[10, 16]. This makes direct application of adaptivity unfeasible
for the automated parallel simulations. It is thus necessary to
apply the Dynamic Load Balancing (DLB) strategy throughout
the entire parallel simulation.

In order to quantify the quality of the load balancing sup-
pose that the total computation effort is W = ∑p

i wi (p denotes
the number of processors used and wi is the workload of the
i-th processor). In the homogeneous, parallel computational
environment, an optimal load distribution is such that all com-
putational processors are equally loaded. Therefore optimal
processor load is wopt =W/p. The quality of partitioning can
be then expressed [64] by the coefficient β

β = max
0<i≤p

wi

wopt
(8)

Values, of β close to one, indicate a well balanced partition-
ing. Bigger values of β indicate that the load is un-balanced.
It should be noted, that (8) disregards the influence of commu-
nication overhead, resulting from a given partitioning.

Various approaches are available to obtain a balanced parti-
tion of the computational domain/grid between processors. In

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

� (6)

The application of this form of adaptivity is especially attractive
in a parallel framework, since the necessary numerical tools
(mesh and solution data structure, partitioning, assembly and
communication, algebraic solvers, etc.) are already used by the
flow solver.

While the assembly of the stiffness matrix K (6) follows
a well known procedure, the derivation of the right hand side
requires explanation.

In the present work the value of an edge error indicator (4)
is used to calculate nodal forces applied to the mesh nodes. For
the i-th node of the mesh, with N other nodes as neighbors, the
nodal force is calculated as the sum of contributions of corre-
sponding edges:

	

Parallel approach to an adaptive flow simulation.

Fig. 11. Consecutive refinement steps obtained by the present ap-
proach. The adaptation indicator is driven by an artificial discontinu-
ity in the form of a unit sphere.

10. The splitting results in formation of eight new tetrahedra.
An example of application of the splitting templates for the

generic 3D mesh is illustrated in Fig. 11. The consecutive re-
finements, of the initially coarse mesh, are performed by divid-
ing edges located in the predefined region. In this case an adap-
tive indicator is evaluated for an artificial discontinuity having
the shape of a unit sphere.

5. R adaptivity
The adaptive strategy requires also a mechanism to coarsen the
mesh and at the same time to eliminate short edges generated
during the refinement step [42], as well as to break the influ-
ence of the initial mesh onto the adapted mesh.

Instead of a derefinement procedure, the present approach
uses a variant of r adaptivity, in which the mesh is regarded
as elastic and deformable. The deformations are controlled
by equations of linear elasticity, as well as by the appropriate
boundary conditions:

{
(λ +µ)∇(∇·u)+µ∇2u+F = 0
u|∂Ω = 0

(5)

where u denotes the displacement field, λ and µ are local
Lamé parameters, while F stands for a prescribed vector field.
The position of all boundary nodes is fixed through a Dirichlet
boundary condition.

The solution of eq. (5) is obtained via the standard Finite
Element method [63], which leads to a symmetric linear alge-
braic problem:

Ku = b (6)

The application of this form of adaptivity is especially attrac-
tive in a parallel framework, since the necessary numerical
tools (mesh and solution data structure, partitioning, assembly
and communication, algebraic solvers, etc.) are already used
by the flow solver.

While the assembly of the stiffness matrix K (6) follows a
well known procedure, the derivation of the right hand side
requires explanation.

In the present work the value of an edge error indicator (4) is
used to calculate nodal forces applied to the mesh nodes. For
the i-th node of the mesh, with N other nodes as neighbors, the
nodal force is calculated as the sum of contributions of corre-
sponding edges:

Fi =Cr

N

∑
k=1

IH ek êk (7)

where IH ek denotes the error indicator calculated by (4), Cr is
a scaling constant while êk stands for the versor parallel to the
edge, and pointing outwards from the central node i. By ap-
plying (7) to all mesh nodes, the right hand side of (6) is eval-
uated. The particular form of (7) is justified by the observation
that the adaptive method should modify the mesh towards the
equidistribution of the estimated error.

6. The load balancing
To obtain a high parallel efficiency the proper balancing of the
numerical load is required. Even if the load is balanced at the
beginning of the simulation, the dynamic changes caused by
the adaptive refinement will significantly lower the efficiency
[10, 16]. This makes direct application of adaptivity unfeasible
for the automated parallel simulations. It is thus necessary to
apply the Dynamic Load Balancing (DLB) strategy throughout
the entire parallel simulation.

In order to quantify the quality of the load balancing sup-
pose that the total computation effort is W = ∑p

i wi (p denotes
the number of processors used and wi is the workload of the
i-th processor). In the homogeneous, parallel computational
environment, an optimal load distribution is such that all com-
putational processors are equally loaded. Therefore optimal
processor load is wopt =W/p. The quality of partitioning can
be then expressed [64] by the coefficient β

β = max
0<i≤p

wi

wopt
(8)

Values, of β close to one, indicate a well balanced partition-
ing. Bigger values of β indicate that the load is un-balanced.
It should be noted, that (8) disregards the influence of commu-
nication overhead, resulting from a given partitioning.

Various approaches are available to obtain a balanced parti-
tion of the computational domain/grid between processors. In

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

� (7)

where I

S. Gepner, J. Majewski, and J. Rokicki

parallel effectiveness of calculations.
This paper is organized as follows. Section 2 briefly spec-

ifies an in-house Residual Distribution based flow solver used
for solution of the flow problem. Section 3 recalls notion of
the error estimation process and specifies an adaptive indicator
used to drive the adaptive process. Section 4 outlines the tem-
plate splitting approach and provides descriptions of the possi-
ble refinement templates used in this work. Section 5 discuses
an r-adaptive method used. Section 6 illustrates application
of the application of the DLB on to the overall parallel per-
formance. Section 7 presents computational results calculated
with the the adaptive methods described in this paper. Conclu-
sions are presented in Section 8.

2. The flow solver
In the present paper adaptation is applied to stationary, ad-
vection dominated problems discretized with a node centred
Residual Distribution scheme [54, 55, 56, 57, 58]. In all cases
unstructured simplex meshes are used.

Parallelization of the solver is achieved through mesh par-
titioning with a single element overlap between neighbour-
ing subdomains. The inter-process communication is achieved
through the exchange of the corresponding nodal data. Each
process stores communication data structure containing infor-
mation on the local nodes shared with a neighbouring pro-
cesses. A similar data structure describes nodes that the pro-
cess receives from its neighbours.

For the node centred approach, the ownership of mesh nodes
is well defined and results directly from the partitioning (the
mesh entities are owned by the process with the lowest parallel
rank index). The notion of ownership is important for calcula-
tion of the adaptive indicator as well as in the refinement step.

The present implementation of the Residual Distribution
scheme requires that the computational meshes have no hang-
ing nodes. Similarly the elements connected through the face
in 3D or the edge in 2D must connect through a single (edge or
face) entity. These requirements impose additional constrains
on the refinement step, in particular in the parallel overlap re-
gions.

3. An adaptive indicator
In general, the adaptive procedure establishes the desired el-
ement spacing basing on the information recovered from the
numerical solution obtained on the current mesh. Often, and
quite successfully the Hessian of the solution is used to recon-
struct the interpolation error on a given mesh (see e.g., [3, 59]).
Indeed for the second order discretization the leading term of
the error contains the norm of the Hessian. For the grid cell E
this error can be estimated as:

εE ∼ max
x∈E

(x−xc)
T |H |(x−xc) (1)

where H is the Hessian and xc stands for the center of the cell.
The refinement procedure presented in this work (see Sec-

tion 4) operates by first splitting the edges of mesh elements,

and then by applying appropriate split templates to divide ele-
ments. These are local operations and their application is bene-
ficial in a parallel simulation. At the same time, error indicator
(based on (1)) is also locally calculated for each edge.

The key problem in the evaluation of such adaptive indicator
(or a metric tensor) consists in the reconstruction of the Hes-
sian [60]. The present approach is based on a very robust and
efficient Green formula.

The function u, on which adaptation is based, is known only
at the grid nodes. By the Green formula the gradient can be
calculated as:

∇u =
1
Ω

∮

∂Ω
u n dS (2)

where Ω denotes the control volume consisting of cells neigh-
bouring to a node at which Hessian is being estimated. This
procedure is repeated twice, first to estimate ∇u, and subse-
quently to estimate H = ∇(∇u).

The Hessian matrix is symmetric and therefore it is diago-
nalisable and has real eigenvalues λ1, λ2 and λ3. The matrix
|H | is defined as:

|H |= R ·




|λ1| 0 0
0 |λ2| 0
0 0 |λ3|


 ·R−1 (3)

where matrix R consists of eigenvectors of H as its columns.
The error indicator (for an edge ei j connecting nodes i and j)
is defined now as:

IH ei j =CheT
i j|Hei j |ei j (4)

where the arbitrary, positive parameter Ch allows to control the
threshold of adaptivity. In the current approach Ch is set to
one and edges selected for refinement are these, for which the
indicator IH ei j exceeds a predefined threshold value, calibrated
so that the 25% of edges are split in the refinement step.

In case of a parallel simulation calculation of the adaptive
indicator (4) is only modified in the parallel overlap region.
Each process decides only on splitting edges it owns. The rel-
evant information is then communicated to the neighbouring
processes, which share a given edge.

4. Template based mesh refinement
In the current approach the mesh is refined through the use
of predefined splitting templates. As only simplex elements
are considered, the templates are limited to triangles and tetra-
hedra. Both the boundary and the internal mesh elements are
considered for splitting. The refinement process consists of the
following steps:

1. Select the mesh edges for splitting, basing on the value of
the error indicator (4).

2. Enrich the mesh with the new nodes inserted at the edges
centres.

3. Use the appropriate template to split each internal or bound-
ary mesh element, which has at least one edge divided.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

ek
 denotes the error indicator calculated by (4), Cr is

a scaling constant while

Parallel approach to an adaptive flow simulation.

