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last section concerns observability for descriptor fractional con-
tinuous-time linear system.

2.	 Preliminaries

In this section we recall some well known fractional operators 
and special functions, along with a set of properties that will 
be of use as we proceed in our discussion, for details see [1–3].

Consider the following fractional continuous-time linear 
system described by the state equation
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1. Introduction

The first definition of the fractional derivative was introduced
by Liouville and Riemann at the end of the 19th century [1, 2]
and another one was proposed in 20th century by Caputo [3].
This idea has been used by engineers for modeling different
processes [4–9, 11]. Mathematical fundamentals of fractional
calculus are given in the monographs [1–3, 10].

Descriptor (singular) linear systems have been considered in
many papers and books [12–23]. The popularity of descriptor
systems is continuously increasing as these are general enough
to provide a solid understanding of inner dynamics for underly-
ing physical problems [24]. Application of the Drazin inverse
method to analysis of descriptor fractional continuous-time lin-
ear system have been given in [25, 26].

The problem of controllability and observability began to
attract the attention of mathematicians and engineers since it
began to play a significant role in the control theory and engi-
neering and it has very important applications in these fields.
Many contributions on controllability problem have been made
in recent years, see for example [27, 28]. However, it should
be stressed that the control theory of singular fractional linear
systems is not yet adequately explained, compared to that of
fractional linear systems. In this regard, it is required and im-
portant to study the controllability and observability problems
for fractional singular dynamical systems. To the best of our
knowledge, there are no applicable reports on controllability
and observability of fractional singular dynamical systems as
treated in the current literature. Motivated by these considera-
tions, in this paper, we study the controllability and observabil-
ity of fractional singular continuous time invariant systems.

The paper is prepared as follows. Section 2 recalls some
preliminary definitions and formulas. In section 3, we ob-
tain necessary and sufficient conditions of controllability and
the last section is about observability for descriptor fractional
continuous-time linear system.
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2. Preliminaries
In this section we recall some well known fractional operators
and special functions, along with a set of properties that will
be of use as we proceed in our discussion, for detail see [1–3].

Consider the following fractional continuous-time linear
system described by the state equation{

EDα
t x(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t),
(1)

where 0 < α ≤ 1, x(·) ∈ Rn is state vector u(·) ∈ Rm, is
input vector and y(·) ∈ Rp is output vector, E,A ∈ Rn×n,
B ∈ Rn×m,C ∈ Rp×n, D ∈ Rp×m and Dα

t is the Caputo dif-
ferential operator, defined by

Dα
t f (t) =

1
Γ(1−α)

∫ t

0
(t − τ)−α d

ds
f (s)ds, 0 < α < 1.

It is assumed that the pencil (E,A) of (1) is regular, i. e.,

det(Es−A) �= 0for some s ∈ C.

If detE �= 0, then by using Laplace transform the general so-
lution of the system (1) with initial condition x(0) = x0 can be
written as [29, Theorem 1]

x(t)=Φα,1
(
E−1A, t

)
x0+

∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ.

(2)
where Φα,β

(
E−1A, t

)
= ∑∞

k=0
(E−1A)ktαk+β−1

Γ(αk+β ) is the state trans-
fer matrix and Γ(·) is a Gamma-function.

DEFINITION 1. [3] The Mittag-Leffler two-parameters
function for an arbitrary square matrix A is

Eα,β (A) =
∞

∑
k=0

Ak

Γ(αk+β )
, α,β > 0 (3)

in particular, Eα,1 (A) = Eα (A) , with β = 1.

Mittag-Leffler and state transfer matrices are related as fol-
lows

Φα,β (A, t) = tβ−1Eα,β (Atα)

and it is easy to check that [29, Lemma 2]

Dα
t Φα,β (A, t) = AΦα,β (A, t) . (4)

1

� (1)

where 0 < α ∙ 1, x(¢) 2 ℝn is state vector u(¢) 2 ℝm, is input 
vector and y(¢) 2 ℝp is output vector, E, A 2 ℝn×n, B 2 ℝn×m, 
C 2 ℝp×n, D 2 ℝp×m and Dt

α is the Caputo differential operator, 
defined by
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If det E  6= 0, then by using Laplace transform the general solu-
tion of the system (1) with initial condition x(0) = x0 can be 
written as [29, Theorem 1]
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Γ(αk+β)  is the state transfer ma-
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1.	 Introduction

The first definition of the fractional derivative was introduced 
by Liouville and Riemann at the end of the 19th century [1, 2] 
and another one was proposed in 20th century by Caputo [3]. 
This idea has been used by engineers for modeling different 
processes [4–9, 11]. Mathematical fundamentals of fractional 
calculus are given in the monographs [1–3, 10].

Descriptor (singular) linear systems have been considered in 
many papers and books [12, 13]. The popularity of descriptor 
systems is continuously increasing as these are general enough 
to provide a solid understanding of inner dynamics for under-
lying physical problems [24]. Application of the Drazin inverse 
method to analysis of descriptor fractional continuous-time 
linear system was described in [25, 26].

The problem of controllability and observability began to 
attract the attention of mathematicians and engineers since it 
began to play a significant role in the control theory and en-
gineering, having important applications in these fields. Many 
contributions on controllability problem have been made in 
recent years, see for example [27, 28]. However, it should be 
stressed that the control theory of singular fractional linear 
systems is not yet adequately explained, compared to that of 
fractional linear systems. In this regard, it is required and 
important to study the controllability and observability prob-
lems for fractional singular dynamical systems. To the best 
of our knowledge, there are no applicable reports on con-
trollability and observability of fractional singular dynamical 
systems as treated in the current literature. Motivated by these 
considerations, in this paper, we study the controllability and 
observability of fractional singular continuous time invariant 
systems.

The paper is prepared as follows. Section 2 recalls some 
preliminary definitions and formulas. In Section 3, we obtain 
necessary and sufficient conditions of controllability and the 
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an arbitrary square matrix A is
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1. Introduction

The first definition of the fractional derivative was introduced
by Liouville and Riemann at the end of the 19th century [1, 2]
and another one was proposed in 20th century by Caputo [3].
This idea has been used by engineers for modeling different
processes [4–9, 11]. Mathematical fundamentals of fractional
calculus are given in the monographs [1–3, 10].

Descriptor (singular) linear systems have been considered in
many papers and books [12–23]. The popularity of descriptor
systems is continuously increasing as these are general enough
to provide a solid understanding of inner dynamics for underly-
ing physical problems [24]. Application of the Drazin inverse
method to analysis of descriptor fractional continuous-time lin-
ear system have been given in [25, 26].

The problem of controllability and observability began to
attract the attention of mathematicians and engineers since it
began to play a significant role in the control theory and engi-
neering and it has very important applications in these fields.
Many contributions on controllability problem have been made
in recent years, see for example [27, 28]. However, it should
be stressed that the control theory of singular fractional linear
systems is not yet adequately explained, compared to that of
fractional linear systems. In this regard, it is required and im-
portant to study the controllability and observability problems
for fractional singular dynamical systems. To the best of our
knowledge, there are no applicable reports on controllability
and observability of fractional singular dynamical systems as
treated in the current literature. Motivated by these considera-
tions, in this paper, we study the controllability and observabil-
ity of fractional singular continuous time invariant systems.

The paper is prepared as follows. Section 2 recalls some
preliminary definitions and formulas. In section 3, we ob-
tain necessary and sufficient conditions of controllability and
the last section is about observability for descriptor fractional
continuous-time linear system.

∗e-mail: a.zahranaqvi@gmail.com

2. Preliminaries
In this section we recall some well known fractional operators
and special functions, along with a set of properties that will
be of use as we proceed in our discussion, for detail see [1–3].

Consider the following fractional continuous-time linear
system described by the state equation{

EDα
t x(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t),
(1)

where 0 < α ≤ 1, x(·) ∈ Rn is state vector u(·) ∈ Rm, is
input vector and y(·) ∈ Rp is output vector, E,A ∈ Rn×n,
B ∈ Rn×m,C ∈ Rp×n, D ∈ Rp×m and Dα

t is the Caputo dif-
ferential operator, defined by

Dα
t f (t) =

1
Γ(1−α)

∫ t

0
(t − τ)−α d

ds
f (s)ds, 0 < α < 1.

It is assumed that the pencil (E,A) of (1) is regular, i. e.,

det(Es−A) �= 0for some s ∈ C.

If detE �= 0, then by using Laplace transform the general so-
lution of the system (1) with initial condition x(0) = x0 can be
written as [29, Theorem 1]

x(t)=Φα,1
(
E−1A, t

)
x0+

∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ.

(2)
where Φα,β

(
E−1A, t

)
= ∑∞

k=0
(E−1A)ktαk+β−1

Γ(αk+β ) is the state trans-
fer matrix and Γ(·) is a Gamma-function.

DEFINITION 1. [3] The Mittag-Leffler two-parameters
function for an arbitrary square matrix A is

Eα,β (A) =
∞

∑
k=0

Ak

Γ(αk+β )
, α,β > 0 (3)

in particular, Eα,1 (A) = Eα (A) , with β = 1.

Mittag-Leffler and state transfer matrices are related as fol-
lows

Φα,β (A, t) = tβ−1Eα,β (Atα)

and it is easy to check that [29, Lemma 2]

Dα
t Φα,β (A, t) = AΦα,β (A, t) . (4)

1

,� (3)

in particular, Eα, 1(A) = Eα(A), with β = 1.
Mittag-Leffler and state transfer matrices are related as fol-

lows
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Definition 2. [13] The smallest nonnegative integer q is called 
index of the matrix A 2 ℝn×n if
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DEFINITION 2. [13] The smallest nonnegative integer q is
called index of the matrix A ∈ Rn×n if

rankAq = rankAq+1.

DEFINITION 3. [24] A matrix ED ∈ Rn×n is called the
Drazin inverse of E ∈ Rn×n if it satisfies the following con-
ditions:

EED = EDE, EDEED = ED and EDEq+1 = Eq, (5)

where q is the index of a matrix.

To compute the Drazin inverse ED of the matrix E ∈ Rn×n

the following steps are required [24]:

1. Find the pair of matrices V ∈ Rn×r , W ∈ Rr×n, such that
rankV = rankW = rankE = r and

E =VW ;

2. Compute the nonsingular matrix

WEV ∈ Rr×r;

3. The desired Drazin inverse matrix is given by

ED :=V (WEV )−1 W.

REMARK 1. It is easy to see that, if detE �= 0, then ED =
E−1.

EXAMPLE 1. Consider a matrix

E =

[
0 0
0 4

]

Clearly detE = 0 and rank(E) = 1, moreover

E2 =

[
0 0
0 16

]
.

So, rank(E2) = rank(E). Hence index of matrix E is 1. By
using the Drazin inverse procedure, it follows that

ED =

[
0 0
0 1

]
.

If the index q of A equals 1, the Drazin inverse AD is the
group inverse and is denoted by A� (see, e.g., [30, p. 118]). In
general the Drazin inverse can be expressed explicitly in terms
of the Jordan canonical form of A

A = S

(
J 0
0 N

)
S−1, AD = S

(
J−1 0
0 0

)
S−1,

where J contains the Jordan blocks corresponding to nonzero
eigenvalues, and N is nilpotent with Nk = 0 and Nk−1 �= 0.
With this representation of AD we can immediately see that
[26]

R(AD) = R(Aq), N (AD) = N (Aq) and

Rn = R(AD)⊕N (AD). (6)

If detE = 0 and the pencil of the matrices (E,A) is regular, that
is, there exists c ∈ C such that, det(Ec−A) �= 0.

Premultiplying equation (1) by (Ec−A)−1, we obtain
{

ĒDα
t x(t) = Āx(t)+ B̄u(t),

y(t) =C (t)+Du(t)
(7)

where

Ē = [Ec−A]−1E, Ā= [Ec−A]−1A and B̄= [Ec−A]−1B. (8)

LEMMA 1. The matrices Ē and Ā defined in system (8) sat-
isfy the following equalities,

1. AE = EA, ĀDĒ = (EA)D, ĒDĀ = (AE)D and ĀDĒD =
ĒDĀD;

2. N
(
Ā
)
∩N (Ē) = {0} ;

3. Ē = T

[
J 0
0 N

]
T−1, ĒD = T

(
J−1 0
0 0

)
T−1, detT �=

0,J ∈ Rn1×m1 , is nonsingular, N ∈ Rn2×m2 is nilpotent, n1 +
n2 = n;

4. (I−EED
)AAD

= I−EED and (I−EED
)(EAD

)q = 0.

REMARK 2. By using equation (5) and Lemma 1, it follows
that

N
(
Āq)∩N (Ēq) = {0} and N

(
ĀD)∩N

(
ĒD)= {0} .

(9)

By using Drazin inverse method [24], solution of system (7)
(and (1)) can be written as.

THEOREM 2. The solution of (7) (and (1)) is given by

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t),

(10)
where u(kα) = dkα u(t)

dtkα and the vector υ ∈ Rn is arbitrary.

If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(11)

3. Controllability
DEFINITION 4. System (1 )(and (7)) is called state control-

lable on [0, t f ] with t f > 0, if given any state x0 ∈ Rn, there
exists an input signal u(·) : [0, t f ] → Rm such that the corre-
sponding solution of (1) satisfies x(t f ) = 0.

In this section, we give necessary and sufficient conditions
of controllability for (1) (and (7)).
Case 1: detE �= 0

We consider the following matrix

Wc[0, t f ] :=
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×
(
E−1B

)∗ Φ∗
α,α

(
E−1A, t f − τ

)
dτ,

(12)

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

.

Definition 3. [24] A matrix ED 2 ℝn×n is called the Drazin in-
verse of E 2 ℝn×n if it satisfies the following conditions:
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Āq)∩N (Ēq) = {0} and N

(
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where q is the index of a matrix.

