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Abstract. This paper is aimed at reviewing the ring of retarded quasipolynomial meromorphic functions (RMS) that was recently introduced as 
a convenient control design tool for linear, time-invariant time delay systems (TDS). It has been found by the authors that the original definition 
does not constitute a ring and has some essential deficiencies, and hence it could not be used for an algebraic control design without a thorough 
reformulation which i.a. extends the usability to neutral TDS and to those with distributed delays. This contribution summarizes the original 
definition of RMS, simply highlights its deficiencies via examples, and suggests a possible new extended definition. Hence, the new ring of 
quasipolynomial meromorphic functions (RQM) is established to avoid confusion. The paper also investigates and introduces selected algebraic 
properties supported by some illustrative examples and concisely outlines its use in controller design.
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sional (2D) conception of algebraically independent derivative 
operators and delays. The existence and constructing of stabi-
lizing finite-dimensional compensators for non-commensurate 
TDS in the 2D polynomial ring was discussed in [9]. A general 
mathematical setting for the stabilization and control of TDS 
by the generalization of algebraic methods in 2D, with the 
ring of lumped and distributed delays and with the complexity 
of generalness, was first introduced in [10]. It is worth high-
lighting that quasipolynomials defined in this sense, regardless 
whether in 2D or purely in the Laplace transform operator s, 
are connected with commensurate delays. It is, however, rather 
restrictive for real applications to be focused on commensurate 
delays only since delays are naturally real-valued with arbitrary 
mutual ratios. Brethé and Loiseau [11] pointed out that the use 
of quasipolynomials in s does not permit to effectively handle 
some stabilization and control tasks and suggested the ring of 
pseudopolynomials. Linear algebra for commutative rings was 
summarized in [12]. A very useful overview including also the 
algebraic point of view of general systems with distribution 
was provided in [13] where notions such as the properness, 
stability, and minimum-phase systems, different from the fi-
nite-dimensional case, were given to the reader. Also, note that 
the so-called σ-algebra was used to investigate the complete 
controllability of stochastic models with finite distributed de-
lays in [14].

An effective way of dealing with control and stabilization 
tasks may consist of the introduction of the fractional rep-
resentation approach [15–17] that can be extended from ra-
tional transfer functions to TDS in various algebras [18], and 
is usually based on the solution of the Bézout identity [19]. 
One may take a rational approximation of exponential terms, 
which brings a loss of system dynamics information that can 
disproportionately increase the model order [20]. However, in 
the case of non-approximated transfer functions, there are many 
possibilities that might be confused with each other, such as the 
set of stable and proper retarded quasipolynomial meromor-

1.	 Introduction

We consider a general single-input single-output (SISO) linear 
time-invariant time delay system (TDS) as
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where nRx  is the vector of state variables, Ryu,  
stand, respectively, for the input and the output, Ai, Ai, 
 A~ , bi,  b~ , c ,  c~ , Hi represent vectors and matrices 

of compatible dimensions, Li 0  are lumped delays 
and convolution integrals express distributed delays [2], 
[3]. Commensurate delays are integer multiples of some 
base delay. If 0H i  for any i = 1, 2, ..., H , model (1) is 
called neutral; contrariwise, so-called retarded model is 
obtained. Delays can inherently act throughout various 
human activities [4], [5]. 

Regarding ring models rising from (1) or its part, from 
the historical point of view, the general concept of systems 
over rings [6] was firstly applied to infinite-dimensional 
linear systems by Kamen [7] via rings of distributions. Ring 
models for TDS with lumped delays were published in [8]; 
Sontag [9] introduced the ring of polynomials in delayed 
operators for both the commensurate and non-
commensurate delays. These approaches utilize the state 
space domain and arise from the two-dimensional (2D) 