Fig. 11. Consecutive refinement steps obtained by the present ap-
proach. The adaptation indicator is driven by an artificial discontinu-
ity in the form of a unit sphere.

10. The splitting results in formation of eight new tetrahedra.
An example of application of the splitting templates for the

generic 3D mesh is illustrated in Fig. 11. The consecutive re-
finements, of the initially coarse mesh, are performed by divid-
ing edges located in the predefined region. In this case an adap-
tive indicator is evaluated for an artificial discontinuity having
the shape of a unit sphere.

5. R adaptivity
The adaptive strategy requires also a mechanism to coarsen the
mesh and at the same time to eliminate short edges generated
during the refinement step [42], as well as to break the influ-
ence of the initial mesh onto the adapted mesh.

Instead of a derefinement procedure, the present approach
uses a variant of r adaptivity, in which the mesh is regarded
as elastic and deformable. The deformations are controlled
by equations of linear elasticity, as well as by the appropriate
boundary conditions:

{
(λ +µ)∇(∇·u)+µ∇2u+F = 0
u|∂Ω = 0

(5)

where u denotes the displacement field, λ and µ are local
Lamé parameters, while F stands for a prescribed vector field.
The position of all boundary nodes is fixed through a Dirichlet
boundary condition.

The solution of eq. (5) is obtained via the standard Finite
Element method [63], which leads to a symmetric linear alge-
braic problem:

Ku = b (6)

The application of this form of adaptivity is especially attrac-
tive in a parallel framework, since the necessary numerical
tools (mesh and solution data structure, partitioning, assembly
and communication, algebraic solvers, etc.) are already used
by the flow solver.

While the assembly of the stiffness matrix K (6) follows a
well known procedure, the derivation of the right hand side
requires explanation.

In the present work the value of an edge error indicator (4) is
used to calculate nodal forces applied to the mesh nodes. For
the i-th node of the mesh, with N other nodes as neighbors, the
nodal force is calculated as the sum of contributions of corre-
sponding edges:

Fi =Cr

N

∑
k=1

IH ek êk (7)

where IH ek denotes the error indicator calculated by (4), Cr is
a scaling constant while êk stands for the versor parallel to the
edge, and pointing outwards from the central node i. By ap-
plying (7) to all mesh nodes, the right hand side of (6) is eval-
uated. The particular form of (7) is justified by the observation
that the adaptive method should modify the mesh towards the
equidistribution of the estimated error.

6. The load balancing
To obtain a high parallel efficiency the proper balancing of the
numerical load is required. Even if the load is balanced at the
beginning of the simulation, the dynamic changes caused by
the adaptive refinement will significantly lower the efficiency
[10, 16]. This makes direct application of adaptivity unfeasible
for the automated parallel simulations. It is thus necessary to
apply the Dynamic Load Balancing (DLB) strategy throughout
the entire parallel simulation.

In order to quantify the quality of the load balancing sup-
pose that the total computation effort is W = ∑p

i wi (p denotes
the number of processors used and wi is the workload of the
i-th processor). In the homogeneous, parallel computational
environment, an optimal load distribution is such that all com-
putational processors are equally loaded. Therefore optimal
processor load is wopt =W/p. The quality of partitioning can
be then expressed [64] by the coefficient β

β = max
0<i≤p

wi

wopt
(8)

Values, of β close to one, indicate a well balanced partition-
ing. Bigger values of β indicate that the load is un-balanced.
It should be noted, that (8) disregards the influence of commu-
nication overhead, resulting from a given partitioning.

Various approaches are available to obtain a balanced parti-
tion of the computational domain/grid between processors. In

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

ek stands for the versor parallel to the
edge, and pointing outwards from the central node i. By ap-
plying (7) to all mesh nodes, the right hand side of (6) is eval-
uated. The particular form of (7) is justified by the observation
that the adaptive method should modify the mesh towards the
equidistribution of the estimated error.

6.	 The load balancing

To obtain a high parallel efficiency the proper balancing of the
numerical load is required. Even if the load is balanced at the

Fig. 10. Single split template of the sixth category

S. Gepner, J. Majewski, and J. Rokicki

a)

Template 2-01

1

2

3

b)

Template 2-45

1

2

3

c)

Template 2-05

1

2

3

d)

Template 2-23

1

2

3

Fig. 5. Selected splitting templates of the second category. a)-b) for-
mation of three new elements. c)-d) formation of four elements.

a)

Template 3-245

1

2

3

b)

c)

d)

Fig. 6. Splitting template 3-245. a) The initial split results in a tetra-
hedron and a polyhedron requiring further processing. b) Splitting of
the resulting polyhedron, if possible. c) In case of the Schoenhardt
polyhedron an additional Steiner node is inserted. d) Eight additional
tetrahedra, resulting from splitting.

The total of nine tetrahedra are then produced. If this is not the
case, three new tetrahedra are produced as shown in Fig. 6b.

Secondly when the split edges belong to a common face
(variants 3-013, 3-024, 3-125, 3-345) four new tetrahedra are
formed. This is illustrated in Fig. 7a.

Thirdly, the remaining splitting variants of this category re-
sult in five new tetrahedra. An example is presented in Fig.
7b.

Fifteen possible variants belong to the fourth category.

a)

Template 3-013

0

1

2

3

b)

Template 3-014

0

1

2

3

Fig. 7. Variants of category 3 splitting templates.

a)

Template 4-0123

1

2

3

a)

Template 4-0145

1

2

3

Fig. 8. Two possible variants of the fourth category.

Template 5-01234

0

1

2

3

Fig. 9. Category five split template 5-01234.

Template
6-012345

0

1

2

3

Fig. 10. Single split template of the sixth category.

These fall into two possible cases. The first takes place when
three of four split edges connect through a common node (Fig.
8a). This results in six new tetrahedra. The second case occurs
when each of the faces has exactly two split edges (Fig. 8b), re-
sulting in the necessity to split the tetrahedron by a plane. The
new polyhedra presented in Fig. 6c-d may require additional
Steiner points to enable further splitting.

The split variant of the category five is shown in Fig. 9.
Similar to categories three and four, the possible Schoenhardt
polyhedron is dealt with by insertion of an additional Steiner
node, and split analogous to the one shown in Fig. 6d.

Finally, a single variant of category six is presented in Fig.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

Fig. 11. Consecutive refinement steps obtained by the present approach.
The adaptation indicator is driven by an artificial discontinuity in the

form of a unit sphere

Parallel approach to an adaptive flow simulation.

Fig. 11. Consecutive refinement steps obtained by the present ap-
proach. The adaptation indicator is driven by an artificial discontinu-
ity in the form of a unit sphere.

10. The splitting results in formation of eight new tetrahedra.
An example of application of the splitting templates for the

generic 3D mesh is illustrated in Fig. 11. The consecutive re-
finements, of the initially coarse mesh, are performed by divid-
ing edges located in the predefined region. In this case an adap-
tive indicator is evaluated for an artificial discontinuity having
the shape of a unit sphere.

5. R adaptivity
The adaptive strategy requires also a mechanism to coarsen the
mesh and at the same time to eliminate short edges generated
during the refinement step [42], as well as to break the influ-
ence of the initial mesh onto the adapted mesh.

Instead of a derefinement procedure, the present approach
uses a variant of r adaptivity, in which the mesh is regarded
as elastic and deformable. The deformations are controlled
by equations of linear elasticity, as well as by the appropriate
boundary conditions:

{
(λ +µ)∇(∇·u)+µ∇2u+F = 0
u|∂Ω = 0

(5)

where u denotes the displacement field, λ and µ are local
Lamé parameters, while F stands for a prescribed vector field.
The position of all boundary nodes is fixed through a Dirichlet
boundary condition.

The solution of eq. (5) is obtained via the standard Finite
Element method [63], which leads to a symmetric linear alge-
braic problem:

Ku = b (6)

The application of this form of adaptivity is especially attrac-
tive in a parallel framework, since the necessary numerical
tools (mesh and solution data structure, partitioning, assembly
and communication, algebraic solvers, etc.) are already used
by the flow solver.

While the assembly of the stiffness matrix K (6) follows a
well known procedure, the derivation of the right hand side
requires explanation.

In the present work the value of an edge error indicator (4) is
used to calculate nodal forces applied to the mesh nodes. For
the i-th node of the mesh, with N other nodes as neighbors, the
nodal force is calculated as the sum of contributions of corre-
sponding edges:

Fi =Cr

N

∑
k=1

IH ek êk (7)

where IH ek denotes the error indicator calculated by (4), Cr is
a scaling constant while êk stands for the versor parallel to the
edge, and pointing outwards from the central node i. By ap-
plying (7) to all mesh nodes, the right hand side of (6) is eval-
uated. The particular form of (7) is justified by the observation
that the adaptive method should modify the mesh towards the
equidistribution of the estimated error.

6. The load balancing
To obtain a high parallel efficiency the proper balancing of the
numerical load is required. Even if the load is balanced at the
beginning of the simulation, the dynamic changes caused by
the adaptive refinement will significantly lower the efficiency
[10, 16]. This makes direct application of adaptivity unfeasible
for the automated parallel simulations. It is thus necessary to
apply the Dynamic Load Balancing (DLB) strategy throughout
the entire parallel simulation.

In order to quantify the quality of the load balancing sup-
pose that the total computation effort is W = ∑p

i wi (p denotes
the number of processors used and wi is the workload of the
i-th processor). In the homogeneous, parallel computational
environment, an optimal load distribution is such that all com-
putational processors are equally loaded. Therefore optimal
processor load is wopt =W/p. The quality of partitioning can
be then expressed [64] by the coefficient β

β = max
0<i≤p

wi

wopt
(8)

Values, of β close to one, indicate a well balanced partition-
ing. Bigger values of β indicate that the load is un-balanced.
It should be noted, that (8) disregards the influence of commu-
nication overhead, resulting from a given partitioning.