To compute the Drazin inverse ED of the matrix E 2 ℝn×n the 
following steps are required [24]:
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rankV = rankW = rankE = r and
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of the Jordan canonical form of A

A = S

(
J 0
0 N

)
S−1, AD = S

(
J−1 0
0 0

)
S−1,

where J contains the Jordan blocks corresponding to nonzero
eigenvalues, and N is nilpotent with Nk = 0 and Nk−1 �= 0.
With this representation of AD we can immediately see that
[26]

R(AD) = R(Aq), N (AD) = N (Aq) and

Rn = R(AD)⊕N (AD). (6)

If detE = 0 and the pencil of the matrices (E,A) is regular, that
is, there exists c ∈ C such that, det(Ec−A) �= 0.

Premultiplying equation (1) by (Ec−A)−1, we obtain
{

ĒDα
t x(t) = Āx(t)+ B̄u(t),

y(t) =C (t)+Du(t)
(7)

where

Ē = [Ec−A]−1E, Ā= [Ec−A]−1A and B̄= [Ec−A]−1B. (8)

LEMMA 1. The matrices Ē and Ā defined in system (8) sat-
isfy the following equalities,

1. AE = EA, ĀDĒ = (EA)D, ĒDĀ = (AE)D and ĀDĒD =
ĒDĀD;

2. N
(
Ā
)
∩N (Ē) = {0} ;

3. Ē = T

[
J 0
0 N

]
T−1, ĒD = T

(
J−1 0
0 0

)
T−1, detT �=

0,J ∈ Rn1×m1 , is nonsingular, N ∈ Rn2×m2 is nilpotent, n1 +
n2 = n;

4. (I−EED
)AAD

= I−EED and (I−EED
)(EAD

)q = 0.

REMARK 2. By using equation (5) and Lemma 1, it follows
that

N
(
Āq)∩N (Ēq) = {0} and N

(
ĀD)∩N

(
ĒD)= {0} .

(9)

By using Drazin inverse method [24], solution of system (7)
(and (1)) can be written as.

THEOREM 2. The solution of (7) (and (1)) is given by

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t),

(10)
where u(kα) = dkα u(t)

dtkα and the vector υ ∈ Rn is arbitrary.

If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(11)

3. Controllability
DEFINITION 4. System (1 )(and (7)) is called state control-

lable on [0, t f ] with t f > 0, if given any state x0 ∈ Rn, there
exists an input signal u(·) : [0, t f ] → Rm such that the corre-
sponding solution of (1) satisfies x(t f ) = 0.

In this section, we give necessary and sufficient conditions
of controllability for (1) (and (7)).
Case 1: detE �= 0

We consider the following matrix

Wc[0, t f ] :=
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×
(
E−1B

)∗ Φ∗
α,α

(
E−1A, t f − τ

)
dτ,

(12)
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3. Controllability
DEFINITION 4. System (1 )(and (7)) is called state control-

lable on [0, t f ] with t f > 0, if given any state x0 ∈ Rn, there
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sponding solution of (1) satisfies x(t f ) = 0.
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that
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By using Drazin inverse method [24], solution of system (7)
(and (1)) can be written as.
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x(t) = Φα,1
(
ĒDA, t
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υ + ĒD

∫ t
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Φα,α

(
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)
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+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t),

(10)
where u(kα) = dkα u(t)

dtkα and the vector υ ∈ Rn is arbitrary.

If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form
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(
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3. Controllability
DEFINITION 4. System (1 )(and (7)) is called state control-

lable on [0, t f ] with t f > 0, if given any state x0 ∈ Rn, there
exists an input signal u(·) : [0, t f ] → Rm such that the corre-
sponding solution of (1) satisfies x(t f ) = 0.

In this section, we give necessary and sufficient conditions
of controllability for (1) (and (7)).
Case 1: detE �= 0

We consider the following matrix

Wc[0, t f ] :=
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Φα,α

(
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)(
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×
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Remark 1. It is easy to see that, if detE  6= 0, then ED = E–1.
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ĒDα
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3. Ē = T

[
J 0
0 N

]
T−1, ĒD = T
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the following steps are required [24]:

1. Find the pair of matrices V ∈ Rn×r , W ∈ Rr×n, such that
rankV = rankW = rankE = r and

E =VW ;

2. Compute the nonsingular matrix

WEV ∈ Rr×r;

3. The desired Drazin inverse matrix is given by

ED :=V (WEV )−1 W.

REMARK 1. It is easy to see that, if detE �= 0, then ED =
E−1.

EXAMPLE 1. Consider a matrix

E =

[
0 0
0 4

]

Clearly detE = 0 and rank(E) = 1, moreover

E2 =

[
0 0
0 16

]
.

So, rank(E2) = rank(E). Hence index of matrix E is 1. By
using the Drazin inverse procedure, it follows that

ED =

[
0 0
0 1

]
.

If the index q of A equals 1, the Drazin inverse AD is the
group inverse and is denoted by A� (see, e.g., [30, p. 118]). In
general the Drazin inverse can be expressed explicitly in terms
of the Jordan canonical form of A

A = S

(
J 0
0 N

)
S−1, AD = S

(
J−1 0
0 0

)
S−1,

where J contains the Jordan blocks corresponding to nonzero
eigenvalues, and N is nilpotent with Nk = 0 and Nk−1 �= 0.
With this representation of AD we can immediately see that
[26]

R(AD) = R(Aq), N (AD) = N (Aq) and

Rn = R(AD)⊕N (AD). (6)

If detE = 0 and the pencil of the matrices (E,A) is regular, that
is, there exists c ∈ C such that, det(Ec−A) �= 0.

Premultiplying equation (1) by (Ec−A)−1, we obtain
{

ĒDα
t x(t) = Āx(t)+ B̄u(t),

y(t) =C (t)+Du(t)
(7)

where

Ē = [Ec−A]−1E, Ā= [Ec−A]−1A and B̄= [Ec−A]−1B. (8)

LEMMA 1. The matrices Ē and Ā defined in system (8) sat-
isfy the following equalities,

1. AE = EA, ĀDĒ = (EA)D, ĒDĀ = (AE)D and ĀDĒD =
ĒDĀD;

2. N
(
Ā
)
∩N (Ē) = {0} ;

3. Ē = T

[
J 0
0 N

]
T−1, ĒD = T

(
J−1 0
0 0

)
T−1, detT �=

0,J ∈ Rn1×m1 , is nonsingular, N ∈ Rn2×m2 is nilpotent, n1 +
n2 = n;

4. (I−EED
)AAD

= I−EED and (I−EED
)(EAD

)q = 0.

REMARK 2. By using equation (5) and Lemma 1, it follows
that

N
(
Āq)∩N (Ēq) = {0} and N

(
ĀD)∩N

(
ĒD)= {0} .

(9)

By using Drazin inverse method [24], solution of system (7)
(and (1)) can be written as.

THEOREM 2. The solution of (7) (and (1)) is given by

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t),

(10)
where u(kα) = dkα u(t)

dtkα and the vector υ ∈ Rn is arbitrary.

If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(11)

3. Controllability
DEFINITION 4. System (1 )(and (7)) is called state control-

lable on [0, t f ] with t f > 0, if given any state x0 ∈ Rn, there
exists an input signal u(·) : [0, t f ] → Rm such that the corre-
sponding solution of (1) satisfies x(t f ) = 0.

In this section, we give necessary and sufficient conditions
of controllability for (1) (and (7)).
Case 1: detE �= 0

We consider the following matrix

Wc[0, t f ] :=
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×
(
E−1B

)∗ Φ∗
α,α

(
E−1A, t f − τ

)
dτ,

(12)
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LEMMA 1. The matrices Ē and Ā defined in system (8) sat-
isfy the following equalities,
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ĒDĀD;
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T−1, ĒD = T

(
J−1 0
0 0

)
T−1, detT �=

0,J ∈ Rn1×m1 , is nonsingular, N ∈ Rn2×m2 is nilpotent, n1 +
n2 = n;

4. (I−EED
)AAD

= I−EED and (I−EED
)(EAD

)q = 0.

REMARK 2. By using equation (5) and Lemma 1, it follows
that

N
(
Āq)∩N (Ēq) = {0} and N

(
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ĒDA, t

)
υ + ĒD
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+(ĒĒD − I)ĀDB̄u(t).
(11)

3. Controllability
DEFINITION 4. System (1 )(and (7)) is called state control-

lable on [0, t f ] with t f > 0, if given any state x0 ∈ Rn, there
exists an input signal u(·) : [0, t f ] → Rm such that the corre-
sponding solution of (1) satisfies x(t f ) = 0.

In this section, we give necessary and sufficient conditions
of controllability for (1) (and (7)).
Case 1: detE �= 0

We consider the following matrix

Wc[0, t f ] :=
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×
(
E−1B

)∗ Φ∗
α,α

(
E−1A, t f − τ

)
dτ,

(12)

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

,

where J contains Jordan blocks corresponding to nonzero eigen-
values, and N is nilpotent with Nk = 0 and Nk–1  6= 0. With this 
representation of AD we can immediately see that [26]

	

A. Younus, I. Javed, and A. Zehra

DEFINITION 2. [13] The smallest nonnegative integer q is
called index of the matrix A ∈ Rn×n if

rankAq = rankAq+1.

DEFINITION 3. [24] A matrix ED ∈ Rn×n is called the
Drazin inverse of E ∈ Rn×n if it satisfies the following con-
ditions:

EED = EDE, EDEED = ED and EDEq+1 = Eq, (5)

where q is the index of a matrix.

To compute the Drazin inverse ED of the matrix E ∈ Rn×n

the following steps are required [24]:

1. Find the pair of matrices V ∈ Rn×r , W ∈ Rr×n, such that
rankV = rankW = rankE = r and

E =VW ;

2. Compute the nonsingular matrix

WEV ∈ Rr×r;

3. The desired Drazin inverse matrix is given by

ED :=V (WEV )−1 W.

REMARK 1. It is easy to see that, if detE �= 0, then ED =
E−1.

EXAMPLE 1. Consider a matrix

E =

[
0 0
0 4

]

Clearly detE = 0 and rank(E) = 1, moreover

E2 =

[
0 0
0 16

]
.

So, rank(E2) = rank(E). Hence index of matrix E is 1. By
using the Drazin inverse procedure, it follows that

ED =

[
0 0
0 1

]
.

If the index q of A equals 1, the Drazin inverse AD is the
group inverse and is denoted by A� (see, e.g., [30, p. 118]). In
general the Drazin inverse can be expressed explicitly in terms
of the Jordan canonical form of A

A = S

(
J 0
0 N

)
S−1, AD = S

(
J−1 0
0 0

)
S−1,

where J contains the Jordan blocks corresponding to nonzero
eigenvalues, and N is nilpotent with Nk = 0 and Nk−1 �= 0.
With this representation of AD we can immediately see that
[26]

R(AD) = R(Aq), N (AD) = N (Aq) and

Rn = R(AD)⊕N (AD). (6)

If detE = 0 and the pencil of the matrices (E,A) is regular, that
is, there exists c ∈ C such that, det(Ec−A) �= 0.

Premultiplying equation (1) by (Ec−A)−1, we obtain
{
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ĒDA, t

)
υ + ĒD
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ĒDα
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ĒDA, t − τ

)
B̄u(τ)dτ
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∫ t

0
Φα,α

(
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ĒDA, t

)
υ + ĒD
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lable on [0, t f ] with t f > 0, if given any state x0 ∈ Rn, there
exists an input signal u(·) : [0, t f ] → Rm such that the corre-
sponding solution of (1) satisfies x(t f ) = 0.

In this section, we give necessary and sufficient conditions
of controllability for (1) (and (7)).
Case 1: detE �= 0

We consider the following matrix

Wc[0, t f ] :=
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×
(
E−1B

)∗ Φ∗
α,α

(
E−1A, t f − τ

)
dτ,

(12)
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DEFINITION 2. [13] The smallest nonnegative integer q is
called index of the matrix A ∈ Rn×n if

rankAq = rankAq+1.

DEFINITION 3. [24] A matrix ED ∈ Rn×n is called the
Drazin inverse of E ∈ Rn×n if it satisfies the following con-
ditions:

EED = EDE, EDEED = ED and EDEq+1 = Eq, (5)

where q is the index of a matrix.

To compute the Drazin inverse ED of the matrix E ∈ Rn×n

the following steps are required [24]:

1. Find the pair of matrices V ∈ Rn×r , W ∈ Rr×n, such that
rankV = rankW = rankE = r and

E =VW ;

2. Compute the nonsingular matrix

WEV ∈ Rr×r;

3. The desired Drazin inverse matrix is given by

ED :=V (WEV )−1 W.

REMARK 1. It is easy to see that, if detE �= 0, then ED =
E−1.

EXAMPLE 1. Consider a matrix

E =

[
0 0
0 4

]

Clearly detE = 0 and rank(E) = 1, moreover

E2 =

[
0 0
0 16

]
.

So, rank(E2) = rank(E). Hence index of matrix E is 1. By
using the Drazin inverse procedure, it follows that

ED =

[
0 0
0 1

]
.

If the index q of A equals 1, the Drazin inverse AD is the
group inverse and is denoted by A� (see, e.g., [30, p. 118]). In
general the Drazin inverse can be expressed explicitly in terms
of the Jordan canonical form of A

A = S

(
J 0
0 N

)
S−1, AD = S

(
J−1 0
0 0

)
S−1,

where J contains the Jordan blocks corresponding to nonzero
eigenvalues, and N is nilpotent with Nk = 0 and Nk−1 �= 0.
With this representation of AD we can immediately see that
[26]

R(AD) = R(Aq), N (AD) = N (Aq) and

Rn = R(AD)⊕N (AD). (6)

If detE = 0 and the pencil of the matrices (E,A) is regular, that
is, there exists c ∈ C such that, det(Ec−A) �= 0.

Premultiplying equation (1) by (Ec−A)−1, we obtain
{

ĒDα
t x(t) = Āx(t)+ B̄u(t),

y(t) =C (t)+Du(t)
(7)

where

Ē = [Ec−A]−1E, Ā= [Ec−A]−1A and B̄= [Ec−A]−1B. (8)

LEMMA 1. The matrices Ē and Ā defined in system (8) sat-
isfy the following equalities,

1. AE = EA, ĀDĒ = (EA)D, ĒDĀ = (AE)D and ĀDĒD =
ĒDĀD;

2. N
(
Ā
)
∩N (Ē) = {0} ;

3. Ē = T

[
J 0
0 N

]
T−1, ĒD = T

(
J−1 0
0 0

)
T−1, detT �=

0,J ∈ Rn1×m1 , is nonsingular, N ∈ Rn2×m2 is nilpotent, n1 +
n2 = n;

4. (I−EED
)AAD

= I−EED and (I−EED
)(EAD

)q = 0.

REMARK 2. By using equation (5) and Lemma 1, it follows
that

N
(
Āq)∩N (Ēq) = {0} and N

(
ĀD)∩N

(
ĒD)= {0} .

(9)

By using Drazin inverse method [24], solution of system (7)
(and (1)) can be written as.

THEOREM 2. The solution of (7) (and (1)) is given by

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t),

(10)
where u(kα) = dkα u(t)

dtkα and the vector υ ∈ Rn is arbitrary.

If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(11)

3. Controllability
DEFINITION 4. System (1 )(and (7)) is called state control-

lable on [0, t f ] with t f > 0, if given any state x0 ∈ Rn, there
exists an input signal u(·) : [0, t f ] → Rm such that the corre-
sponding solution of (1) satisfies x(t f ) = 0.

In this section, we give necessary and sufficient conditions
of controllability for (1) (and (7)).
Case 1: detE �= 0

We consider the following matrix

Wc[0, t f ] :=
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×
(
E−1B

)∗ Φ∗
α,α

(
E−1A, t f − τ

)
dτ,

(12)
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Lemma 1. The matrices E– and A– defined in system (8) satisfy 
the following equalities,
1. A–E = E–A, A–DE– = (E–A)D, E–DA– = (A–E)D and A–DE–D = E–DA–D;
2. 
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rankV = rankW = rankE = r and

E =VW ;
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WEV ∈ Rr×r;

3. The desired Drazin inverse matrix is given by

ED :=V (WEV )−1 W.

REMARK 1. It is easy to see that, if detE �= 0, then ED =
E−1.

EXAMPLE 1. Consider a matrix

E =

[
0 0
0 4

]

Clearly detE = 0 and rank(E) = 1, moreover

E2 =
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0 0
0 16
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.

So, rank(E2) = rank(E). Hence index of matrix E is 1. By
using the Drazin inverse procedure, it follows that
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If the index q of A equals 1, the Drazin inverse AD is the
group inverse and is denoted by A� (see, e.g., [30, p. 118]). In
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(
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where J contains the Jordan blocks corresponding to nonzero
eigenvalues, and N is nilpotent with Nk = 0 and Nk−1 �= 0.
With this representation of AD we can immediately see that
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R(AD) = R(Aq), N (AD) = N (Aq) and
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If detE = 0 and the pencil of the matrices (E,A) is regular, that
is, there exists c ∈ C such that, det(Ec−A) �= 0.

Premultiplying equation (1) by (Ec−A)−1, we obtain
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t x(t) = Āx(t)+ B̄u(t),
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(7)

where

Ē = [Ec−A]−1E, Ā= [Ec−A]−1A and B̄= [Ec−A]−1B. (8)

LEMMA 1. The matrices Ē and Ā defined in system (8) sat-
isfy the following equalities,

1. AE = EA, ĀDĒ = (EA)D, ĒDĀ = (AE)D and ĀDĒD =
ĒDĀD;
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(
Ā
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(
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0,J ∈ Rn1×m1 , is nonsingular, N ∈ Rn2×m2 is nilpotent, n1 +
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4. (I−EED
)AAD

= I−EED and (I−EED
)(EAD

)q = 0.

REMARK 2. By using equation (5) and Lemma 1, it follows
that

N
(
Āq)∩N (Ēq) = {0} and N

(
ĀD)∩N

(
ĒD)= {0} .

(9)

By using Drazin inverse method [24], solution of system (7)
(and (1)) can be written as.

THEOREM 2. The solution of (7) (and (1)) is given by

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t),

(10)
where u(kα) = dkα u(t)

dtkα and the vector υ ∈ Rn is arbitrary.

If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(11)

3. Controllability
DEFINITION 4. System (1 )(and (7)) is called state control-

lable on [0, t f ] with t f > 0, if given any state x0 ∈ Rn, there
exists an input signal u(·) : [0, t f ] → Rm such that the corre-
sponding solution of (1) satisfies x(t f ) = 0.

In this section, we give necessary and sufficient conditions
of controllability for (1) (and (7)).
Case 1: detE �= 0

We consider the following matrix

Wc[0, t f ] :=
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×
(
E−1B

)∗ Φ∗
α,α

(
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DEFINITION 2. [13] The smallest nonnegative integer q is
called index of the matrix A ∈ Rn×n if

rankAq = rankAq+1.

DEFINITION 3. [24] A matrix ED ∈ Rn×n is called the
Drazin inverse of E ∈ Rn×n if it satisfies the following con-
ditions:

EED = EDE, EDEED = ED and EDEq+1 = Eq, (5)

where q is the index of a matrix.

To compute the Drazin inverse ED of the matrix E ∈ Rn×n

the following steps are required [24]:

1. Find the pair of matrices V ∈ Rn×r , W ∈ Rr×n, such that
rankV = rankW = rankE = r and

E =VW ;

2. Compute the nonsingular matrix

WEV ∈ Rr×r;

3. The desired Drazin inverse matrix is given by

ED :=V (WEV )−1 W.

REMARK 1. It is easy to see that, if detE �= 0, then ED =
E−1.

EXAMPLE 1. Consider a matrix

E =

[
0 0
0 4

]

Clearly detE = 0 and rank(E) = 1, moreover

E2 =

[
0 0
0 16

]
.

So, rank(E2) = rank(E). Hence index of matrix E is 1. By
using the Drazin inverse procedure, it follows that

ED =

[
0 0
0 1

]
.

If the index q of A equals 1, the Drazin inverse AD is the
group inverse and is denoted by A� (see, e.g., [30, p. 118]). In
general the Drazin inverse can be expressed explicitly in terms
of the Jordan canonical form of A

A = S

(
J 0
0 N

)
S−1, AD = S

(
J−1 0
0 0

)
S−1,

where J contains the Jordan blocks corresponding to nonzero
eigenvalues, and N is nilpotent with Nk = 0 and Nk−1 �= 0.
With this representation of AD we can immediately see that
[26]

R(AD) = R(Aq), N (AD) = N (Aq) and

Rn = R(AD)⊕N (AD). (6)

If detE = 0 and the pencil of the matrices (E,A) is regular, that
is, there exists c ∈ C such that, det(Ec−A) �= 0.

Premultiplying equation (1) by (Ec−A)−1, we obtain
{

ĒDα
t x(t) = Āx(t)+ B̄u(t),

y(t) =C (t)+Du(t)
(7)

where

Ē = [Ec−A]−1E, Ā= [Ec−A]−1A and B̄= [Ec−A]−1B. (8)

LEMMA 1. The matrices Ē and Ā defined in system (8) sat-
isfy the following equalities,

1. AE = EA, ĀDĒ = (EA)D, ĒDĀ = (AE)D and ĀDĒD =
ĒDĀD;

2. N
(
Ā
)
∩N (Ē) = {0} ;

3. Ē = T

[
J 0
0 N

]
T−1, ĒD = T

(
J−1 0
0 0

)
T−1, detT �=

0,J ∈ Rn1×m1 , is nonsingular, N ∈ Rn2×m2 is nilpotent, n1 +
n2 = n;

4. (I−EED
)AAD

= I−EED and (I−EED
)(EAD

)q = 0.

REMARK 2. By using equation (5) and Lemma 1, it follows
that

N
(
Āq)∩N (Ēq) = {0} and N

(
ĀD)∩N

(
ĒD)= {0} .

(9)

By using Drazin inverse method [24], solution of system (7)
(and (1)) can be written as.

THEOREM 2. The solution of (7) (and (1)) is given by

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t),

(10)
where u(kα) = dkα u(t)

dtkα and the vector υ ∈ Rn is arbitrary.

If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(11)

3. Controllability
DEFINITION 4. System (1 )(and (7)) is called state control-

lable on [0, t f ] with t f > 0, if given any state x0 ∈ Rn, there
exists an input signal u(·) : [0, t f ] → Rm such that the corre-
sponding solution of (1) satisfies x(t f ) = 0.

In this section, we give necessary and sufficient conditions
of controllability for (1) (and (7)).
Case 1: detE �= 0

We consider the following matrix

Wc[0, t f ] :=
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×
(
E−1B

)∗ Φ∗
α,α

(
E−1A, t f − τ

)
dτ,

(12)
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DEFINITION 2. [13] The smallest nonnegative integer q is
called index of the matrix A ∈ Rn×n if

rankAq = rankAq+1.

DEFINITION 3. [24] A matrix ED ∈ Rn×n is called the
Drazin inverse of E ∈ Rn×n if it satisfies the following con-
ditions:

EED = EDE, EDEED = ED and EDEq+1 = Eq, (5)

where q is the index of a matrix.

To compute the Drazin inverse ED of the matrix E ∈ Rn×n

the following steps are required [24]:

1. Find the pair of matrices V ∈ Rn×r , W ∈ Rr×n, such that
rankV = rankW = rankE = r and

E =VW ;

2. Compute the nonsingular matrix

WEV ∈ Rr×r;

3. The desired Drazin inverse matrix is given by

ED :=V (WEV )−1 W.

REMARK 1. It is easy to see that, if detE �= 0, then ED =
E−1.

EXAMPLE 1. Consider a matrix

E =

[
0 0
0 4

]

Clearly detE = 0 and rank(E) = 1, moreover

E2 =

[
0 0
0 16

]
.

So, rank(E2) = rank(E). Hence index of matrix E is 1. By
using the Drazin inverse procedure, it follows that

ED =

[
0 0
0 1

]
.

If the index q of A equals 1, the Drazin inverse AD is the
group inverse and is denoted by A� (see, e.g., [30, p. 118]). In
general the Drazin inverse can be expressed explicitly in terms
of the Jordan canonical form of A

A = S

(
J 0
0 N

)
S−1, AD = S

(
J−1 0
0 0

)
S−1,

where J contains the Jordan blocks corresponding to nonzero
eigenvalues, and N is nilpotent with Nk = 0 and Nk−1 �= 0.
With this representation of AD we can immediately see that
[26]

R(AD) = R(Aq), N (AD) = N (Aq) and

Rn = R(AD)⊕N (AD). (6)

If detE = 0 and the pencil of the matrices (E,A) is regular, that
is, there exists c ∈ C such that, det(Ec−A) �= 0.

Premultiplying equation (1) by (Ec−A)−1, we obtain
{

ĒDα
t x(t) = Āx(t)+ B̄u(t),

y(t) =C (t)+Du(t)
(7)

where

Ē = [Ec−A]−1E, Ā= [Ec−A]−1A and B̄= [Ec−A]−1B. (8)

LEMMA 1. The matrices Ē and Ā defined in system (8) sat-
isfy the following equalities,

1. AE = EA, ĀDĒ = (EA)D, ĒDĀ = (AE)D and ĀDĒD =
ĒDĀD;

2. N
(
Ā
)
∩N (Ē) = {0} ;

3. Ē = T

[
J 0
0 N

]
T−1, ĒD = T

(
J−1 0
0 0

)
T−1, detT �=

0,J ∈ Rn1×m1 , is nonsingular, N ∈ Rn2×m2 is nilpotent, n1 +
n2 = n;

4. (I−EED
)AAD

= I−EED and (I−EED
)(EAD

)q = 0.

REMARK 2. By using equation (5) and Lemma 1, it follows
that

N
(
Āq)∩N (Ēq) = {0} and N

(
ĀD)∩N

(
ĒD)= {0} .

(9)

By using Drazin inverse method [24], solution of system (7)
(and (1)) can be written as.

THEOREM 2. The solution of (7) (and (1)) is given by

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t),

(10)
where u(kα) = dkα u(t)

dtkα and the vector υ ∈ Rn is arbitrary.

If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(11)

3. Controllability
DEFINITION 4. System (1 )(and (7)) is called state control-

lable on [0, t f ] with t f > 0, if given any state x0 ∈ Rn, there
exists an input signal u(·) : [0, t f ] → Rm such that the corre-
sponding solution of (1) satisfies x(t f ) = 0.

In this section, we give necessary and sufficient conditions
of controllability for (1) (and (7)).
Case 1: detE �= 0

We consider the following matrix

Wc[0, t f ] :=
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×
(
E−1B

)∗ Φ∗
α,α

(
E−1A, t f − τ

)
dτ,

(12)
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DEFINITION 2. [13] The smallest nonnegative integer q is
called index of the matrix A ∈ Rn×n if

rankAq = rankAq+1.

DEFINITION 3. [24] A matrix ED ∈ Rn×n is called the
Drazin inverse of E ∈ Rn×n if it satisfies the following con-
ditions:

EED = EDE, EDEED = ED and EDEq+1 = Eq, (5)

where q is the index of a matrix.

To compute the Drazin inverse ED of the matrix E ∈ Rn×n

the following steps are required [24]:

1. Find the pair of matrices V ∈ Rn×r , W ∈ Rr×n, such that
rankV = rankW = rankE = r and

E =VW ;

2. Compute the nonsingular matrix

WEV ∈ Rr×r;

3. The desired Drazin inverse matrix is given by

ED :=V (WEV )−1 W.