Various approaches are available to obtain a balanced parti-
tion of the computational domain/grid between processors. In

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

200 Bull. Pol. Ac.: Tech. 65(2) 2017

S. Gepner, J. Majewski, and J. Rokicki

beginning of the simulation, the dynamic changes caused by
the adaptive refinement will significantly lower the efficiency
[10, 16]. This makes direct application of adaptivity unfeasible
for the automated parallel simulations. It is thus necessary to
apply the dynamic load balancing (DLB) strategy throughout
the entire parallel simulation.

In order to quantify the quality of the load balancing sup-
pose that the total computation effort is W = ∑p

i wi (p denotes
the number of processors used and wi is the workload of the
i-th processor). In the homogeneous, parallel computational
environment, an optimal load distribution is such that all com-
putational processors are equally loaded. Therefore optimal
processor load is wopt = W/p. The quality of partitioning can
be then expressed [64] by the coefficient β

	

Parallel approach to an adaptive flow simulation.

Fig. 11. Consecutive refinement steps obtained by the present ap-
proach. The adaptation indicator is driven by an artificial discontinu-
ity in the form of a unit sphere.

10. The splitting results in formation of eight new tetrahedra.
An example of application of the splitting templates for the

generic 3D mesh is illustrated in Fig. 11. The consecutive re-
finements, of the initially coarse mesh, are performed by divid-
ing edges located in the predefined region. In this case an adap-
tive indicator is evaluated for an artificial discontinuity having
the shape of a unit sphere.

5. R adaptivity
The adaptive strategy requires also a mechanism to coarsen the
mesh and at the same time to eliminate short edges generated
during the refinement step [42], as well as to break the influ-
ence of the initial mesh onto the adapted mesh.

Instead of a derefinement procedure, the present approach
uses a variant of r adaptivity, in which the mesh is regarded
as elastic and deformable. The deformations are controlled
by equations of linear elasticity, as well as by the appropriate
boundary conditions:

{
(λ +µ)∇(∇·u)+µ∇2u+F = 0
u|∂Ω = 0

(5)

where u denotes the displacement field, λ and µ are local
Lamé parameters, while F stands for a prescribed vector field.
The position of all boundary nodes is fixed through a Dirichlet
boundary condition.

The solution of eq. (5) is obtained via the standard Finite
Element method [63], which leads to a symmetric linear alge-
braic problem:

Ku = b (6)

The application of this form of adaptivity is especially attrac-
tive in a parallel framework, since the necessary numerical
tools (mesh and solution data structure, partitioning, assembly
and communication, algebraic solvers, etc.) are already used
by the flow solver.

While the assembly of the stiffness matrix K (6) follows a
well known procedure, the derivation of the right hand side
requires explanation.

In the present work the value of an edge error indicator (4) is
used to calculate nodal forces applied to the mesh nodes. For
the i-th node of the mesh, with N other nodes as neighbors, the
nodal force is calculated as the sum of contributions of corre-
sponding edges:

Fi =Cr

N

∑
k=1

IH ek êk (7)

where IH ek denotes the error indicator calculated by (4), Cr is
a scaling constant while êk stands for the versor parallel to the
edge, and pointing outwards from the central node i. By ap-
plying (7) to all mesh nodes, the right hand side of (6) is eval-
uated. The particular form of (7) is justified by the observation
that the adaptive method should modify the mesh towards the
equidistribution of the estimated error.

6. The load balancing
To obtain a high parallel efficiency the proper balancing of the
numerical load is required. Even if the load is balanced at the
beginning of the simulation, the dynamic changes caused by
the adaptive refinement will significantly lower the efficiency
[10, 16]. This makes direct application of adaptivity unfeasible
for the automated parallel simulations. It is thus necessary to
apply the Dynamic Load Balancing (DLB) strategy throughout
the entire parallel simulation.

In order to quantify the quality of the load balancing sup-
pose that the total computation effort is W = ∑p

i wi (p denotes
the number of processors used and wi is the workload of the
i-th processor). In the homogeneous, parallel computational
environment, an optimal load distribution is such that all com-
putational processors are equally loaded. Therefore optimal
processor load is wopt =W/p. The quality of partitioning can
be then expressed [64] by the coefficient β

β = max
0<i≤p

wi

wopt
(8)

Values, of β close to one, indicate a well balanced partition-
ing. Bigger values of β indicate that the load is un-balanced.
It should be noted, that (8) disregards the influence of commu-
nication overhead, resulting from a given partitioning.

Various approaches are available to obtain a balanced parti-
tion of the computational domain/grid between processors. In

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

� (8)

Values, of β close to one, indicate a well balanced parti-
tioning. Bigger values of β indicate that the load is un-balanced.
It should be noted, that (8) disregards the influence of commu-
nication overhead, resulting from a given partitioning.

Various approaches are available to obtain a balanced par-
tition of the computational domain/grid between processors. In
this work we make use of the approach described earlier in [12]
and [16]. The impact of this particular DLB implementation on
the load balance indicator β, and in consequence on the parallel
performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
deterioration of performance.

The lines marked with () correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0∙105 DOFs [16]. For this particular configuration
superlinear speed-up has been achieved (smaller tasks better
fit into the processor cache memory). Influence of mesh re-
finement, with no load balancing, results in a significant per-
formance drop. This is illustrated by (). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ().

The load re-balancing process is triggered when the parallel
efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algorithm
consists then of the following steps:
1.	 The elements of the mesh receive a global numbering

throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2.	 The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3.	 According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.

4.	 The mesh and the solution data is migrated between pro-
cessors.

5.	 Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7.	 Computational examples

To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D
geometry.

Fig. 12. Parallel speed-up registered for an adapted case with the
Dynamic Load Balancing (), compared with the adapted but un-
balanced case (). Results measured using unadapted meshes are

provided for reference ()

S. Gepner, J. Majewski, and J. Rokicki

1 4 8 16 32 64 80
14
8

16

32

64

80

Number of processors p

Sp
ee

du
p

S p
=

T 1 T p

Fig. 12. Parallel speed-up registered for an adapted case with the
Dynamic Load Balancing (), compared with the adapted but un-
balanced case (). Results measured using unadapted meshes are
provided for reference ()

this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with () correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by (). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ().

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.

20 21 22 23 24 25 26

101

102

103

104

1.0
0

1.0
0

1.0
0

1.0
1

1.0
4

1.0
4

1.0
4

1.0
5

1.0

1.1
6

1.2
2

1.2
8

1.4
9

1.7

2.0
4

2.0
4

1.0
0

1.0
0

1.0
4

1.0
4

1.0
5

1.0
6

1.0
5

1.0
6

Number of processors p

Ti
m

e
[s
]

Fig. 13. Parallel scaling registered for an adapted case with load bal-
ancing (), compared with the results for the adapted, but unbal-
anced case (). For the reference the unmodified case is shown
(). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.



∂u
∂y +

∂
∂x

(1
2 u2

)
= 0

u(x,y = 0) =




1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

Fig. 13. Parallel scaling registered for an adapted case with load
balancing (), compared with the results for the adapted, but un-
balanced case (). For the reference the unmodified case is shown
(). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background

grid corresponds to the linear speed-up case

S. Gepner, J. Majewski, and J. Rokicki

1 4 8 16 32 64 80
14
8

16

32

64

80

Number of processors p

Sp
ee

du
p

S p
=

T 1 T p

Fig. 12. Parallel speed-up registered for an adapted case with the
Dynamic Load Balancing (), compared with the adapted but un-
balanced case (). Results measured using unadapted meshes are
provided for reference ()

this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with () correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by (). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ().

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.

20 21 22 23 24 25 26

101

102

103

104

1.0
0

1.0
0

1.0
0

1.0
1

1.0
4

1.0
4

1.0
4

1.0
5

1.0

1.1
6

1.2
2

1.2
8

1.4
9

1.7

2.0
4

2.0
4

1.0
0

1.0
0

1.0
4

1.0
4

1.0
5

1.0
6

1.0
5

1.0
6

Number of processors p

Ti
m

e
[s
]

Fig. 13. Parallel scaling registered for an adapted case with load bal-
ancing (), compared with the results for the adapted, but unbal-
anced case (). For the reference the unmodified case is shown
(). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.



∂u
∂y +

∂
∂x

(1
2 u2

)
= 0

u(x,y = 0) =




1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

201Bull. Pol. Ac.: Tech. 65(2) 2017

Parallel anisotropic mesh refinement with dynamic load balancing for transonic flow simulations

7.1. Burgers equation. First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x, y)
space-time domain.

S. Gepner, J. Majewski, and J. Rokicki

1 4 8 16 32 64 80
14
8

16

32

64

80

Number of processors p

Sp
ee

du
p

S p
=

T 1 T p

Fig. 12. Parallel speed-up registered for an adapted case with the
Dynamic Load Balancing (), compared with the adapted but un-
balanced case (). Results measured using unadapted meshes are
provided for reference ()

this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with () correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by (). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ().

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.

20 21 22 23 24 25 26

101

102

103

104

1.0
0

1.0
0

1.0
0

1.0
1

1.0
4

1.0
4

1.0
4

1.0
5

1.0

1.1
6

1.2
2

1.2
8

1.4
9

1.7

2.0
4

2.0
4

1.0
0

1.0
0

1.0
4

1.0
4

1.0
5

1.0
6

1.0
5

1.0
6

Number of processors p

Ti
m

e
[s
]

Fig. 13. Parallel scaling registered for an adapted case with load bal-
ancing (), compared with the results for the adapted, but unbal-
anced case (). For the reference the unmodified case is shown
(). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.