REMARK 1. It is easy to see that, if detE �= 0, then ED =
E−1.

EXAMPLE 1. Consider a matrix

E =

[
0 0
0 4

]

Clearly detE = 0 and rank(E) = 1, moreover

E2 =

[
0 0
0 16

]
.

So, rank(E2) = rank(E). Hence index of matrix E is 1. By
using the Drazin inverse procedure, it follows that

ED =

[
0 0
0 1

]
.

If the index q of A equals 1, the Drazin inverse AD is the
group inverse and is denoted by A� (see, e.g., [30, p. 118]). In
general the Drazin inverse can be expressed explicitly in terms
of the Jordan canonical form of A

A = S

(
J 0
0 N

)
S−1, AD = S

(
J−1 0
0 0

)
S−1,

where J contains the Jordan blocks corresponding to nonzero
eigenvalues, and N is nilpotent with Nk = 0 and Nk−1 �= 0.
With this representation of AD we can immediately see that
[26]

R(AD) = R(Aq), N (AD) = N (Aq) and

Rn = R(AD)⊕N (AD). (6)

If detE = 0 and the pencil of the matrices (E,A) is regular, that
is, there exists c ∈ C such that, det(Ec−A) �= 0.

Premultiplying equation (1) by (Ec−A)−1, we obtain
{

ĒDα
t x(t) = Āx(t)+ B̄u(t),

y(t) =C (t)+Du(t)
(7)

where

Ē = [Ec−A]−1E, Ā= [Ec−A]−1A and B̄= [Ec−A]−1B. (8)

LEMMA 1. The matrices Ē and Ā defined in system (8) sat-
isfy the following equalities,

1. AE = EA, ĀDĒ = (EA)D, ĒDĀ = (AE)D and ĀDĒD =
ĒDĀD;

2. N
(
Ā
)
∩N (Ē) = {0} ;

3. Ē = T

[
J 0
0 N

]
T−1, ĒD = T

(
J−1 0
0 0

)
T−1, detT �=

0,J ∈ Rn1×m1 , is nonsingular, N ∈ Rn2×m2 is nilpotent, n1 +
n2 = n;

4. (I−EED
)AAD

= I−EED and (I−EED
)(EAD

)q = 0.

REMARK 2. By using equation (5) and Lemma 1, it follows
that

N
(
Āq)∩N (Ēq) = {0} and N

(
ĀD)∩N

(
ĒD)= {0} .

(9)
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k=0(ĒĀD)kĀDB̄u(kα)(t),

(10)
where u(kα) = dkα u(t)

dtkα and the vector υ ∈ Rn is arbitrary.

If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
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∫ t

0
Φα,α

(
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ĒDα
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where
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3. Ē = T

[
J 0
0 N

]
T−1, ĒD = T
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REMARK 2. By using equation (5) and Lemma 1, it follows
that
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(
ĀD)∩N

(
ĒD)= {0} .

(9)

By using Drazin inverse method [24], solution of system (7)
(and (1)) can be written as.

THEOREM 2. The solution of (7) (and (1)) is given by

x(t) = Φα,1
(
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)
υ + ĒD
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DEFINITION 4. System (1 )(and (7)) is called state control-

lable on [0, t f ] with t f > 0, if given any state x0 ∈ Rn, there
exists an input signal u(·) : [0, t f ] → Rm such that the corre-
sponding solution of (1) satisfies x(t f ) = 0.

In this section, we give necessary and sufficient conditions
of controllability for (1) (and (7)).
Case 1: detE �= 0

We consider the following matrix

Wc[0, t f ] :=
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+(ĒĒD − I)ĀDB̄u(t).
(11)

3. Controllability
DEFINITION 4. System (1 )(and (7)) is called state control-

lable on [0, t f ] with t f > 0, if given any state x0 ∈ Rn, there
exists an input signal u(·) : [0, t f ] → Rm such that the corre-
sponding solution of (1) satisfies x(t f ) = 0.

In this section, we give necessary and sufficient conditions
of controllability for (1) (and (7)).
Case 1: detE �= 0

We consider the following matrix

Wc[0, t f ] :=
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×
(
E−1B

)∗ Φ∗
α,α

(
E−1A, t f − τ

)
dτ,

(12)

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

A. Younus, I. Javed, and A. Zehra

DEFINITION 2. [13] The smallest nonnegative integer q is
called index of the matrix A ∈ Rn×n if

rankAq = rankAq+1.

DEFINITION 3. [24] A matrix ED ∈ Rn×n is called the
Drazin inverse of E ∈ Rn×n if it satisfies the following con-
ditions:

EED = EDE, EDEED = ED and EDEq+1 = Eq, (5)

where q is the index of a matrix.

To compute the Drazin inverse ED of the matrix E ∈ Rn×n

the following steps are required [24]:

1. Find the pair of matrices V ∈ Rn×r , W ∈ Rr×n, such that
rankV = rankW = rankE = r and

E =VW ;

2. Compute the nonsingular matrix

WEV ∈ Rr×r;

3. The desired Drazin inverse matrix is given by

ED :=V (WEV )−1 W.

REMARK 1. It is easy to see that, if detE �= 0, then ED =
E−1.

EXAMPLE 1. Consider a matrix

E =

[
0 0
0 4

]

Clearly detE = 0 and rank(E) = 1, moreover

E2 =

[
0 0
0 16

]
.

So, rank(E2) = rank(E). Hence index of matrix E is 1. By
using the Drazin inverse procedure, it follows that

ED =

[
0 0
0 1

]
.

If the index q of A equals 1, the Drazin inverse AD is the
group inverse and is denoted by A� (see, e.g., [30, p. 118]). In
general the Drazin inverse can be expressed explicitly in terms
of the Jordan canonical form of A

A = S

(
J 0
0 N

)
S−1, AD = S

(
J−1 0
0 0

)
S−1,

where J contains the Jordan blocks corresponding to nonzero
eigenvalues, and N is nilpotent with Nk = 0 and Nk−1 �= 0.
With this representation of AD we can immediately see that
[26]

R(AD) = R(Aq), N (AD) = N (Aq) and

Rn = R(AD)⊕N (AD). (6)

If detE = 0 and the pencil of the matrices (E,A) is regular, that
is, there exists c ∈ C such that, det(Ec−A) �= 0.

Premultiplying equation (1) by (Ec−A)−1, we obtain
{
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WEV ∈ Rr×r;

3. The desired Drazin inverse matrix is given by

ED :=V (WEV )−1 W.

REMARK 1. It is easy to see that, if detE �= 0, then ED =
E−1.

EXAMPLE 1. Consider a matrix

E =

[
0 0
0 4

]

Clearly detE = 0 and rank(E) = 1, moreover

E2 =

[
0 0
0 16

]
.

So, rank(E2) = rank(E). Hence index of matrix E is 1. By
using the Drazin inverse procedure, it follows that

ED =

[
0 0
0 1

]
.

If the index q of A equals 1, the Drazin inverse AD is the
group inverse and is denoted by A� (see, e.g., [30, p. 118]). In
general the Drazin inverse can be expressed explicitly in terms
of the Jordan canonical form of A

A = S

(
J 0
0 N

)
S−1, AD = S

(
J−1 0
0 0

)
S−1,

where J contains the Jordan blocks corresponding to nonzero
eigenvalues, and N is nilpotent with Nk = 0 and Nk−1 �= 0.
With this representation of AD we can immediately see that
[26]

R(AD) = R(Aq), N (AD) = N (Aq) and

Rn = R(AD)⊕N (AD). (6)

If detE = 0 and the pencil of the matrices (E,A) is regular, that
is, there exists c ∈ C such that, det(Ec−A) �= 0.

Premultiplying equation (1) by (Ec−A)−1, we obtain
{

ĒDα
t x(t) = Āx(t)+ B̄u(t),

y(t) =C (t)+Du(t)
(7)

where

Ē = [Ec−A]−1E, Ā= [Ec−A]−1A and B̄= [Ec−A]−1B. (8)

LEMMA 1. The matrices Ē and Ā defined in system (8) sat-
isfy the following equalities,

1. AE = EA, ĀDĒ = (EA)D, ĒDĀ = (AE)D and ĀDĒD =
ĒDĀD;

2. N
(
Ā
)
∩N (Ē) = {0} ;

3. Ē = T

[
J 0
0 N

]
T−1, ĒD = T

(
J−1 0
0 0

)
T−1, detT �=

0,J ∈ Rn1×m1 , is nonsingular, N ∈ Rn2×m2 is nilpotent, n1 +
n2 = n;

4. (I−EED
)AAD

= I−EED and (I−EED
)(EAD

)q = 0.

REMARK 2. By using equation (5) and Lemma 1, it follows
that

N
(
Āq)∩N (Ēq) = {0} and N

(
ĀD)∩N

(
ĒD)= {0} .

(9)

By using Drazin inverse method [24], solution of system (7)
(and (1)) can be written as.

THEOREM 2. The solution of (7) (and (1)) is given by

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t),

(10)
where u(kα) = dkα u(t)

dtkα and the vector υ ∈ Rn is arbitrary.

If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ + ĒD

∫ t

0
Φα,α

(
ĒDA, t − τ

)
B̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(11)

3. Controllability
DEFINITION 4. System (1 )(and (7)) is called state control-

lable on [0, t f ] with t f > 0, if given any state x0 ∈ Rn, there
exists an input signal u(·) : [0, t f ] → Rm such that the corre-
sponding solution of (1) satisfies x(t f ) = 0.

In this section, we give necessary and sufficient conditions
of controllability for (1) (and (7)).
Case 1: detE �= 0

We consider the following matrix

Wc[0, t f ] :=
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×
(
E−1B

)∗ Φ∗
α,α

(
E−1A, t f − τ

)
dτ,

(12)
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� (12)

where ¤ denotes the matrix transpose. Now we are formulating 
the results for controllability.

Theorem 3. System (1) is controllable on [0, tf ] if and only if 
the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, tf ] is non-singular, then Wc
–1[0, tf ] is 

well defined. For a given x0 2 ℝn, choose
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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stituting t = tf in equation (2), we have
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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But the second term is zero, leading to the conclusion that
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if
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(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)
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.
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=
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×
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=
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where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t
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Φα,α

(
ĒDA, t − τ

)
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Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
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×
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THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t
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[
0, t f

]
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)
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= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
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(
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×
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It yields
z∗Φα,α
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)
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We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that
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Then,
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0
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)(
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)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows
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)
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It follows that
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)
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×
∫ t
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=
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×
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where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).
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lowing case
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ĒDB̄
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(
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THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form
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υ +
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where ∗ denotes the matrix transpose. Now we are formulating
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rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
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)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case
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0
ĒDΦα,α

(
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)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄
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dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t
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(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
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+
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0
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Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is
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+
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z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where
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=
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where ci(t) is the polynomial in t. Thus, it follows
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It follows that
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×
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=
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
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where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case
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∫ t f
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ĒDΦα,α
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)
ĒDB̄

×
(
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(
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)
ĒDB̄
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THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t
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(
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have
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Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
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It yields
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)
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We consider x0 = Φ−1
α,1
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)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that
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+

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
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Then,

z∗z+
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0
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)(
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)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
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)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form
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∫ t f

0
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(
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)
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+Φα,1
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)
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It follows that
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(
E−1A, t f

)
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×
∫ t
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=
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×
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where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
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)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
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is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
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)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
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]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α
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)(
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)
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)
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)
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(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is
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∫ t f

0
Φα,α

(
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)
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×
(
Φα,α

(
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)
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)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
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)
Φ−1

α,1

(
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)
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+
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)
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0
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(
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)(
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)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×
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,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
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Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss
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But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose
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×W−1
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(
E−1A, t f

)
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(13)

Obviously, the control input u(·) is continuous on
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0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
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E−1A, t f

)
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+
∫ t f

0
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Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
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)
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α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
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)
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∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
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Then,
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∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×
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
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d1
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dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
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)(
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)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×


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d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B
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×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

Then,

On Controllability and Observability of Fractional Continuous-Time Linear Systems with Regular Pencils

where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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But the second term is zero, leading to the conclusion that z¤z = 0. 
This is a contradiction to z  6= 0. Thus Wc[0, tf ] is non-singular. 
This completes the proof.� □

Theorem 4. System (1) is controllable on [0, tf ] if and only if
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

.

Proof. By Cayley-Hamilton's Theorem, we can write
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ci(t) is the polynomial in t. Thus, it follows
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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By using the relation (15), solution of the system (1) has the 
form
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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It follows that
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
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Then,
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0
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)(
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)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where
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[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows
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(
E−1A, t f − τ

)
=
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ci(t f − τ)(E−1A)i. (15)
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form
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(
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)
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+Φα,1
(
E−1A, t f

)
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It follows that

x(t f )−Φα,1
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)
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−1A)iE−1B

×
∫ t
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=
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×
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
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(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
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)
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+
∫ t f

0
Φα,α
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)
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= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
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E−1A, t f

)
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i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
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]

×
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
,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.
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is well defined. For a given x0 ∈ Rn, choose
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)
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(
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)
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+
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0
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)
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(
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)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
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It yields
z∗Φα,α

(
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)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1
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(
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)
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+
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0
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)(
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)
u(τ)dτ
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∫ t f

0
Φα,α

(
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)(
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)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
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)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
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)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
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+

∫ t f

0
Φα,α

(
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)(
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)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×


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d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

On Controllability and Observability of Fractional Continuous-Time Linear Systems with Regular Pencils

where ∗ denotes the matrix transpose. Now we are formulating
the results for controllability.

THEOREM 3. System (1) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (12) is non-singular.

Proof. Suppose that Wc[0, t f ] is non-singular, then W−1
c [0, t f ]

is well defined. For a given x0 ∈ Rn, choose

u(t) =−(E−1B)∗Φ∗
α,α

(
E−1A, t f − t

)

×W−1
c [0, t f ]Φα,1

(
E−1A, t f

)
x0.

(13)

Obviously, the control input u(·) is continuous on
[
0, t f

]
. Sub-

stituting t = t f in equation (2), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ.

(14)

By using equation (13) in (14), we have

x(t f ) = Φα,1
(
E−1A, t f

)
x0 −

∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)

×(E−1B)∗Φ∗
α,α

(
E−1A, t f − τ

)
W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0dτ

= Φα,1
(
E−1A, t f

)
x0 −Wc[0, t f ]W−1

c [0, t f ]Φα,1
(
E−1A, t f

)
x0

= 0.

Thus the system (1) is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z ∈ Rn such that
z∗Wc[0, t f ]z = 0, that is

z∗
∫ t f

0
Φα,α

(
E−1A, t f − τ

)
E−1B

×
(
Φα,α

(
E−1A, t f − τ

)
E−1B

)∗ zdτ = 0.

It yields
z∗Φα,α

(
E−1A, t f − τ

)
E−1B = 0.

We consider x0 = Φ−1
α,1

(
E−1A, t f

)
z. By the assumption, there

exist an input u such that it steers x0 to the origin in the interval
[0, t f ]. It follows that

x(t f ) = Φα,1
(
E−1A, t f

)
Φ−1

α,1

(
E−1A, t f

)
z

+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ

= z+
∫ t f

0
Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0

Then,

z∗z+
∫ t f

0
z∗Φα,α

(
E−1A, t f − τ

)(
E−1B

)
u(τ)dτ = 0.

But the second term is zero, leading to the conclusion that
z∗z = 0. This is a contradiction to z �= 0. Thus Wc[0, t f ] is
non-singular. Which completes the proof.

THEOREM 4. System (1) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =
[
(E−1B)|(E−1A)(E−1B)|...|(E−1A)n−1(E−1B)

]
.

Proof. By Cayley-Hamilton’s Theorem, we can write

Φα,α
(
E−1A, t

)
=

n−1

∑
i=0

ci(t)(E−1A)i,

where ci(t) is the polynomial in t. Thus, it follows

Φα,α
(
E−1A, t f − τ

)
=

n−1

∑
i=0

ci(t f − τ)(E−1A)i. (15)

By using the relation (15), solution of the system (1) has the
form

x(t f ) = ∑n−1
i=0

∫ t f

0
ci(t f − τ)(E−1A)i

(
E−1B

)
u(τ)dτ

+Φα,1
(
E−1A, t f

)
x0.

It follows that

x(t f )−Φα,1
(
E−1A, t f

)
x0 = ∑n−1

i=0 (E
−1A)iE−1B

×
∫ t

0
ci(t − τ)u(τ)dτ.

=
[
(E−1B)|(E−1A)(E−1B)| · · · |(E−1A)n−1(E−1B)

]

×




d0

d1
...

dn−1



,

(16)

where
di =

∫ t f

0
ci(t f − τ)u(τ)dτ

for i = 0,1,2, · · · ,n−1. To have a unique solution of u(t), the
necessary and sufficient condition is clearly that

rankQc = n.

Which completes the proof.

Case2: detE = 0
If the matrix E is not nonsingular, then consider the solution

in Drazin inverse setting as follows

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑q−1
k=0(ĒĀD)kĀDB̄u(kα)(t).

Now let us define controllability Gramian matrix for the fol-
lowing case

Wc[0, t f ] =
∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ. (17)

THEOREM 5. System (7) is controllable on [0, t f ] if and only
if the controllability Gramian matrix (17) is non-singular.

Proof. If the index q of matrix E is 1, then the solution (10) of
system (7) have the following form

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)ĀDB̄u(t).
(18)
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+

∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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that is,
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

A. Younus, I. Javed, and A. Zehra

Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying and using (21), we obtain that E–  Dkzk2 = 0. 
Since A–DE–D = E–DA–D, it implies that E– Dkzk2 2 ker(A–D) and A–
Dkzk2 2 ker(E–D). By using (9), we obtain kzk2 = 0, which leads 
to a contradiction that, that is z = 0.

For the matrix index q = 2, equation (10) becomes
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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� (22)

Premultiplying E–D both sides of (22), we obtain equation (19). 
Therefore, the proof goes similar as q = 1. This completes the 
proof.� □
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Proof. Suppose that the system (7) is controllable on [0, tf ]. If 
the rank condition does not hold, then there exists z 2 ℝn with 
z  6= 0 such that
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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It follows that rankWc[0, tf ] < n. This contradicts conclusion 
of Theorem 5 and therefore, we can conclude that rankQc = n.

Conversely, suppose that rankQc = n. If the system (7) is 
not controllable on [0, tf ], then the controllable Gramian ma-
trix (17) is not invertible. Thus there exists z 2 ℝn with z  6= 0 
such that
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

.� (24)

In particular, for τ = tf , it follows that zE–D(E–DB–) = 0.
Taking Caputo՚s fractional derivative for the equation (24), 

from (4) we have
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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For τ = tf , we have zE–D(E–DA)E–DB– = 0. Repeting this argu-
ment n ¡ 1 times, we have
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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Premultiplying both sides of equation (18) by ĒD, and using
the properties of Drazin inverse, we have

ĒDx(t) = ĒDΦα,1
(
ĒDA, t

)
υ

+
∫ t

0
ĒDΦα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ. (19)

If Wc[0, t f ] is non-singular, then W−1
c [0, t f ] is well defined. For

a given υ , we define the control function as

u(t) =−
(
ĒDΦα,α

(
ĒDA, t f − t

)
ĒDB̄

)∗
W−1

c [0, t f ]

×ĒDΦα,1
(
ĒDA, t f

)
υ .

then at t = t f (19) becomes,

ĒDx(t f ) = ĒDΦα,1
(
ĒDA, t f

)
υ −Wc[0, t f ]W−1

c [0, t f ]

×(ĒDΦα,1
(
ĒDA, t f

)
υ).

It follows that ĒDx(t f ) = 0. Premultiply by ĀD, we have

ĀDĒDx(t f ) = 0. (20)

Since ĀDĒD = ĒDĀD, it implies that ĒDx(t f ) ∈ ker
(
ĀD

)
and

ĀDx(t f ) ∈ ker
(
ĒD

)
. By using equation (9), we obtain x(t f ) =

0. Thus the system is controllable on [0, t f ].
On the other hand, if Wc[0, t f ] is singular, without loss

of generality, there exist a nonzero vector z such that
z∗Wc[0, t f ]z = 0, that is,

∫ t f
0 z∗(ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄)

×(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄)∗zdτ = 0,

which implies that

z∗(ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄) = 0. (21)

Since system (7) is controllable. For υ = Φ−1
α,1

(
ĒDA, t f

)
z (19)

yields that

ĒDx(t f ) = 0 = ĒDΦα,1
(
ĒDA, t f

)
Φ−1

α,1

(
ĒDA, t f

)
z

+ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

= ĒDz+ ĒD
∫ t f

0
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄u(τ)dτ

Premultiplying and using the equation (21), we obtain that
ĒD ‖z‖2 = 0. Since ĀDĒD = ĒDĀD, it implies that ĒD ‖z‖2 ∈
ker

(
ĀD

)
and ĀD ‖z‖2 ∈ ker

(
ĒD

)
. By using equation (9), we

obtain ‖z‖2 = 0, which leads to a contradiction that, that is
z = 0.

For the matrix index q = 2, equation (10) becomes

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)∑1
k=0(ĒĀD)kĀDB̄u(kα)(t),

It follows that

x(t) = Φα,1
(
ĒDA, t

)
υ +

∫ t

0
Φα,α

(
ĒDA, t − τ

)
ĒDB̄u(τ)dτ

+(ĒĒD − I)
[
ĀDB̄u(t)+(ĒĀD)ĀDB̄u(α)(t)

]
.

(22)
Premultiply ĒD both sides of (22), we obtain equation (19).
Therefore, the proof goes similar as q = 1. Which completes
the proof.

THEOREM 6. System (7) is controllable on [0, t f ] if and only
if

rankQc = n,

where

Qc =

{
ĒD

[(
ĒDB̄|(ĒĀD)ĒDB̄|...|(ĒĀD)n−1ĒDB̄

)]}

Proof. Suppose that the system (7) is controllable on
[
0, t f

]
. If

the rank condition does not hold, then there exist z ∈ Rn with
z �= 0 such that

z�ĒD (
ĒĀD) j

ĒDB̄ = 0, j = 0,1, · · ·n−1. (23)

By using relation (15) in controllable Gramian matrix (17), it
follows that

z�Wc
[
0, t f

]
=

∫ t f

0
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

∫ t f

0
ĒD

n−1

∑
j=0

(
ĒĀD) j

ĒDB̄d j
(
t f − τ

)

×
(
ĒDΦα,α

(
ĒDA, t f − τ

)
ĒDB̄

)∗
dτ

= 0.

It follows that rankWc
[
0, t f

]
< n. This contradicts conclusion

of Theorem 5 and therefore, we can conclude that rankQc = n.
Conversely, suppose that rankQc = n. If the system (7) is not

controllable on
[
0, t f

]
, then the controllable Gramian matrix

(17) is not invertible. Thus there exists z ∈ Rn with z �= 0 such
that z�Wc

[
0, t f

]
z = 0. It follows that

z�ĒDΦα,α
(
ĒDA, t f − τ

)
ĒDB̄ = 0. (24)

In particular, for τ = t f , it follows that z�ĒD
(
ĒDB̄

)
= 0.

Taking Caputo’s fractional derivative for the equation (24),
from (4) we have

z�ĒD (
ĒDA

)
Φα,α

(
ĒDA, t f − τ

)
ĒDB̄ = 0.

For τ = t f , we have z�ĒD
(
ĒDA

)
ĒDB̄ = 0. Repeting this argu-

ment n−1 times, we have

z�ĒD (
ĒDA

) j
ĒDB̄ = 0 for j = 0,1, · · ·n−1.

Therefore

z�ĒD
(

ĒDB̄|
(
ĒDA

)
ĒDB̄|

(
ĒDA

)2
ĒDB̄| . . .

(
ĒDA

)n−1
ĒDB̄

)
= 0

Which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on

[
0, t f

]
. Which

completes the proof.

4. Observability
In this section we establish necessary and sufficient conditions
of observability for the systems (1) and (7).

DEFINITION 5. System (1) (and (7)) are called state observ-
able on [0, t f ] if any initial state x(0) = x0 ∈Rn is uniquely de-
termined by the corresponding system input u(t) and system
output y(t), for t ∈ [0, t f ]; t f ∈ [0,T ].
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which implies that the rank condition (6) fails. This contradic-
tion proves that the system (7) is controllable on [0, tf ]. This 
completes the proof.� □

4.	 Observability

In this section we establish necessary and sufficient conditions 
of observability for the systems (1) and (7).

Definition 5. Systems (1) (and (7) are called state observable on 
[0, tf ] if any initial state x(0) = x0 2 ℝn is uniquely determined 
by the corresponding system input u(t) and system output y(t), 
for t 2 [0, tf ]; tf  2 [0, T ].

Case 1: detE  6= 0

Theorem 7. The system (1) is observable on [0, tf ] if and only 
if the observability Gramian matrix
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Case1: detE �= 0.

THEOREM 7. The system (1) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
dt

is nonsingular for some t f > 0.

Proof. We know that

x(t)=
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ+Φα,1

(
E−1A, t

)
x0.

The output will becomes

y(t) =C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ

+CΦα,1
(
E−1A, t

)
x0 +Du(t).

We define

y(t) = y(t)−C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ −Du(t).

Then
y(t) =CΦα,1

(
E−1A, t

)
x0.

It is obvious that observability of system (1) is equivalent to
the estimation of x0 from y(t).

Since y(t) and x0 are arbitrary, this returns in the estimation
of x0 from y(t) given by

y(t) =CΦα,1
(
E−1A, t

)
x0

as u(t)≡ 0.
If Wo[0, t f ] is nonsingular then W−1

o [0, t f ] is well defined.
Hence for arbitrary y(t), for t f > 0, we have the following ex-
pression

W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗y(t)dt

=W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt

=W−1
o [0, t f ]Wo[0, t f ]x0.

It follows that

W−1
o [0, t f ]

∫ t f

0
Φ

∗
α,1

(
E−1A, t

)
C∗y(t)dt = x0. (25)

The left side of (25) depends on y(t) ∈ [0, t f ], and (25) is a
linear algebraic equation of x0. Since Wo[0, t f ] is invertible,
then the initial state x(0) = x0 is uniquely determined by the
corresponding system output y(t), for t ∈ [0, t f ].

Conversely, if the Gramian matrix Wo[0, t f ] is singular for
some t f > 0, there exist a non zero xα such that

x∗αWo[0, t f ]xα = 0.

Choose xα = x0, then we have
∫ t f

0
y∗(t)y(t)dt

= x∗0

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt = 0.

It follows that ∫ t f

0
‖y(t)‖2dt = 0.

Therefore
y(t) =CΦα,1

(
E−1A, t

)
x0 = 0.

Since system is observable, it implies that x0 = 0. Which is the
contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 8. The system (1) is observable on [0, t f ] if and
only if

rankQo = rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

Proof. From Theorem 7, we have

y(t) =CΦα,1
(
E−1A, t

)
x0

x0 is uniquely determined by y(t) if and only if
CΦα,1

(
E−1A, t

)
is nonsingular. Using Cayley Hamilton

Theorem , we have

CΦα,1
(
E−1A, t

)
=C

n−1

∑
i=0

β i(t)(E
−1A)i.