∂u
∂y +

∂
∂x

(1
2 u2

)
= 0

u(x,y = 0) =




1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

S. Gepner, J. Majewski, and J. Rokicki

1 4 8 16 32 64 80
14
8

16

32

64

80

Number of processors p

Sp
ee

du
p

S p
=

T 1 T p

Fig. 12. Parallel speed-up registered for an adapted case with the
Dynamic Load Balancing (), compared with the adapted but un-
balanced case (). Results measured using unadapted meshes are
provided for reference ()

this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with () correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by (). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ().

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.

20 21 22 23 24 25 26

101

102

103

104

1.0
0

1.0
0

1.0
0

1.0
1

1.0
4

1.0
4

1.0
4

1.0
5

1.0

1.1
6

1.2
2

1.2
8

1.4
9

1.7

2.0
4

2.0
4

1.0
0

1.0
0

1.0
4

1.0
4

1.0
5

1.0
6

1.0
5

1.0
6

Number of processors p

Ti
m

e
[s
]

Fig. 13. Parallel scaling registered for an adapted case with load bal-
ancing (), compared with the results for the adapted, but unbal-
anced case (). For the reference the unmodified case is shown
(). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.



∂u
∂y +

∂
∂x

(1
2 u2

)
= 0

u(x,y = 0) =




1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

S. Gepner, J. Majewski, and J. Rokicki

1 4 8 16 32 64 80
14
8

16

32

64

80

Number of processors p

Sp
ee

du
p

S p
=

T 1 T p

Fig. 12. Parallel speed-up registered for an adapted case with the
Dynamic Load Balancing (), compared with the adapted but un-
balanced case (). Results measured using unadapted meshes are
provided for reference ()

this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with () correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by (). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ().

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.

20 21 22 23 24 25 26

101

102

103

104

1.0
0

1.0
0

1.0
0

1.0
1

1.0
4

1.0
4

1.0
4

1.0
5

1.0

1.1
6

1.2
2

1.2
8

1.4
9

1.7

2.0
4

2.0
4

1.0
0

1.0
0

1.0
4

1.0
4

1.0
5

1.0
6

1.0
5

1.0
6

Number of processors p

Ti
m

e
[s
]

Fig. 13. Parallel scaling registered for an adapted case with load bal-
ancing (), compared with the results for the adapted, but unbal-
anced case (). For the reference the unmodified case is shown
(). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.



∂u
∂y +

∂
∂x

(1
2 u2

)
= 0

u(x,y = 0) =




1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

S. Gepner, J. Majewski, and J. Rokicki

1 4 8 16 32 64 80
14
8

16

32

64

80

Number of processors p

Sp
ee

du
p

S p
=

T 1 T p

Fig. 12. Parallel speed-up registered for an adapted case with the
Dynamic Load Balancing (), compared with the adapted but un-
balanced case (). Results measured using unadapted meshes are
provided for reference ()

this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with () correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by (). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ().

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.

20 21 22 23 24 25 26

101

102

103

104

1.0
0

1.0
0

1.0
0

1.0
1

1.0
4

1.0
4

1.0
4

1.0
5

1.0

1.1
6

1.2
2

1.2
8

1.4
9

1.7

2.0
4

2.0
4

1.0
0

1.0
0

1.0
4

1.0
4

1.0
5

1.0
6

1.0
5

1.0
6

Number of processors p

Ti
m

e
[s
]

Fig. 13. Parallel scaling registered for an adapted case with load bal-
ancing (), compared with the results for the adapted, but unbal-
anced case (). For the reference the unmodified case is shown
(). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.



∂u
∂y +

∂
∂x

(1
2 u2

)
= 0

u(x,y = 0) =




1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

S. Gepner, J. Majewski, and J. Rokicki

1 4 8 16 32 64 80
14
8

16

32

64

80

Number of processors p

Sp
ee

du
p

S p
=

T 1 T p

Fig. 12. Parallel speed-up registered for an adapted case with the
Dynamic Load Balancing (), compared with the adapted but un-
balanced case (). Results measured using unadapted meshes are
provided for reference ()

this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with () correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by (). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ().

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.

20 21 22 23 24 25 26

101

102

103

104

1.0
0

1.0
0

1.0
0

1.0
1

1.0
4

1.0
4

1.0
4

1.0
5

1.0

1.1
6

1.2
2

1.2
8

1.4
9

1.7

2.0
4

2.0
4

1.0
0

1.0
0

1.0
4

1.0
4

1.0
5

1.0
6

1.0
5

1.0
6

Number of processors p

Ti
m

e
[s
]

Fig. 13. Parallel scaling registered for an adapted case with load bal-
ancing (), compared with the results for the adapted, but unbal-
anced case (). For the reference the unmodified case is shown
(). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.



∂u
∂y +

∂
∂x

(1
2 u2

)
= 0

u(x,y = 0) =




1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

S. Gepner, J. Majewski, and J. Rokicki

1 4 8 16 32 64 80
14
8

16

32

64

80

Number of processors p

Sp
ee

du
p

S p
=

T 1 T p

Fig. 12. Parallel speed-up registered for an adapted case with the
Dynamic Load Balancing (), compared with the adapted but un-
balanced case (). Results measured using unadapted meshes are
provided for reference ()

this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with () correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by (). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ().

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.

20 21 22 23 24 25 26

101

102

103

104

1.0
0

1.0
0

1.0
0

1.0
1

1.0
4

1.0
4

1.0
4

1.0
5

1.0

1.1
6

1.2
2

1.2
8

1.4
9

1.7

2.0
4

2.0
4

1.0
0

1.0
0

1.0
4

1.0
4

1.0
5

1.0
6

1.0
5

1.0
6

Number of processors p

Ti
m

e
[s
]

Fig. 13. Parallel scaling registered for an adapted case with load bal-
ancing (), compared with the results for the adapted, but unbal-
anced case (). For the reference the unmodified case is shown
(). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.



∂u
∂y +

∂
∂x

(1
2 u2

)
= 0

u(x,y = 0) =




1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

�(9)

The problem (9) is often used to test the performance of advec-
tion solvers. As the solution of (9) contains strong discontinuity
(for y > y* – see Fig. 14) it mimics the behaviour of the more
complex non linear hyperbolic systems. The existence of the

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively
refined meshes, have been computed using the Residual Dis-
tribution method PSI scheme [54, 55, 57]. Each simulation was
performed using four concurrent computational processes. For
adaptive cases no user interaction was necessary. The automatic
adaptive simulation cycle incorporated a DLB algorithm.

The meshes generated during the parallel adaptive simula-
tion are shown in Fig. 15. The L2 norm of error as a function
of the number of degrees of freedom is plotted in Fig. 16 for
the case of uniform refinement and for the adaptive algorithm.
One may observe that application of adaptive methods leads
to a much faster convergence. For the L2 error uniform refine-
ment converges proportionally to DOF –0.55, while application
of adaptivity leads to convergence proportional to around
DOF –1.3. Occasionally the error is decreased without changing
the number of DOFs. This results solely from the mesh move-
ment step (r-adaptation).

Fig. 15. Computational meshes generated throughout the parallel adaptive simulation. The top row presents, from the left the initial mesh and
the mesh obtained after third and sixth adaptation. The bottom row meshes are obtained at the eighth, twelfth and fifteenth iteration

Parallel approach to an adaptive flow simulation.

y∗

x

y

Fig. 14. Characteristics and the strong discontinuity of the analytical
solution of the Burgers equation (9).

Fig. 15. Computational meshes generated throughout the parallel
adaptive simulation. The top row presents, from the left the initial
mesh and the mesh obtained after third and sixth adaptation. The
bottom row meshes are obtained at the eighth, twelfth and fifteenth
iteration.

101 102 103 104 105

10−4

10−3

10−2

10−1

DOF−0.55

DOF−1.3

DOF

E
rr

or
L2

no
rm

Fig. 16. L2 error of the numerical solution of (9) as a function of the
number of degrees of freedom.

- the uniform refinement
- the adaptive refinement and the mesh movement.

0 2 4 6

1

1,1

1,2

1.
10

1.
18

1.
14

1.
13

1.
08

1.
06

1.
05

Adaptive cycle

β

Fig. 17. Load balance indicator β (8), registered after consecutive
adaptations/load balancing steps, for the 3D channel-wedge test case
(Number of processors p = 412).

bution method PSI scheme [57, 54, 66]. Each simulation was
performed using four concurrent computational processes. For
adaptive cases no user interaction was necessary. The auto-
matic adaptive simulation cycle incorporated a DLB algorithm.

The meshes generated during the parallel adaptive simula-
tion are shown in Fig. 15. The L2 norm of error as a func-
tion of the number of degrees of freedom is plotted in Fig. 16
for the case of uniform refinement and for the adaptive algo-
rithm. One may observe that application of adaptive meth-
ods leads to a much faster convergence. For the L2 error uni-
form refinement converges proportionally to DOF−0.55, while
application of adaptivity leads to convergence proportional to
around DOF−1.3. Occasionally the error is decreased without
changing the number of DOFs. This results solely from the
mesh movement step (r-adaptation).

7.2. 3D Channel-Wedge Much more challenging test con-
sists in simulation of a supersonic flow through the 3D
Channel-Wedge geometry. Flow conditions correspond to
Mach 2 at the inlet. The resulting solution contains discontinu-
ities in a form of a sequence of reflected oblique shock waves.
Additionally in the proximity of the upper wall the triple point
(line in 3D) is formed with a contact discontinuity appearing
behind it.