It follows that

CΦα,1
(
E−1A, t

)
= ∑n−1

i=0 β i(t f )C(E−1A)i

=
(

β 0(t f ) β 1(t f ) . . . β n−1(t f )
)



C
C(E−1A)

...
C(E−1A)n−1




CΦα,1
(
E−1A, t

)
is nonsingular if and only if

rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

So, the system (1) is observable on [0, t f ] if and only if

rankQo = n.

Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
ĒDA, t

)
C∗CΦα,1

(
ĒDA, t

)
dt

is nonsingular for some t f > 0.
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is nonsingular for some tf  > 0.

Proof. We know that
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Case1: detE �= 0.

THEOREM 7. The system (1) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
dt

is nonsingular for some t f > 0.

Proof. We know that

x(t)=
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ+Φα,1

(
E−1A, t

)
x0.

The output will becomes

y(t) =C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ

+CΦα,1
(
E−1A, t

)
x0 +Du(t).

We define

y(t) = y(t)−C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ −Du(t).

Then
y(t) =CΦα,1

(
E−1A, t

)
x0.

It is obvious that observability of system (1) is equivalent to
the estimation of x0 from y(t).

Since y(t) and x0 are arbitrary, this returns in the estimation
of x0 from y(t) given by

y(t) =CΦα,1
(
E−1A, t

)
x0

as u(t)≡ 0.
If Wo[0, t f ] is nonsingular then W−1

o [0, t f ] is well defined.
Hence for arbitrary y(t), for t f > 0, we have the following ex-
pression

W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗y(t)dt

=W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt

=W−1
o [0, t f ]Wo[0, t f ]x0.

It follows that

W−1
o [0, t f ]

∫ t f

0
Φ

∗
α,1

(
E−1A, t

)
C∗y(t)dt = x0. (25)

The left side of (25) depends on y(t) ∈ [0, t f ], and (25) is a
linear algebraic equation of x0. Since Wo[0, t f ] is invertible,
then the initial state x(0) = x0 is uniquely determined by the
corresponding system output y(t), for t ∈ [0, t f ].

Conversely, if the Gramian matrix Wo[0, t f ] is singular for
some t f > 0, there exist a non zero xα such that

x∗αWo[0, t f ]xα = 0.

Choose xα = x0, then we have
∫ t f

0
y∗(t)y(t)dt

= x∗0

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt = 0.

It follows that ∫ t f

0
‖y(t)‖2dt = 0.

Therefore
y(t) =CΦα,1

(
E−1A, t

)
x0 = 0.

Since system is observable, it implies that x0 = 0. Which is the
contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 8. The system (1) is observable on [0, t f ] if and
only if

rankQo = rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

Proof. From Theorem 7, we have

y(t) =CΦα,1
(
E−1A, t

)
x0

x0 is uniquely determined by y(t) if and only if
CΦα,1

(
E−1A, t

)
is nonsingular. Using Cayley Hamilton

Theorem , we have

CΦα,1
(
E−1A, t

)
=C

n−1

∑
i=0

β i(t)(E
−1A)i.

It follows that

CΦα,1
(
E−1A, t

)
= ∑n−1

i=0 β i(t f )C(E−1A)i

=
(

β 0(t f ) β 1(t f ) . . . β n−1(t f )
)



C
C(E−1A)

...
C(E−1A)n−1




CΦα,1
(
E−1A, t

)
is nonsingular if and only if

rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

So, the system (1) is observable on [0, t f ] if and only if

rankQo = n.

Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
ĒDA, t

)
C∗CΦα,1

(
ĒDA, t

)
dt

is nonsingular for some t f > 0.
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Case1: detE �= 0.

THEOREM 7. The system (1) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
dt

is nonsingular for some t f > 0.

Proof. We know that

x(t)=
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ+Φα,1

(
E−1A, t

)
x0.

The output will becomes

y(t) =C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ

+CΦα,1
(
E−1A, t

)
x0 +Du(t).

We define

y(t) = y(t)−C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ −Du(t).

Then
y(t) =CΦα,1

(
E−1A, t

)
x0.

It is obvious that observability of system (1) is equivalent to
the estimation of x0 from y(t).

Since y(t) and x0 are arbitrary, this returns in the estimation
of x0 from y(t) given by

y(t) =CΦα,1
(
E−1A, t

)
x0

as u(t)≡ 0.
If Wo[0, t f ] is nonsingular then W−1

o [0, t f ] is well defined.
Hence for arbitrary y(t), for t f > 0, we have the following ex-
pression

W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗y(t)dt

=W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt

=W−1
o [0, t f ]Wo[0, t f ]x0.

It follows that

W−1
o [0, t f ]

∫ t f

0
Φ

∗
α,1

(
E−1A, t

)
C∗y(t)dt = x0. (25)

The left side of (25) depends on y(t) ∈ [0, t f ], and (25) is a
linear algebraic equation of x0. Since Wo[0, t f ] is invertible,
then the initial state x(0) = x0 is uniquely determined by the
corresponding system output y(t), for t ∈ [0, t f ].

Conversely, if the Gramian matrix Wo[0, t f ] is singular for
some t f > 0, there exist a non zero xα such that

x∗αWo[0, t f ]xα = 0.

Choose xα = x0, then we have
∫ t f

0
y∗(t)y(t)dt

= x∗0

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt = 0.

It follows that ∫ t f

0
‖y(t)‖2dt = 0.

Therefore
y(t) =CΦα,1

(
E−1A, t

)
x0 = 0.

Since system is observable, it implies that x0 = 0. Which is the
contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 8. The system (1) is observable on [0, t f ] if and
only if

rankQo = rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

Proof. From Theorem 7, we have

y(t) =CΦα,1
(
E−1A, t

)
x0

x0 is uniquely determined by y(t) if and only if
CΦα,1

(
E−1A, t

)
is nonsingular. Using Cayley Hamilton

Theorem , we have

CΦα,1
(
E−1A, t

)
=C

n−1

∑
i=0

β i(t)(E
−1A)i.

It follows that

CΦα,1
(
E−1A, t

)
= ∑n−1

i=0 β i(t f )C(E−1A)i

=
(

β 0(t f ) β 1(t f ) . . . β n−1(t f )
)



C
C(E−1A)

...
C(E−1A)n−1




CΦα,1
(
E−1A, t

)
is nonsingular if and only if

rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

So, the system (1) is observable on [0, t f ] if and only if

rankQo = n.

Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
ĒDA, t

)
C∗CΦα,1

(
ĒDA, t

)
dt

is nonsingular for some t f > 0.
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The output will become
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Case1: detE �= 0.

THEOREM 7. The system (1) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
dt

is nonsingular for some t f > 0.

Proof. We know that

x(t)=
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ+Φα,1

(
E−1A, t

)
x0.

The output will becomes

y(t) =C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ

+CΦα,1
(
E−1A, t

)
x0 +Du(t).

We define

y(t) = y(t)−C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ −Du(t).

Then
y(t) =CΦα,1

(
E−1A, t

)
x0.

It is obvious that observability of system (1) is equivalent to
the estimation of x0 from y(t).

Since y(t) and x0 are arbitrary, this returns in the estimation
of x0 from y(t) given by

y(t) =CΦα,1
(
E−1A, t

)
x0

as u(t)≡ 0.
If Wo[0, t f ] is nonsingular then W−1

o [0, t f ] is well defined.
Hence for arbitrary y(t), for t f > 0, we have the following ex-
pression

W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗y(t)dt

=W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt

=W−1
o [0, t f ]Wo[0, t f ]x0.

It follows that

W−1
o [0, t f ]

∫ t f

0
Φ

∗
α,1

(
E−1A, t

)
C∗y(t)dt = x0. (25)

The left side of (25) depends on y(t) ∈ [0, t f ], and (25) is a
linear algebraic equation of x0. Since Wo[0, t f ] is invertible,
then the initial state x(0) = x0 is uniquely determined by the
corresponding system output y(t), for t ∈ [0, t f ].

Conversely, if the Gramian matrix Wo[0, t f ] is singular for
some t f > 0, there exist a non zero xα such that

x∗αWo[0, t f ]xα = 0.

Choose xα = x0, then we have
∫ t f

0
y∗(t)y(t)dt

= x∗0

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt = 0.

It follows that ∫ t f

0
‖y(t)‖2dt = 0.

Therefore
y(t) =CΦα,1

(
E−1A, t

)
x0 = 0.

Since system is observable, it implies that x0 = 0. Which is the
contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 8. The system (1) is observable on [0, t f ] if and
only if

rankQo = rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

Proof. From Theorem 7, we have

y(t) =CΦα,1
(
E−1A, t

)
x0

x0 is uniquely determined by y(t) if and only if
CΦα,1

(
E−1A, t

)
is nonsingular. Using Cayley Hamilton

Theorem , we have

CΦα,1
(
E−1A, t

)
=C

n−1

∑
i=0

β i(t)(E
−1A)i.

It follows that

CΦα,1
(
E−1A, t

)
= ∑n−1

i=0 β i(t f )C(E−1A)i

=
(

β 0(t f ) β 1(t f ) . . . β n−1(t f )
)



C
C(E−1A)

...
C(E−1A)n−1




CΦα,1
(
E−1A, t

)
is nonsingular if and only if

rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

So, the system (1) is observable on [0, t f ] if and only if

rankQo = n.

Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
ĒDA, t

)
C∗CΦα,1

(
ĒDA, t

)
dt

is nonsingular for some t f > 0.
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It is obvious that observability of system (1) is equivalent to
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It follows that ∫ t f
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only if
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So, the system (1) is observable on [0, t f ] if and only if

rankQo = n.

Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗
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(
ĒDA, t

)
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only if the observability Gramian matrix

Wo[0, t f ] :=
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dt
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We define
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Then
y(t) =CΦα,1

(
E−1A, t

)
x0.

It is obvious that observability of system (1) is equivalent to
the estimation of x0 from y(t).

Since y(t) and x0 are arbitrary, this returns in the estimation
of x0 from y(t) given by

y(t) =CΦα,1
(
E−1A, t

)
x0

as u(t)≡ 0.
If Wo[0, t f ] is nonsingular then W−1

o [0, t f ] is well defined.
Hence for arbitrary y(t), for t f > 0, we have the following ex-
pression
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It follows that
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o [0, t f ]

∫ t f
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Φ

∗
α,1

(
E−1A, t

)
C∗y(t)dt = x0. (25)

The left side of (25) depends on y(t) ∈ [0, t f ], and (25) is a
linear algebraic equation of x0. Since Wo[0, t f ] is invertible,
then the initial state x(0) = x0 is uniquely determined by the
corresponding system output y(t), for t ∈ [0, t f ].

Conversely, if the Gramian matrix Wo[0, t f ] is singular for
some t f > 0, there exist a non zero xα such that

x∗αWo[0, t f ]xα = 0.

Choose xα = x0, then we have
∫ t f

0
y∗(t)y(t)dt

= x∗0

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt = 0.

It follows that ∫ t f

0
‖y(t)‖2dt = 0.

Therefore
y(t) =CΦα,1

(
E−1A, t

)
x0 = 0.

Since system is observable, it implies that x0 = 0. Which is the
contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 8. The system (1) is observable on [0, t f ] if and
only if

rankQo = rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

Proof. From Theorem 7, we have

y(t) =CΦα,1
(
E−1A, t

)
x0

x0 is uniquely determined by y(t) if and only if
CΦα,1

(
E−1A, t

)
is nonsingular. Using Cayley Hamilton

Theorem , we have

CΦα,1
(
E−1A, t

)
=C

n−1

∑
i=0

β i(t)(E
−1A)i.

It follows that

CΦα,1
(
E−1A, t

)
= ∑n−1

i=0 β i(t f )C(E−1A)i

=
(

β 0(t f ) β 1(t f ) . . . β n−1(t f )
)



C
C(E−1A)

...
C(E−1A)n−1




CΦα,1
(
E−1A, t

)
is nonsingular if and only if

rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

So, the system (1) is observable on [0, t f ] if and only if

rankQo = n.

Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
ĒDA, t

)
C∗CΦα,1

(
ĒDA, t

)
dt

is nonsingular for some t f > 0.
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Case1: detE �= 0.

THEOREM 7. The system (1) is observable on [0, t f ] if and
only if the observability Gramian matrix
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∫ t f
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)
C∗CΦα,1

(
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)
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)
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the estimation of x0 from y(t).
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)
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o [0, t f ] is well defined.
Hence for arbitrary y(t), for t f > 0, we have the following ex-
pression

W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗y(t)dt

=W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt

=W−1
o [0, t f ]Wo[0, t f ]x0.

It follows that

W−1
o [0, t f ]

∫ t f

0
Φ

∗
α,1

(
E−1A, t

)
C∗y(t)dt = x0. (25)

The left side of (25) depends on y(t) ∈ [0, t f ], and (25) is a
linear algebraic equation of x0. Since Wo[0, t f ] is invertible,
then the initial state x(0) = x0 is uniquely determined by the
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It follows that ∫ t f

0
‖y(t)‖2dt = 0.

Therefore
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)
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Since system is observable, it implies that x0 = 0. Which is the
contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 8. The system (1) is observable on [0, t f ] if and
only if

rankQo = rank
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C
C(E−1A)

...
C(E−1A)n−1



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Proof. From Theorem 7, we have

y(t) =CΦα,1
(
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)
x0

x0 is uniquely determined by y(t) if and only if
CΦα,1

(
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)
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It follows that
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So, the system (1) is observable on [0, t f ] if and only if

rankQo = n.

Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗
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(
ĒDA, t

)
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ĒDA, t
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dt
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Case1: detE �= 0.
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It follows that ∫ t f
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Therefore
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)
x0 = 0.

Since system is observable, it implies that x0 = 0. Which is the
contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 8. The system (1) is observable on [0, t f ] if and
only if
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
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...
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
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Proof. From Theorem 7, we have
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Theorem , we have

CΦα,1
(
E−1A, t

)
=C

n−1

∑
i=0

β i(t)(E
−1A)i.

It follows that

CΦα,1
(
E−1A, t

)
= ∑n−1

i=0 β i(t f )C(E−1A)i
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)

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

CΦα,1
(
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)
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


C
C(E−1A)

...
C(E−1A)n−1




= n.

So, the system (1) is observable on [0, t f ] if and only if

rankQo = n.

Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
ĒDA, t

)
C∗CΦα,1

(
ĒDA, t

)
dt

is nonsingular for some t f > 0.
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It is obvious that observability of system (1) is equivalent to 
the estimation of x0 from y(t).

Since y–(t) and x0 are arbitrary, this returns in the estimation 
of x0 from y(t) given by
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It follows that

W−1
o [0, t f ]

∫ t f

0
Φ

∗
α,1

(
E−1A, t

)
C∗y(t)dt = x0. (25)
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as u(t) ´ 0.
If Wo[0, tf ] is nonsingular then Wo

–1[0, tf ] is well defined. 
Hence for arbitrary y(t), for tf  > 0, we have the following ex-
pression
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The left side of (25) depends on y(t) ∈ [0, t f ], and (25) is a
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Therefore
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)
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Since system is observable, it implies that x0 = 0. Which is the
contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 8. The system (1) is observable on [0, t f ] if and
only if
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
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...
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rankQo = n.

Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
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The left side of (25) depends on y(t) 2 [0, tf ], and (25) is a linear 
algebraic equation of x0. Since Wo[0, tf ] is invertible, then the 
initial state x(0) = x0 is uniquely determined by the corre-
sponding system output y(t), for t 2 [0, tf ].

Conversely, if the Gramian matrix Wo[0, tf ] is singular for 
some tf  > 0, there exists a non zero xα such that
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ĒDA, t

)
dt

is nonsingular for some t f > 0.

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

.

Choosing xα = x0, we have
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x(t)=
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ+Φα,1

(
E−1A, t

)
x0.

The output will becomes

y(t) =C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ

+CΦα,1
(
E−1A, t

)
x0 +Du(t).

We define

y(t) = y(t)−C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ −Du(t).

Then
y(t) =CΦα,1

(
E−1A, t

)
x0.

It is obvious that observability of system (1) is equivalent to
the estimation of x0 from y(t).

Since y(t) and x0 are arbitrary, this returns in the estimation
of x0 from y(t) given by

y(t) =CΦα,1
(
E−1A, t

)
x0

as u(t)≡ 0.
If Wo[0, t f ] is nonsingular then W−1

o [0, t f ] is well defined.
Hence for arbitrary y(t), for t f > 0, we have the following ex-
pression

W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗y(t)dt

=W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt

=W−1
o [0, t f ]Wo[0, t f ]x0.

It follows that

W−1
o [0, t f ]

∫ t f

0
Φ

∗
α,1

(
E−1A, t

)
C∗y(t)dt = x0. (25)

The left side of (25) depends on y(t) ∈ [0, t f ], and (25) is a
linear algebraic equation of x0. Since Wo[0, t f ] is invertible,
then the initial state x(0) = x0 is uniquely determined by the
corresponding system output y(t), for t ∈ [0, t f ].

Conversely, if the Gramian matrix Wo[0, t f ] is singular for
some t f > 0, there exist a non zero xα such that

x∗αWo[0, t f ]xα = 0.

Choose xα = x0, then we have
∫ t f

0
y∗(t)y(t)dt

= x∗0

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt = 0.

It follows that ∫ t f

0
‖y(t)‖2dt = 0.

Therefore
y(t) =CΦα,1

(
E−1A, t

)
x0 = 0.

Since system is observable, it implies that x0 = 0. Which is the
contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 8. The system (1) is observable on [0, t f ] if and
only if

rankQo = rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

Proof. From Theorem 7, we have

y(t) =CΦα,1
(
E−1A, t

)
x0

x0 is uniquely determined by y(t) if and only if
CΦα,1

(
E−1A, t

)
is nonsingular. Using Cayley Hamilton

Theorem , we have

CΦα,1
(
E−1A, t

)
=C

n−1

∑
i=0

β i(t)(E
−1A)i.

It follows that

CΦα,1
(
E−1A, t

)
= ∑n−1

i=0 β i(t f )C(E−1A)i

=
(

β 0(t f ) β 1(t f ) . . . β n−1(t f )
)



C
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
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CΦα,1
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E−1A, t

)
is nonsingular if and only if

rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

So, the system (1) is observable on [0, t f ] if and only if

rankQo = n.

Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
ĒDA, t

)
C∗CΦα,1

(
ĒDA, t

)
dt

is nonsingular for some t f > 0.
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Therefore
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)
x0 = 0.

Since system is observable, it implies that x0 = 0. Which is the
contradiction, hence Wo[0, t f ] is nonsingular.
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C(E−1A)

...
C(E−1A)n−1
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Proof. From Theorem 7, we have
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x0 is uniquely determined by y(t) if and only if
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It follows that
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So, the system (1) is observable on [0, t f ] if and only if
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Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
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0
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(
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Since the system is observable, it implies that x0 = 0. This is a 
contradiction, hence Wo[0, tf ] is nonsingular.� □

Theorem 8. The system (1) is observable on [0, tf ] if and only if
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contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 8. The system (1) is observable on [0, t f ] if and
only if

rankQo = rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

Proof. From Theorem 7, we have

y(t) =CΦα,1
(
E−1A, t

)
x0

x0 is uniquely determined by y(t) if and only if
CΦα,1

(
E−1A, t

)
is nonsingular. Using Cayley Hamilton

Theorem , we have

CΦα,1
(
E−1A, t

)
=C

n−1

∑
i=0

β i(t)(E
−1A)i.

It follows that

CΦα,1
(
E−1A, t

)
= ∑n−1

i=0 β i(t f )C(E−1A)i
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C(E−1A)n−1




= n.

So, the system (1) is observable on [0, t f ] if and only if

rankQo = n.

Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
ĒDA, t

)
C∗CΦα,1

(
ĒDA, t

)
dt

is nonsingular for some t f > 0.
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y(t) = y(t)−C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ −Du(t).
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THEOREM 9. The system (7) is observable on [0, t f ] if and
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Therefore
y(t) =CΦα,1

(
E−1A, t

)
x0 = 0.

Since system is observable, it implies that x0 = 0. Which is the
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THEOREM 8. The system (1) is observable on [0, t f ] if and
only if

rankQo = rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

Proof. From Theorem 7, we have

y(t) =CΦα,1
(
E−1A, t

)
x0

x0 is uniquely determined by y(t) if and only if
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y(t) =C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ

+CΦα,1
(
E−1A, t

)
x0 +Du(t).

We define

y(t) = y(t)−C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ −Du(t).

Then
y(t) =CΦα,1

(
E−1A, t

)
x0.

It is obvious that observability of system (1) is equivalent to
the estimation of x0 from y(t).

Since y(t) and x0 are arbitrary, this returns in the estimation
of x0 from y(t) given by

y(t) =CΦα,1
(
E−1A, t

)
x0

as u(t)≡ 0.
If Wo[0, t f ] is nonsingular then W−1

o [0, t f ] is well defined.
Hence for arbitrary y(t), for t f > 0, we have the following ex-
pression

W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗y(t)dt

=W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt

=W−1
o [0, t f ]Wo[0, t f ]x0.

It follows that

W−1
o [0, t f ]

∫ t f

0
Φ

∗
α,1

(
E−1A, t

)
C∗y(t)dt = x0. (25)

The left side of (25) depends on y(t) ∈ [0, t f ], and (25) is a
linear algebraic equation of x0. Since Wo[0, t f ] is invertible,
then the initial state x(0) = x0 is uniquely determined by the
corresponding system output y(t), for t ∈ [0, t f ].

Conversely, if the Gramian matrix Wo[0, t f ] is singular for
some t f > 0, there exist a non zero xα such that

x∗αWo[0, t f ]xα = 0.

Choose xα = x0, then we have
∫ t f

0
y∗(t)y(t)dt

= x∗0

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt = 0.

It follows that ∫ t f

0
‖y(t)‖2dt = 0.

Therefore
y(t) =CΦα,1

(
E−1A, t

)
x0 = 0.

Since system is observable, it implies that x0 = 0. Which is the
contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 8. The system (1) is observable on [0, t f ] if and
only if

rankQo = rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

Proof. From Theorem 7, we have

y(t) =CΦα,1
(
E−1A, t

)
x0

x0 is uniquely determined by y(t) if and only if
CΦα,1

(
E−1A, t

)
is nonsingular. Using Cayley Hamilton

Theorem , we have

CΦα,1
(
E−1A, t

)
=C

n−1

∑
i=0

β i(t)(E
−1A)i.

It follows that

CΦα,1
(
E−1A, t

)
= ∑n−1

i=0 β i(t f )C(E−1A)i

=
(

β 0(t f ) β 1(t f ) . . . β n−1(t f )
)



C
C(E−1A)

...
C(E−1A)n−1




CΦα,1
(
E−1A, t

)
is nonsingular if and only if

rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

So, the system (1) is observable on [0, t f ] if and only if

rankQo = n.

Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
ĒDA, t

)
C∗CΦα,1

(
ĒDA, t

)
dt

is nonsingular for some t f > 0.
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Case1: detE �= 0.

THEOREM 7. The system (1) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
dt

is nonsingular for some t f > 0.

Proof. We know that

x(t)=
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ+Φα,1

(
E−1A, t

)
x0.

The output will becomes

y(t) =C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ

+CΦα,1
(
E−1A, t

)
x0 +Du(t).

We define

y(t) = y(t)−C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ −Du(t).

Then
y(t) =CΦα,1

(
E−1A, t

)
x0.

It is obvious that observability of system (1) is equivalent to
the estimation of x0 from y(t).

Since y(t) and x0 are arbitrary, this returns in the estimation
of x0 from y(t) given by

y(t) =CΦα,1
(
E−1A, t

)
x0

as u(t)≡ 0.
If Wo[0, t f ] is nonsingular then W−1

o [0, t f ] is well defined.
Hence for arbitrary y(t), for t f > 0, we have the following ex-
pression

W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗y(t)dt

=W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt

=W−1
o [0, t f ]Wo[0, t f ]x0.

It follows that

W−1
o [0, t f ]

∫ t f

0
Φ

∗
α,1

(
E−1A, t

)
C∗y(t)dt = x0. (25)

The left side of (25) depends on y(t) ∈ [0, t f ], and (25) is a
linear algebraic equation of x0. Since Wo[0, t f ] is invertible,
then the initial state x(0) = x0 is uniquely determined by the
corresponding system output y(t), for t ∈ [0, t f ].

Conversely, if the Gramian matrix Wo[0, t f ] is singular for
some t f > 0, there exist a non zero xα such that

x∗αWo[0, t f ]xα = 0.

Choose xα = x0, then we have
∫ t f

0
y∗(t)y(t)dt

= x∗0

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt = 0.

It follows that ∫ t f

0
‖y(t)‖2dt = 0.

Therefore
y(t) =CΦα,1

(
E−1A, t

)
x0 = 0.

Since system is observable, it implies that x0 = 0. Which is the
contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 8. The system (1) is observable on [0, t f ] if and
only if

rankQo = rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

Proof. From Theorem 7, we have

y(t) =CΦα,1
(
E−1A, t

)
x0

x0 is uniquely determined by y(t) if and only if
CΦα,1

(
E−1A, t

)
is nonsingular. Using Cayley Hamilton

Theorem , we have

CΦα,1
(
E−1A, t

)
=C

n−1

∑
i=0

β i(t)(E
−1A)i.

It follows that

CΦα,1
(
E−1A, t

)
= ∑n−1

i=0 β i(t f )C(E−1A)i

=
(

β 0(t f ) β 1(t f ) . . . β n−1(t f )
)



C
C(E−1A)

...
C(E−1A)n−1




CΦα,1
(
E−1A, t

)
is nonsingular if and only if

rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

So, the system (1) is observable on [0, t f ] if and only if

rankQo = n.

Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
ĒDA, t

)
C∗CΦα,1

(
ĒDA, t

)
dt

is nonsingular for some t f > 0.
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Case1: detE �= 0.

THEOREM 7. The system (1) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
dt

is nonsingular for some t f > 0.

Proof. We know that

x(t)=
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ+Φα,1

(
E−1A, t

)
x0.

The output will becomes

y(t) =C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ

+CΦα,1
(
E−1A, t

)
x0 +Du(t).

We define

y(t) = y(t)−C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ −Du(t).

Then
y(t) =CΦα,1

(
E−1A, t

)
x0.

It is obvious that observability of system (1) is equivalent to
the estimation of x0 from y(t).

Since y(t) and x0 are arbitrary, this returns in the estimation
of x0 from y(t) given by

y(t) =CΦα,1
(
E−1A, t

)
x0

as u(t)≡ 0.
If Wo[0, t f ] is nonsingular then W−1

o [0, t f ] is well defined.
Hence for arbitrary y(t), for t f > 0, we have the following ex-
pression

W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗y(t)dt

=W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt

=W−1
o [0, t f ]Wo[0, t f ]x0.

It follows that

W−1
o [0, t f ]

∫ t f

0
Φ

∗
α,1

(
E−1A, t

)
C∗y(t)dt = x0. (25)

The left side of (25) depends on y(t) ∈ [0, t f ], and (25) is a
linear algebraic equation of x0. Since Wo[0, t f ] is invertible,
then the initial state x(0) = x0 is uniquely determined by the
corresponding system output y(t), for t ∈ [0, t f ].

Conversely, if the Gramian matrix Wo[0, t f ] is singular for
some t f > 0, there exist a non zero xα such that

x∗αWo[0, t f ]xα = 0.