The Euler equations are discretized in a 3D domain using
Residual Distribution LDAN scheme [57, 54, 66]. Parallel
simulation employed 412 concurrent computational processes.
The mesh was adapted through six automatic adaptive cycles,
using mesh refinement and mesh movement techniques out-
lined in this paper. An adaptive indicator (4) was used to trig-
ger adaptive changes. The necessary DLB was applied, to keep
the parallel efficiency at the desired level. Cost of the error
estimation, adaptive changes and load balancing is negligible
compared to the cost of converging the simulation on a given

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

Parallel approach to an adaptive flow simulation.

y∗

x

y

Fig. 14. Characteristics and the strong discontinuity of the analytical
solution of the Burgers equation (9).

Fig. 15. Computational meshes generated throughout the parallel
adaptive simulation. The top row presents, from the left the initial
mesh and the mesh obtained after third and sixth adaptation. The
bottom row meshes are obtained at the eighth, twelfth and fifteenth
iteration.

101 102 103 104 105

10−4

10−3

10−2

10−1

DOF−0.55

DOF−1.3

DOF

E
rr

or
L2

no
rm

Fig. 16. L2 error of the numerical solution of (9) as a function of the
number of degrees of freedom.

- the uniform refinement
- the adaptive refinement and the mesh movement.

0 2 4 6

1

1,1

1,2

1.
10

1.
18

1.
14

1.
13

1.
08

1.
06

1.
05

Adaptive cycle
β

Fig. 17. Load balance indicator β (8), registered after consecutive
adaptations/load balancing steps, for the 3D channel-wedge test case
(Number of processors p = 412).

bution method PSI scheme [57, 54, 66]. Each simulation was
performed using four concurrent computational processes. For
adaptive cases no user interaction was necessary. The auto-
matic adaptive simulation cycle incorporated a DLB algorithm.

The meshes generated during the parallel adaptive simula-
tion are shown in Fig. 15. The L2 norm of error as a func-
tion of the number of degrees of freedom is plotted in Fig. 16
for the case of uniform refinement and for the adaptive algo-
rithm. One may observe that application of adaptive meth-
ods leads to a much faster convergence. For the L2 error uni-
form refinement converges proportionally to DOF−0.55, while
application of adaptivity leads to convergence proportional to
around DOF−1.3. Occasionally the error is decreased without
changing the number of DOFs. This results solely from the
mesh movement step (r-adaptation).

7.2. 3D Channel-Wedge Much more challenging test con-
sists in simulation of a supersonic flow through the 3D
Channel-Wedge geometry. Flow conditions correspond to
Mach 2 at the inlet. The resulting solution contains discontinu-
ities in a form of a sequence of reflected oblique shock waves.
Additionally in the proximity of the upper wall the triple point
(line in 3D) is formed with a contact discontinuity appearing
behind it.

The Euler equations are discretized in a 3D domain using
Residual Distribution LDAN scheme [57, 54, 66]. Parallel
simulation employed 412 concurrent computational processes.
The mesh was adapted through six automatic adaptive cycles,
using mesh refinement and mesh movement techniques out-
lined in this paper. An adaptive indicator (4) was used to trig-
ger adaptive changes. The necessary DLB was applied, to keep
the parallel efficiency at the desired level. Cost of the error
estimation, adaptive changes and load balancing is negligible
compared to the cost of converging the simulation on a given

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

Fig. 16. L2 error of the numerical solution of (9) as a function of the
number of degrees of freedom.

 – the uniform refinement
 – the adaptive refinement and the mesh movement

Parallel approach to an adaptive flow simulation.

y∗

x

y

Fig. 14. Characteristics and the strong discontinuity of the analytical
solution of the Burgers equation (9).

Fig. 15. Computational meshes generated throughout the parallel
adaptive simulation. The top row presents, from the left the initial
mesh and the mesh obtained after third and sixth adaptation. The
bottom row meshes are obtained at the eighth, twelfth and fifteenth
iteration.

101 102 103 104 105

10−4

10−3

10−2

10−1

DOF−0.55

DOF−1.3

DOF

E
rr

or
L2

no
rm

Fig. 16. L2 error of the numerical solution of (9) as a function of the
number of degrees of freedom.

- the uniform refinement
- the adaptive refinement and the mesh movement.

0 2 4 6

1

1,1

1,2

1.
10

1.
18

1.
14

1.
13

1.
08

1.
06

1.
05

Adaptive cycle

β

Fig. 17. Load balance indicator β (8), registered after consecutive
adaptations/load balancing steps, for the 3D channel-wedge test case
(Number of processors p = 412).

bution method PSI scheme [57, 54, 66]. Each simulation was
performed using four concurrent computational processes. For
adaptive cases no user interaction was necessary. The auto-
matic adaptive simulation cycle incorporated a DLB algorithm.

The meshes generated during the parallel adaptive simula-
tion are shown in Fig. 15. The L2 norm of error as a func-
tion of the number of degrees of freedom is plotted in Fig. 16
for the case of uniform refinement and for the adaptive algo-
rithm. One may observe that application of adaptive meth-
ods leads to a much faster convergence. For the L2 error uni-
form refinement converges proportionally to DOF−0.55, while
application of adaptivity leads to convergence proportional to
around DOF−1.3. Occasionally the error is decreased without
changing the number of DOFs. This results solely from the
mesh movement step (r-adaptation).

7.2. 3D Channel-Wedge Much more challenging test con-
sists in simulation of a supersonic flow through the 3D
Channel-Wedge geometry. Flow conditions correspond to
Mach 2 at the inlet. The resulting solution contains discontinu-
ities in a form of a sequence of reflected oblique shock waves.
Additionally in the proximity of the upper wall the triple point
(line in 3D) is formed with a contact discontinuity appearing
behind it.

The Euler equations are discretized in a 3D domain using
Residual Distribution LDAN scheme [57, 54, 66]. Parallel
simulation employed 412 concurrent computational processes.
The mesh was adapted through six automatic adaptive cycles,
using mesh refinement and mesh movement techniques out-
lined in this paper. An adaptive indicator (4) was used to trig-
ger adaptive changes. The necessary DLB was applied, to keep
the parallel efficiency at the desired level. Cost of the error
estimation, adaptive changes and load balancing is negligible
compared to the cost of converging the simulation on a given

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

Fig. 14. Characteristics and the strong discontinuity of the analytical
solution of the Burgers equation (9)

Parallel approach to an adaptive flow simulation.

y∗

x

y

Fig. 14. Characteristics and the strong discontinuity of the analytical
solution of the Burgers equation (9).

Fig. 15. Computational meshes generated throughout the parallel
adaptive simulation. The top row presents, from the left the initial
mesh and the mesh obtained after third and sixth adaptation. The
bottom row meshes are obtained at the eighth, twelfth and fifteenth
iteration.

101 102 103 104 105

10−4

10−3

10−2

10−1

DOF−0.55

DOF−1.3

DOF

E
rr

or
L2

no
rm

Fig. 16. L2 error of the numerical solution of (9) as a function of the
number of degrees of freedom.

- the uniform refinement
- the adaptive refinement and the mesh movement.

0 2 4 6

1

1,1

1,2

1.
10

1.
18

1.
14

1.
13

1.
08

1.
06

1.
05

Adaptive cycle

β

Fig. 17. Load balance indicator β (8), registered after consecutive
adaptations/load balancing steps, for the 3D channel-wedge test case
(Number of processors p = 412).

bution method PSI scheme [57, 54, 66]. Each simulation was
performed using four concurrent computational processes. For
adaptive cases no user interaction was necessary. The auto-
matic adaptive simulation cycle incorporated a DLB algorithm.

The meshes generated during the parallel adaptive simula-
tion are shown in Fig. 15. The L2 norm of error as a func-
tion of the number of degrees of freedom is plotted in Fig. 16
for the case of uniform refinement and for the adaptive algo-
rithm. One may observe that application of adaptive meth-
ods leads to a much faster convergence. For the L2 error uni-
form refinement converges proportionally to DOF−0.55, while
application of adaptivity leads to convergence proportional to
around DOF−1.3. Occasionally the error is decreased without
changing the number of DOFs. This results solely from the
mesh movement step (r-adaptation).

7.2. 3D Channel-Wedge Much more challenging test con-
sists in simulation of a supersonic flow through the 3D
Channel-Wedge geometry. Flow conditions correspond to
Mach 2 at the inlet. The resulting solution contains discontinu-
ities in a form of a sequence of reflected oblique shock waves.
Additionally in the proximity of the upper wall the triple point
(line in 3D) is formed with a contact discontinuity appearing
behind it.

The Euler equations are discretized in a 3D domain using
Residual Distribution LDAN scheme [57, 54, 66]. Parallel
simulation employed 412 concurrent computational processes.
The mesh was adapted through six automatic adaptive cycles,
using mesh refinement and mesh movement techniques out-
lined in this paper. An adaptive indicator (4) was used to trig-
ger adaptive changes. The necessary DLB was applied, to keep
the parallel efficiency at the desired level. Cost of the error
estimation, adaptive changes and load balancing is negligible
compared to the cost of converging the simulation on a given

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

analytical solution to (9) allows for quantitative verification of
convergence of the numerical scheme. In this work we use the
L2 norm of the solution error:

	

S. Gepner, J. Majewski, and J. Rokicki

1 4 8 16 32 64 80
14
8

16

32

64

80

Number of processors p

Sp
ee

du
p

S p
=

T 1 T p

Fig. 12. Parallel speed-up registered for an adapted case with the
Dynamic Load Balancing (), compared with the adapted but un-
balanced case (). Results measured using unadapted meshes are
provided for reference ()

this work we make use of the approach described earlier in
[12] and [16]. The impact of this particular DLB implemen-
tation on the load balance indicator β , and in consequence on
the parallel performance is summarized below.

Figures 12 and 13 illustrate parallel speed-up and scaling
plots obtained for a parallel simulation of supersonic flow
through a Scramjet like geometry. Additionally values of β
registered for each case are added to the scaling plot (Fig. 13).
One might notice that increase in the value of β results in the
drop of performance.