Choose xα = x0, then we have
∫ t f

0
y∗(t)y(t)dt

= x∗0

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt = 0.

It follows that ∫ t f

0
‖y(t)‖2dt = 0.

Therefore
y(t) =CΦα,1

(
E−1A, t

)
x0 = 0.

Since system is observable, it implies that x0 = 0. Which is the
contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 8. The system (1) is observable on [0, t f ] if and
only if

rankQo = rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

Proof. From Theorem 7, we have

y(t) =CΦα,1
(
E−1A, t

)
x0

x0 is uniquely determined by y(t) if and only if
CΦα,1

(
E−1A, t

)
is nonsingular. Using Cayley Hamilton

Theorem , we have

CΦα,1
(
E−1A, t

)
=C

n−1

∑
i=0

β i(t)(E
−1A)i.

It follows that

CΦα,1
(
E−1A, t

)
= ∑n−1

i=0 β i(t f )C(E−1A)i

=
(

β 0(t f ) β 1(t f ) . . . β n−1(t f )
)



C
C(E−1A)

...
C(E−1A)n−1




CΦα,1
(
E−1A, t

)
is nonsingular if and only if

rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

So, the system (1) is observable on [0, t f ] if and only if

rankQo = n.

Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
ĒDA, t

)
C∗CΦα,1

(
ĒDA, t

)
dt

is nonsingular for some t f > 0.
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Case1: detE �= 0.

THEOREM 7. The system (1) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
dt

is nonsingular for some t f > 0.

Proof. We know that

x(t)=
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ+Φα,1

(
E−1A, t

)
x0.

The output will becomes

y(t) =C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ

+CΦα,1
(
E−1A, t

)
x0 +Du(t).

We define

y(t) = y(t)−C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ −Du(t).

Then
y(t) =CΦα,1

(
E−1A, t

)
x0.

It is obvious that observability of system (1) is equivalent to
the estimation of x0 from y(t).

Since y(t) and x0 are arbitrary, this returns in the estimation
of x0 from y(t) given by

y(t) =CΦα,1
(
E−1A, t

)
x0

as u(t)≡ 0.
If Wo[0, t f ] is nonsingular then W−1

o [0, t f ] is well defined.
Hence for arbitrary y(t), for t f > 0, we have the following ex-
pression

W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗y(t)dt

=W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt

=W−1
o [0, t f ]Wo[0, t f ]x0.

It follows that

W−1
o [0, t f ]

∫ t f

0
Φ

∗
α,1

(
E−1A, t

)
C∗y(t)dt = x0. (25)

The left side of (25) depends on y(t) ∈ [0, t f ], and (25) is a
linear algebraic equation of x0. Since Wo[0, t f ] is invertible,
then the initial state x(0) = x0 is uniquely determined by the
corresponding system output y(t), for t ∈ [0, t f ].

Conversely, if the Gramian matrix Wo[0, t f ] is singular for
some t f > 0, there exist a non zero xα such that

x∗αWo[0, t f ]xα = 0.

Choose xα = x0, then we have
∫ t f

0
y∗(t)y(t)dt

= x∗0

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt = 0.

It follows that ∫ t f

0
‖y(t)‖2dt = 0.

Therefore
y(t) =CΦα,1

(
E−1A, t

)
x0 = 0.

Since system is observable, it implies that x0 = 0. Which is the
contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 8. The system (1) is observable on [0, t f ] if and
only if

rankQo = rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

Proof. From Theorem 7, we have

y(t) =CΦα,1
(
E−1A, t

)
x0

x0 is uniquely determined by y(t) if and only if
CΦα,1

(
E−1A, t

)
is nonsingular. Using Cayley Hamilton

Theorem , we have

CΦα,1
(
E−1A, t

)
=C

n−1

∑
i=0

β i(t)(E
−1A)i.

It follows that

CΦα,1
(
E−1A, t

)
= ∑n−1

i=0 β i(t f )C(E−1A)i

=
(

β 0(t f ) β 1(t f ) . . . β n−1(t f )
)



C
C(E−1A)

...
C(E−1A)n−1




CΦα,1
(
E−1A, t

)
is nonsingular if and only if

rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

So, the system (1) is observable on [0, t f ] if and only if

rankQo = n.

Case 2: detE = 0

THEOREM 9. The system (7) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
ĒDA, t

)
C∗CΦα,1

(
ĒDA, t

)
dt

is nonsingular for some t f > 0.
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Case1: detE �= 0.

THEOREM 7. The system (1) is observable on [0, t f ] if and
only if the observability Gramian matrix

Wo[0, t f ] :=
∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
dt

is nonsingular for some t f > 0.

Proof. We know that

x(t)=
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ+Φα,1

(
E−1A, t

)
x0.

The output will becomes

y(t) =C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ

+CΦα,1
(
E−1A, t

)
x0 +Du(t).

We define

y(t) = y(t)−C
∫ t

0
Φα,α

(
E−1A, t − τ

)
E−1Bu(τ)dτ −Du(t).

Then
y(t) =CΦα,1

(
E−1A, t

)
x0.

It is obvious that observability of system (1) is equivalent to
the estimation of x0 from y(t).

Since y(t) and x0 are arbitrary, this returns in the estimation
of x0 from y(t) given by

y(t) =CΦα,1
(
E−1A, t

)
x0

as u(t)≡ 0.
If Wo[0, t f ] is nonsingular then W−1

o [0, t f ] is well defined.
Hence for arbitrary y(t), for t f > 0, we have the following ex-
pression

W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗y(t)dt

=W−1
o [0, t f ]

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt

=W−1
o [0, t f ]Wo[0, t f ]x0.

It follows that

W−1
o [0, t f ]

∫ t f

0
Φ

∗
α,1

(
E−1A, t

)
C∗y(t)dt = x0. (25)

The left side of (25) depends on y(t) ∈ [0, t f ], and (25) is a
linear algebraic equation of x0. Since Wo[0, t f ] is invertible,
then the initial state x(0) = x0 is uniquely determined by the
corresponding system output y(t), for t ∈ [0, t f ].

Conversely, if the Gramian matrix Wo[0, t f ] is singular for
some t f > 0, there exist a non zero xα such that

x∗αWo[0, t f ]xα = 0.

Choose xα = x0, then we have
∫ t f

0
y∗(t)y(t)dt

= x∗0

∫ t f

0
Φ∗

α,1
(
E−1A, t

)
C∗CΦα,1

(
E−1A, t

)
x0dt = 0.

It follows that ∫ t f

0
‖y(t)‖2dt = 0.

Therefore
y(t) =CΦα,1

(
E−1A, t

)
x0 = 0.

Since system is observable, it implies that x0 = 0. Which is the
contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 8. The system (1) is observable on [0, t f ] if and
only if

rankQo = rank




C
C(E−1A)

...
C(E−1A)n−1




= n.

Proof. From Theorem 7, we have
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+(ĒĒD − I)∑q−1
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C(ĒĀD)n−1




= n.

Proof. Proof steps are same as Theorem 6.

REFERENCES

[1] K. Nishimoto, Fractional Calculus, Decartess Press, Koriama,
1984.

[2] K.B. Oldham and J. Spanier, The Fractional Calculus, Academ-
mic Press, New York, 1974.

[3] I. Podlubny, Fractional Differential Equations, Academic
Press, San Diego, 1999.

[4] E. Ahmeda, A. Elgazzar, "On fractional order differential equa-
tions model for nonlocal epidemics", J. Phys. A: Math. Gen.,
379 (2) 607-614 (2007).

[5] R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional Or-
der Systems Modeling and Control Applications, World Scien-
tific Publishing Co., Taiwan, 2010.
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C(ĒĀD)

...
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ĒDA, t

)
υ .

It is obvious that observability of system (7) is equivalent to
the estimation of x0 from y(t). Since y(t) and x0 are arbitrary,
this returns in the estimation of x0 from y(t) given

y(t) =CΦα,1
(
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C(ĒĀD)

...
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+(ĒĒD − I)∑q−1
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ĒDA, t

)
)∗C∗y(t)dt = υ . (26)

The left side of (26) depends on y(·), and (26) is a linear alge-
braic equation of υ . Since Wo[0, t f ] is invertible, then the initial
state υ is uniquely determined by the corresponding system
output y(t), for t ∈ [0, t f ].

On the other hand, if the Gramian matrix Wo[0, t f ] is singular
for some t f > 0, there exist a non zero xα such that

x∗αWo[0, t f ]xα = 0.

Choose xα = υ , then we have
∫ t f

0
(y(t))∗y(t)dt = υ∗

∫ t f

0
(Φα,1

(
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[6] A. Dzieliński, D. Sierociuk, and G. Sarwas, “Ultracapacitor pa-
rameters identification based on fractional order model”, Proc.
Eur. Control Conf. (ECC) 1, 196–200 (2009).

[7] N.M.F. Ferreira and J.A.T Machado, “Fractional-order hybrid
control of robotic manipulators”, Proc. 11th Int. Conf. Ad-
vanced Robotics, ICAR 1, 393–398 (2003).

[8] T. Kaczorek, Selected Problems of Fractional Systems Theory,
LNCIS Vol. 411. Springer, Heidelberg, 2011.
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Proof. Let us consider the solution of (7)

x(t) = Φα,1
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and the corresponding output is as follows
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ĒDA, t

)
υ +

∫ t

0
Φα,α

(
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Then it follows that
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It is obvious that observability of system (7) is equivalent to
the estimation of x0 from y(t). Since y(t) and x0 are arbitrary,
this returns in the estimation of x0 from y(t) given

y(t) =CΦα,1
(
ĒDA, t

)
υ

as u(t)≡ 0.
If Wo[0, t f ] is nonsingular then W−1

o [0, t f ] is well defined.
Hence for arbitrary y(t), for t f > 0, we can construct
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)∗C∗y(t)dt = υ . (26)

The left side of (26) depends on y(·), and (26) is a linear alge-
braic equation of υ . Since Wo[0, t f ] is invertible, then the initial
state υ is uniquely determined by the corresponding system
output y(t), for t ∈ [0, t f ].

On the other hand, if the Gramian matrix Wo[0, t f ] is singular
for some t f > 0, there exist a non zero xα such that

x∗αWo[0, t f ]xα = 0.

Choose xα = υ , then we have
∫ t f

0
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Which implies that
∫ t f

0
‖y(t)‖2dt = 0.

Since the system is observable, therefore, it follows that v = 0.
Which is the contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 10. The system (7) is observable on [0, t f ] if and
only if
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ĒDA, t − τ

)
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ĒDA, t

)
)∗C∗y(t)dt

=W−1
o [0, t f ]

∫ t f

0
(Φα,1

(
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[6] A. Dzieliński, D. Sierociuk, and G. Sarwas, “Ultracapacitor pa-
rameters identification based on fractional order model”, Proc.
Eur. Control Conf. (ECC) 1, 196–200 (2009).

[7] N.M.F. Ferreira and J.A.T Machado, “Fractional-order hybrid
control of robotic manipulators”, Proc. 11th Int. Conf. Ad-
vanced Robotics, ICAR 1, 393–398 (2003).

[8] T. Kaczorek, Selected Problems of Fractional Systems Theory,
LNCIS Vol. 411. Springer, Heidelberg, 2011.
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+(ĒĒD − I)∑q−1
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ȳ(t) = y(t)−C
∫ t

0
Φα,α

(
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ĒDB̄u(τ)dτ

+C

[
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ĒDA, t − τ

)
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k=0(ĒĀD)kĀDB̄u(kα)(t)

]
+Du(t).

Let us define
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ĒDA, t

)
υ .

It is obvious that observability of system (7) is equivalent to
the estimation of x0 from y(t). Since y(t) and x0 are arbitrary,
this returns in the estimation of x0 from y(t) given

y(t) =CΦα,1
(
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C(ĒĀD)

...
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ĒDA, t − τ

)
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+(ĒĒD − I)∑q−1
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ĒDA, t − τ

)
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C(ĒĀD)

...
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this returns in the estimation of x0 from y(t) given

y(t) =CΦα,1
(
ĒDA, t

)
υ

as u(t)≡ 0.
If Wo[0, t f ] is nonsingular then W−1

o [0, t f ] is well defined.
Hence for arbitrary y(t), for t f > 0, we can construct

W−1
o [0, t f ]

∫ t f

0
(Φα,1

(
ĒDA, t

)
)∗C∗y(t)dt

=W−1
o [0, t f ]

∫ t f

0
(Φα,1

(
ĒDA, t

)
)∗C∗CΦα,1

(
ĒDA, t

)
dtυ

=W−1
o [0, t f ]Wo[0, t f ]υ = υ

therefore,

W−1
o [0, t f ]

∫ t f

0
(Φα,1

(
ĒDA, t

)
)∗C∗y(t)dt = υ . (26)

The left side of (26) depends on y(·), and (26) is a linear alge-
braic equation of υ . Since Wo[0, t f ] is invertible, then the initial
state υ is uniquely determined by the corresponding system
output y(t), for t ∈ [0, t f ].

On the other hand, if the Gramian matrix Wo[0, t f ] is singular
for some t f > 0, there exist a non zero xα such that

x∗αWo[0, t f ]xα = 0.

Choose xα = υ , then we have
∫ t f

0
(y(t))∗y(t)dt = υ∗

∫ t f

0
(Φα,1

(
ĒDA, t

)
)∗C∗CΦα,1

(
ĒDA, t

)
dtυ

= υ∗Wo[0, t f ]υ = 0.

Which implies that
∫ t f

0
‖y(t)‖2dt = 0.

Since the system is observable, therefore, it follows that v = 0.
Which is the contradiction, hence Wo[0, t f ] is nonsingular.

THEOREM 10. The system (7) is observable on [0, t f ] if and
only if

rank




C
C(ĒĀD)

...
C(ĒĀD)n−1




= n.

Proof. Proof steps are same as Theorem 6.
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