The lines marked with () correspond to the results ob-
tained for the original, unadapted mesh, resulting in a problem
containing 8.0 · 105 DOFs [16]. For this particular configu-
ration superlinear speed-up has been achieved (smaller tasks
better fit into the processor cache memory). Influence of mesh
refinement, with no load balancing, results in a significant per-
formance drop. This is illustrated by (). The reader should
also notice that, as the parallel performance drops, the values
of β increase. The results registered for the adaptation coupled
with load balancing are represented by ().

The load re-balancing process is triggered when the paral-
lel efficiency is expected to drop below the accepted level (this
usually takes place after the refinement step). As a result the
improved domain partitioning is established. The full algo-
rithm consists then of the following steps:

1. The elements of the mesh receive a global numbering
throughout the whole domain. This makes mesh elements
easily distinguishable within the parallel environment.

2. The improved partitioning is found using procedures of the
ParMETIS [65] graph library.

3. According to the new partitioning, the mesh entities (nodes,
elements, boundary faces) are marked to be sent/deleted
from the process data structure.

20 21 22 23 24 25 26

101

102

103

104

1.0
0

1.0
0

1.0
0

1.0
1

1.0
4

1.0
4

1.0
4

1.0
5

1.0

1.1
6

1.2
2

1.2
8

1.4
9

1.7

2.0
4

2.0
4

1.0
0

1.0
0

1.0
4

1.0
4

1.0
5

1.0
6

1.0
5

1.0
6

Number of processors p

Ti
m

e
[s
]

Fig. 13. Parallel scaling registered for an adapted case with load bal-
ancing (), compared with the results for the adapted, but unbal-
anced case (). For the reference the unmodified case is shown
(). The load balance indicator β defined with (8) is provided for
each of the cases (see the numerical boxes). The plot’s background
grid corresponds to the linear speed-up case.

4. The mesh and the solution data is migrated between proces-
sors.

5. Finally, the parallel overlap layer is reconstructed and the
simulation process is restarted.

7. Computational examples
To investigate the applicability of the presented approach com-
putational examples of increasing complexity are introduced.
These include (i) the 2D Burgers equation for which the perfor-
mance of error indicator is examined, (ii) the 3D wedge flow
for which 3D aspects of the method are verified and (iii) the
DLR-F6 case which represents the industrial multiscale 3D ge-
ometry.

7.1. Burgers equation First we consider the scalar non linear
advection problem, the Burgers equation, solved in the (x,y)
space-time domain.



∂u
∂y +

∂
∂x

(1
2 u2

)
= 0

u(x,y = 0) =




1.5 for x ≤ 0
1.5−2x for x ∈ (0,1〉

−0.5 for x > 1

Ω= [0,1]×[0,1]

(9)
The problem (9) is often used to test the performance of ad-
vection solvers. As the solution of (9) contains strong discon-
tinuity (for y > y∗ - see Fig. 14) it mimics the behaviour of the
more complex non linear hyperbolic systems. The existence of
the analytical solution to (9) allows for quantitative verification
of convergence of the numerical scheme. In this work we use
the L2 norm of the solution error:

εL2 =
1

‖Ω‖

√∫

Ω
|u−un|2dΩ (10)

where u(x) is given by (9), and un(x) is the numerical approx-
imation.

The solutions on a sequence of uniformly and adaptively re-
fined meshes, have been computed using the Residual Distri-

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (10)

202 Bull. Pol. Ac.: Tech. 65(2) 2017

S. Gepner, J. Majewski, and J. Rokicki

7.2. 3D channel-wedge. Much more challenging test consists in
simulation of a supersonic flow through the 3D channel-wedge
geometry. Flow conditions correspond to Mach 2 at the inlet.
The resulting solution contains discontinuities in a form of
a sequence of reflected oblique shock waves. Additionally in
the proximity of the upper wall the triple point (line in 3D) is
formed with a contact discontinuity appearing behind it.

The Euler equations are discretized in a 3D domain using
residual distribution LDAN scheme [54, 55, 57]. Parallel sim-
ulation employed 412 concurrent computational processes. The

Fig. 17. Load balance indicator β (8), registered after consecutive
adaptations/load balancing steps, for the 3D channel-wedge test case

(number of processors p = 412)

Parallel approach to an adaptive flow simulation.

y∗

x

y

Fig. 14. Characteristics and the strong discontinuity of the analytical
solution of the Burgers equation (9).

Fig. 15. Computational meshes generated throughout the parallel
adaptive simulation. The top row presents, from the left the initial
mesh and the mesh obtained after third and sixth adaptation. The
bottom row meshes are obtained at the eighth, twelfth and fifteenth
iteration.

101 102 103 104 105

10−4

10−3

10−2

10−1

DOF−0.55

DOF−1.3

DOF

E
rr

or
L2

no
rm

Fig. 16. L2 error of the numerical solution of (9) as a function of the
number of degrees of freedom.

- the uniform refinement
- the adaptive refinement and the mesh movement.

0 2 4 6

1

1,1

1,2

1.
10

1.
18

1.
14

1.
13

1.
08

1.
06

1.
05

Adaptive cycle

β

Fig. 17. Load balance indicator β (8), registered after consecutive
adaptations/load balancing steps, for the 3D channel-wedge test case
(Number of processors p = 412).

bution method PSI scheme [57, 54, 66]. Each simulation was
performed using four concurrent computational processes. For
adaptive cases no user interaction was necessary. The auto-
matic adaptive simulation cycle incorporated a DLB algorithm.

The meshes generated during the parallel adaptive simula-
tion are shown in Fig. 15. The L2 norm of error as a func-
tion of the number of degrees of freedom is plotted in Fig. 16
for the case of uniform refinement and for the adaptive algo-
rithm. One may observe that application of adaptive meth-
ods leads to a much faster convergence. For the L2 error uni-
form refinement converges proportionally to DOF−0.55, while
application of adaptivity leads to convergence proportional to
around DOF−1.3. Occasionally the error is decreased without
changing the number of DOFs. This results solely from the
mesh movement step (r-adaptation).

7.2. 3D Channel-Wedge Much more challenging test con-
sists in simulation of a supersonic flow through the 3D
Channel-Wedge geometry. Flow conditions correspond to
Mach 2 at the inlet. The resulting solution contains discontinu-
ities in a form of a sequence of reflected oblique shock waves.
Additionally in the proximity of the upper wall the triple point
(line in 3D) is formed with a contact discontinuity appearing
behind it.

The Euler equations are discretized in a 3D domain using
Residual Distribution LDAN scheme [57, 54, 66]. Parallel
simulation employed 412 concurrent computational processes.
The mesh was adapted through six automatic adaptive cycles,
using mesh refinement and mesh movement techniques out-
lined in this paper. An adaptive indicator (4) was used to trig-
ger adaptive changes. The necessary DLB was applied, to keep
the parallel efficiency at the desired level. Cost of the error
estimation, adaptive changes and load balancing is negligible
compared to the cost of converging the simulation on a given

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

Fig. 18. Initial mesh (a) and the one generated through adaptive simulation (b). Domain partitioning corresponding to the load balanced
distribution for an adapted mesh (c)

a) b)

c)

mesh was adapted through six automatic adaptive cycles, using
mesh refinement and mesh movement techniques outlined in
this paper. An adaptive indicator (4) was used to trigger adap-
tive changes. The necessary DLB was applied, to keep the par-
allel efficiency at the desired level. Cost of the error estimation,
adaptive changes and load balancing is negligible compared to
the cost of converging the simulation on a given mesh (less than
3% of the total simulation time).

Figure 17 illustrates values of load balance indicator β mea-
sured at the consecutive adaptive steps. As a result, the initial
mesh of 1.0 ∙105 tetrahedral elements and 2.4 ∙104 nodes, was
refined to a mesh of around 5.9∙106 elements and 1.2∙106 nodes.
The entire simulation was performed automatically without an
interaction with the user.

Figure 18 shows the initial and the final meshes (after the
sixth adaptation), as well as the boundaries of mesh partitions
for the adapted case. One can observe that partitions, initially
evenly distributed, concentrate in the proximity of shocks,
where the mesh is refined. Comparison of the initial and the
adapted results against evenly refined mesh of 7.9∙106 elements
and 1.3∙106 nodes, in the form of Mach field contours is shown
in Fig. 19. Figure 19a-c shows results obtained using the orig-
inal mesh with the contact discontinuity zone magnified in
Fig. 19c. The improvement in shock resolution is well visible
in Fig. 19d-f where solutions obtained on the mesh generated
through adaptation process are shown, with Fig. 19f illustrating
the contact discontinuity region. As a reference Figs. 19g-i il-
lustrate results obtained using an isotropic, but larger mesh.
Comparison of Figs. 19c, 19f and 19i indicates that, although
corresponding to a larger number of DOFs, the isotropic large
mesh produces less resolved flow field than the anisotropic one
obtained through the adaption procedure.

203Bull. Pol. Ac.: Tech. 65(2) 2017

Parallel anisotropic mesh refinement with dynamic load balancing for transonic flow simulations

7.3. Onera M6 wing. Finally we show the results of parallel
and adaptive simulations of a transonic flow around Onera
M6 wing [66]. Flow conditions correspond to Mach number
0.8395 and angle of attack 3.06°. As before Euler equations
are discretized using Residual Distribution LDAN scheme.
Computational mesh was adapted through four automatic
adaptive cycles, using mesh refinement and mesh movement
techniques outlined in this paper. Adaptive changes resulted
from application of an adaptive indicator (4). The necessary
DLB was applied, to keep the parallel efficiency at the desired
level. Cost of the error estimation, adaptive changes and load
balancing is negligible compared to the cost of converging
the simulation on a given mesh (as earlier it is less than 3%
of the total simulation time). As a result the initial mesh of
3.2∙104 nodes, was refined to a mesh of around 4.6∙105 nodes.
The entire simulation was performed automatically without an
interaction with the user.

Figure 20 shows Mach field contours obtained using the ini-
tial (Fig. 20a) and adapted (resulting from the fourth adaptation)

Fig. 19. Mach number contours calculated on the initial mesh (a-c) and
using the mesh generated through six adaptive cycles (d-f) compared
with results obtained using a large isotropic one (g-i). The planar view
(b, e and h) corresponds to the mid-channel crosssection (obtained via
interpolation from the 3D terahedral mesh). The marked region (c, f

and i) shows the contact discontinuity region

e)

a)

b)

c)

d)

f)

i)

g)

h)

Fig. 20. Mach number contours on the initial (a) and adaptively gen-
erated mesh (b)

a)

b)

204 Bull. Pol. Ac.: Tech. 65(2) 2017

S. Gepner, J. Majewski, and J. Rokicki

meshes. Adaptively generated meshes and corresponding, load
balanced partitionings are shown in Fig. 21.

Figure 22 illustrates distribution of the Cp coefficients calcu-
lated at selected positions throughout the wing. Results obtained
on the initial mesh are marked with red colour, while results
obtained on adaptively generated mesh are shown in black. As
reference we use experimental results marked with (), and
results obtained using a different adaptive strategy (global re-
meshing) calculated by Majewski [34] (green line), using a full
Navier–Stokes solver with turbulence modelling.

8.	 Conclusions

In this paper we have presented an approach to automatic mesh
adaptivity, applicable to parallel simulation. Two techniques,
suitable for application in parallel simulation, used in this work
for mesh modification, are (i) the elastic mesh movement and
(ii) the element bisection method.

We have proposed an alternative to the commonly used,
metric based, mesh spacing definition, in the form the of
edge adaptive indicator. This form is more suitable to allow
for the required mesh modification. Proposed method allows
for a natural linear interpolation of solution to an adapted
mesh.

Applicability of the methods described in this paper was
illustrated on a sequence of advection dominated problems.
It was shown that, for Burgers equation, significant improve-
ment in the rate of convergence is achievable using the adap-
tive approach. For the 3D flow problems the resolution of
important flow features (shocks, slip lines) was significantly
improved. Application of DLB strategy allowed to maintain
low values of the β indicator, and in consequence high parallel
performance.

Promising initial results obtained for complex curvilinear
3D geometries have been presented. The robust boundary re-
construction is still required to augment the refinement pro-
cess.

Fig. 22. Comparison of the Cp distribution obtained for Onera M6 wing geometry. – experimental data, red – initial mesh results, black – final
adapted mesh, green – reference computations [34], obtained for a viscous case at M = 0.8395, Re = 11.72∙106, α = 3.06° – Navier–Stokes

solver with turbulence modelling

y/b = 0.2 y/b = 0.65

Fig. 21. Meshes at selected adaptive steps with corresponding,
load balanced domain decompositions

205Bull. Pol. Ac.: Tech. 65(2) 2017

Parallel anisotropic mesh refinement with dynamic load balancing for transonic flow simulations

References

	 [1]	 Y. Bourgault, M. Picasso, F. Alauzet, and A. Loseille, “On the
use of anisotropic a posteriori error estimators for the adaptative
solution of 3D inviscid compressible flows”, International
Journal for Numerical Methods in Fluids 59 (1), 47–74 (2009).

	 [2]	 F. Alauzet, “Size gradation control of anisotropic meshes”, Finite
Elem. Anal. Des. 46, 181–202 (2010).

	 [3]	 M.J. Castro-Diaz, F. Hecht, and B. Mohammadi, “New progress
in anisotropic grid adaptation for inviscid and viscous flows sim-
ulations”, Tech. Rep. RR-2671, INRIA, 1995.

	 [4]	 J. Majewski, “An anisotropic adaptation for simulation of com-
pressible flows”, Mathematical Modelling and Analysis 7, 127–134
(2002).

	 [5]	 G. Karypis and V. Kumar, MeTis: Unstructured Graph Parti-
tioning and Sparse Matrix Ordering System, Version 2.0, 1995.

	 [6]	 S. Patkar and H. Narayanan, “An efficient practical heuristic for
good ratio-cut partitioning”, Proceedings of 16th International
Conference on VLSI Design, 2003, 64–69 (2003).

	 [7]	 B. Hendrickson and T.G. Kolda, “Graph partitioning models for
parallel computing”, Parallel Computing 26 (12), 1519–1534
(2000).

	 [8]	 A.E. Feldmann, “Fast balanced partitioning is hard even on grids
and trees”, Theoretical Computer Science 485, 61–68 (2013).

	 [9]	 C. Troyer, D. Baraldi, D. Kranzlmuller, H. Wilkening, and
J. Volkert, “Parallel grid adaptation and dynamic load balancing
for a CFD solver”, Lecture Notes in Computer Science 3666,
493–501 (2005).

	[10]	 L. Oliker, R. Biswas, and H.N. Gabow, “Parallel tetrahedral mesh
adaptation with dynamic load balancing”, Parallel Comput. 26
(12), 1583–1608 (2000).

	[11]	 B. Hendrickson and K. Devine, “Dynamic load balancing in
computational mechanics”, Computer Methods in Applied Me-
chanics and Engineering 184 (2‒4), 485–500 (2000).

	[12]	 S. Gepner and J. Rokicki, “Dynamic load balancing for paral-
lelization of adaptive algorithms”, in ADIGMA – A European
Initiative on the Development of Adaptive Higher-Order Vari-
ational Methods for Aerospace Applications, vol. CXII, pp.
327–338, eds. N. Kroll, H. Bieler, H. Deconinck, V. Couaillier,
H. van der Ven, and K. Sorensen, Springer-Verlag, Berlin,
2010.

	[13]	 S. Gepner, J. Majewski, and J. Rokicki, “Dynamic load balancing
for adaptive parallel flow problems”, in Parallel Processing and
Applied Mathematics. PPAM 2009, eds. R. Wyrzykowski, J.
Dongarra, K. Karczewski, and J. Waśniewski, Springer, Berlin,
2010.

	[14]	 K.D. Devine, E.G. Boman, R.T. Heaphy, B.A. Hendrickson, J.D.
Teresco, J. Faik, J.E. Flaherty, and L.G. Gervasio, “New chal-
lenges in dynamic load balancing”, Applied Numerical Mathe-
matics 52 (2‒3), 133–152 (2005).

	[15]	 J.M.S. Gepner and J. Rokicki, “Parallel performance of adaptive
algorithms with dynamic load balancing”, 5th European Confer-
ence on Computational Fluid Dynamics ECCOMAS CFD 2010,
(2010).

	[16]	 S. Gepner, J. Majewski, and J. Rokicki, “Parallel efficiency of
an adaptive, dynamically balanced flow solver”, in Parallel Pro-
cessing and Applied Mathematics, pp. 541–550, eds. R. Wyrzy-
kowski, J. Dongarra, K. Karczewski, and J. Waśniewski,
Springer, Berlin, 2014.

	[17]	 P.J. Frey and F. Alauzet, “Anisotropic mesh adaptation for CFD
computations”, Comput. Methods Appl. Mech. Engrg 194
(48‒49), 5068–5082 (2005).

	[18]	 O.C. Zienkiewicz and J.Z. Zhu, “A simple error estimator and
adaptive procedure for practical engineering analysis”, Interna-
tional Journal for Numerical Methods in Engineering 24 (2),
337–357 (1987).

	[19]	 O.C. Zienkiewicz and J.Z. Zhu, “The superconvergent patch re-
covery and a posteriori error estimates. Part 1: The recovery
technique”, International Journal for Numerical Methods in
Engineering 33 (7), 1331–1364 (1992).

	[20]	 O.C. Zienkiewicz and J.Z. Zhu, “The superconvergent patch re-
covery and a posteriori error estimates. Part 2: Error estimates
and adaptivity”, International Journal for Numerical Methods
in Engineering 33 (7), 1365–1382 (1992).

	[21]	 P.E. Farrell, S. Micheletti, and S. Perotto, “An anisotropic Zien-
kiewicz-Zhu-type error estimator for 3d applications”, Interna-
tional Journal for Numerical Methods in Engineering 85 (6),
671–692 (2011).

	[22]	 S. Micheletti and S. Perotto, “Reliability and efficiency of an
anisotropic Zienkiewicz-Zhu error estimator”, Computer
Methods in Applied Mechanics and Engineering 195 (9–12), 799
– 835 (2006).

y/b = 0.8 y/b = 0.9

Fig. 23. The same as figure 22

206 Bull. Pol. Ac.: Tech. 65(2) 2017

S. Gepner, J. Majewski, and J. Rokicki

	[23]	 F. Chalot, “Goal-oriented mesh adaptation in an industrial stabi-
lized finite element Navier-Stokes code”, in ADIGMA – A Eu-
ropean Initiative on the Development of Adaptive High-
er-Order Variational Methods for Aerospace Applications, pp.
369–385, eds. N. Kroll, H. Bieler, H. Deconinck, V. Couaillier,
H. van der Ven, and K. Sørensen, Springer, Berlin, 2010.

	[24]	 A. Loseille, A. Dervieux, and F. Alauzet, “Fully anisotropic
goal-oriented mesh adaptation for 3D steady Euler equations”,
J. Comput. Physics 229 (8), 2866–2897 (2010).

	[25]	 R. Hartmann, “Adjoint consistency analysis of discontinuous
Galerkin discretizations”, SIAM J. Numer. Anal. 45 (6), 2671–2696
(2007).

	[26]	 L. Tourrette, M. Meaux, and A. Barthet, “Adjoint-based correc-
tion of aerodynamic coefficients on structured multiblock grids”,
in ADIGMA – A European Initiative on the Development of
Adaptive Higher-Order Variational Methods for Aerospace
Applications, pp. 355–368, eds. N. Kroll, H. Bieler, H. Decon-
inck, V. Couaillier, H. van der Ven, and K. Sørensen, Springer,
Berlin, 2010.

	[27]	 D.A. Venditti and D.L. Darmofal, “Anisotropic grid adaptation
for functional outputs: application to two-dimensional viscous
flows”, J. Comput. Phys 187, 22–46 (2003).

	[28]	 D.J. Mavriplis, “Adaptive mesh generation for viscous flows
using Delaunay triangulation”, J. Comput. Phys. 90, 271–291
(1990).

	[29]	 J. Peraire, J. Peiró, and K. Morgan, “Adaptive remeshing for
three-dimensional compressible flow computations”, Journal of
Computational Physics 103 (2), 269–285 (1992).

	[30]	 P.J. Frey and F. Alauzet, “Anisotropic mesh adaptation for tran-
sient flows simulations”, Proc. of 12th Int. Meshing Roundtable,
335–348 (2003).

	[31]	 M.J. Castro-Diaz, F. Hecht, B. Mohammadi, and O. Pironneau,
“Anisotropic unstructured mesh adaptation for flow simulation”,
International Journal for Numerical Methods in Fluids 25,
475–491 (1997).

	[32]	 F. Alauzet, P.L. George, B. Mohammadi, P.J. Frey, and
H. Borouchaki, “Transient fixed point-based unstructured mesh
adaptation”, International Journal for Numerical Methods in
Fluids 43, 729–745 (2003).

	[33]	 J. Majewski and J. Rokicki, “Anisotropic mesh adaptation in the
presence of complex boundaries”, in ADIGMA – A European
Initiative on the Development of Adaptive Higher-Order Vari-
ational Methods for Aerospace Applications, pp. 441–453, eds.
N. Kroll, H. Bieler, H. Deconinck, V. Couaillier, H. van der
Ven, and K. Sørensen, Springer, Berlin, 2010.

	[34]	 J. Majewski and P. Szałtys, “High-order 3D anisotropic mesh
adaptation for high-Reynolds number flows”, in IDIHOM FP7
– Transport, AAT.2010.1.1‒1., AAT.2010.4.1‒1., 2010.

	[35]	 J. Majewski and A. Athanasiadis, “Anisotropic solution adaptive
technique applied to simulations of steady and unsteady com-
pressible flows”, in Computational Fluid Dynamics 2006, eds.
H. Deconinck and E. Dick, 2009.

	[36]	 J. Majewski, “Anisotropic adaptation for flow simulations in
complex geometries”, in 36th Lecture Series on Computational
Fluid Dynamics / ADIGMA course on HP-adaptive and HP-mul-
tigrid methods, ed. H. Deconinck, von Karman Institute for Fluid
Dynamics, 2009.

	[37]	 M.A. Park and D.L. Darmofal, “Parallel anisotropic tetrahedral
adaptation”, in 46th AIAA Aerospace Sciences Meeting and Ex-
hibit, vol. 917, 2008.

	[38]	 F. Alauzet, X. Li, E.S. Seol, and M.S. Shephard, “Parallel aniso-
tropic 3D mesh adaptation by mesh modification”, Engineering
with Computers 21 (3), 247–258 (2006).

	[39]	 A. Loseille and R. Löhner, “On 3D anisotropic local remeshing
for surface, volume and boundary layers”, in Proceedings of the
18th International Meshing Roundtable, pp. 611–630, ed.
B.W. Clark, Springer, Berlin, 2009.

	[40]	 G. Compère, J.-F. Remacle, J. Jansson, and J. Hoffman, “A mesh
adaptation framework for dealing with large deforming meshes”,
International Journal for Numerical Methods in Engineering 82
(7), 843–867 (2010).

	[41]	 Y.M. Park and O.J. Kwon, “A parallel unstructured dynamic
mesh adaptation algorithm for 3D unsteady flows”, International
Journal for Numerical Methods in Fluids 48, 671–690 (2005).

	[42]	 X. Li, M.S. Shephard, and M.W. Beall, “3D anisotropic mesh
adaptation by mesh modification”, Computer Methods in Applied
Mechanics and Engineering 194 (48–49), 4915–4950 (2005).

	[43]	 Z. Zhu, P. Wang, and S. Tuo, “An adaptive solution of the 3D
Euler equations on an unstructured grid”, Acta Mechanica 155,
215–231 (2002).

	[44]	 J. Waltz, “Parallel adaptive refinement for unsteady flow calcu-
lations on 3D unstructured grids”, International Journal for
Numerical Methods in Fluids 46, 37–57 (2004).

	[45]	 M.-C. Rivara, “New longest-edge algorithms for the refinement
and/or improvement of unstructured triangulations”, Interna-
tional Journal for Numerical Methods in Engineering 40 (18),
3313–3324 (1997).

	[46]	 E. Bänsch, “Local mesh refinement in 2 and 3 dimensions”, IM-
PACT of Computing in Science and Engineering 3 (3), 181–191
(1991).

	[47]	 D. Arnold, A. Mukherjee, and L. Pouly, “Locally adapted tetra-
hedral meshes using bisection”, SIAM Journal on Scientific
Computing 22 (2), 431–448 (2000).

	[48]	 A. Rajagopal and S. Sivakumar, “A combined r-h adaptive
strategy based on material forces and error assessment for plane
problems and bimaterial interfaces”, Computational Mechanics
41 (1), 49–72 (2007).

	[49]	 B. Ong, R. Russell, and S. Ruuth, “An h-r moving mesh method
for one-dimensional time-dependent PDEs”, in Proceedings of
the 21st International Meshing Roundtable, pp. 39–54, eds. X.
Jiao and J.-C. Weill, Springer, Berlin, 2013.

	[50]	 M. Scherer, R. Denzer, and P. Steinmann, “Energy-based r-adap-
tivity: A solution strategy and applications to fracture me-
chanics”, in Defect and Material Mechanics, pp. 117–132, eds.
C. Dascalu, G. Maugin, and C. Stolz, Springer, Dordrecht, 2008.

	[51]	 W. Bauer, M. Baumann, L. Scheck, A. Gassmann, V. Heuveline,
and S.C. Jones, “Simulation of tropical-cyclone-like vortices in
shallow-water icon-hex using goal-oriented r-adaptivity”, Theo-
retical and Computational Fluid Dynamics 28 (1), 107–128
(2014).

	[52]	 C.J. Budd, W. Huang, and R.D. Russell, “Adaptivity with moving
grids”, Acta Numerica 18, 111–241 (2009).

	[53]	 S. Gepner, Adaptacja Siatek i Przetwarzanie Równoległe w Sy-
mulacji Przepływów Transonicznych, PhD thesis, Faculty of
Power and Aeronautical Engineering, Warsaw University of
Technology, 2014.

	[54]	 H. Deconinck, K. Sermeus, and R. Abgrall, “Status of multidi-
mensional upwind residual distribution schemes and applications
in aeronautics”, AIAA Conference Proceedings, 2000–2328
(2000).

207Bull. Pol. Ac.: Tech. 65(2) 2017

Parallel anisotropic mesh refinement with dynamic load balancing for transonic flow simulations

	[55]	 M. Ricchiuto, Construction and Analysis of Compact Residual
Discretizations for Conservation Laws on Unstructured Meshes,
von Karman Institute for Fluid Dynamics, 2005.

	[56]	 M. Ricchiuto, Construction and Analysis of Compact Residual
Discretizations for Conservation Laws on Unstructured Meshes,
PhD thesis, Faculty of Applied Science, Université Libre de
Bruxelles, 2005.

	[57]	 K. Sermeus and H. Deconinck, “Solution of steady Euler and Na-
vier-Stokes equations using residual distribution schemes”, in 33rd
Lecture Series on Computational Fluid Dynamics – Novel Methods
for Solving Convection Dominated Systems (LS2003- 05), von
Karman Institute for Fluid Dynamics, Rhode Saint Genèse, Bel-
gium, 2003.

	[58]	 L.M. Mesaros and J. Matthew, Multi-Dimensional Fluctuation
Splitting Schemes For The Euler Equations On Unstructured
Grids, PhD thesis, University of Michigan, 1995.

	[59]	 P.L. George and H. Borouchaki, Delaunay Triangulation and
Meshing – Application to Finite Elements, Hermes, 1998.

	[60]	 L. Formaggia and S. Perotto, “Anisotropic error estimation for
finite element methods”, in 31st Computational Fluid Dynamics,
eds. N.P. Weatherill and H. Deconinck, von Karman Institute for
Fluid Dynamics, 2000.

	[61]	 J. Ruppert and R. Seidel, “On the difficulty of triangulating
three-dimensional nonconvex polyhedra”, Discrete & Computa-
tional Geometry 7 (1), 227–253 (1992).

	[62]	 E. Schönhardt, “Über die zerlegung von dreieckspolyedern in
tetraeder”, Mathematische Annalen 98 (1), 309–312 (1928),
[in German].

	[63]	 O.C. Zienkiewicz and R.L. Taylor, Finite Element Method:
Volume 1 – The Basis, 5th ed., Butterworth-Heinemann, Oxford,
2000.

	[64]	 J. Rokicki, J. Żółtak, D. Drikakis, and J. Majewski, “Parallel
performance of overlapping mesh technique for compressible
flows”, Future Generation Computer Systems 18 (1), 3–15
(2001).

	[65]	 G. Karypis, “ParMETIS – parallel graph partitioning and fill-re-
ducing matrix ordering”, http://glaros.dtc.umn.edu/gkhome/
metis/parmetis/overview.

	[66]	 “Onera M6 Wing”, in NPARC Alliance Verification and Valida-
tion Archive, http://www.grc.nasa.gov/WWW/wind/valid/
m6wing/m6wing.html.