conception of algebraically independent derivative 
operators and delays. The existence and constructing of 
stabilizing finite-dimensional compensators for non-
commensurate TDS in the 2D polynomial ring was 
discussed in [10]. A general mathematical setting for the 
stabilization and the control of TDS by the generalization 
of algebraic methods in 2D, with the ring of lumped and 
distributed delays and with the complexity of generalness, 
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quasipolynomials defined in this sense, regardless in 2D or 
purely in the Laplace transform operator s, are connected 
with commensurate delays. It is, however, rather restrictive 
for real applications to be focused on commensurate delays 
only since delays are naturally real-valued with arbitrary 
mutual ratios. Brethé and Loiseau [12] pointed out that the 
use of quasipolynomials in s does not permit to effectively 
handle some stabilization and control tasks and suggested 
the ring of pseudopolynomials. Linear algebra for 
commutative rings was summarized in [13]. A very useful 
overview including also the algebraic point of view of 
general systems with distribution was provided in [14] 
where notions such as the properness, stability, minimum-
phase systems different from the finite-dimensional case 
were given to the reader. Note also that so-called σ-algebra 
was used to investigate the complete controllability of 
stochastic models with finite distributed delays in [15]. 

An effective way how to deal with control and 
stabilization tasks may consist in the introduction of the 
fractional representation approach [16]-[18] that can be 
extended from rational transfer functions to TDS in various 
algebras [19] and it is usually based on the solution of the 
Bézout identity [20]. One may take a rational 
approximation of exponential terms, which brings a loss of 
system dynamics information and it can disproportionately 
increase the model order [21]. However, in the case of non-
approximated transfer functions, there are many 
possibilities that might be confused with each other, such 
as the set of stable and proper retarded quasipolynomial 
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where x 2 Rn is the vector of state variables, u, y 2 R stand 
for the input and the output, respectively, Ai, Ai, A
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c, c⁓ (τ), Hi represent vectors and matrices of compatible di-
mensions, 0 < ϑi ∙ L are lumped delays and the convolution 
integrals express distributed delays [1, 2]. Commensurate de-
lays are integer multiples of some base delay. If Hi  6= 0 for any 
i = 1, 2, ..., vH, model (1) is called neutral; contrariwise, the 
so-called retarded model is obtained. Delays can inherently act 
throughout various human activities [3, 4].

Regarding ring models rising from (1) or its part, from the 
historical point of view, the general concept of systems over 
rings [5] was first applied to infinite-dimensional linear systems 
by Kamen [6] via rings of distributions. Ring models for TDS 
with lumped delays were published in [7]. Sontag [8] introduced 
the ring of polynomials in delayed operators for both the com-
mensurate and non-commensurate delays. These approaches 
utilize the state space domain and arise from the two-dimen-
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phic functions (RMS) [21, 22], the Callier-Desoer class [23], 
the BBZ ring [24], the H1 set [16, 25], the algebra A [26], 
etc. The mutual inclusions and relations analysis and the de-
termination of the affiliation with the particular algebra pose 
a difficult task, mainly due to specific stability properties of 
neutral TDS [2, 27].

Within our research framework, we concentrate on the 
fractional representation in the RMS ring standing somewhere 
between H1, algebra A, and BIBO (bounded-input bound-
ed-output) stable fraction. It reflects the fact that that the 
z-transform and the Laplace transform operators are not inde-
pendent from the functional point of view, it does not require 
any rational approximation, it is not limited to commensurate 
delays, and it is simple enough and suitable to cope with prac-
tical stabilization and control tasks [28, 29].

Although the original definition of the ring [21] is sufficient 
to be used for control tasks in the overwhelming majority of 
cases, it suffers from some drawbacks which make the RMS 
structure inapplicable for many controlled plant models, such 
as those with distributed or neutral delays, as we have found 
during the work with RMS. In particular, it does not constitute 
a ring, which is an essential problem. Thus, the aim of this 
paper is to point out basic deficiencies in the definition, revise 
the concept of RMS and extend it; hence, the ring RQM is es-
tablished. Note that a preliminary attempt to analyze selected 
imperfections in the original definition was already made in 
[30], where, however, some ideas were not presented flawlessly 
and completely. Thus, the presented contribution provides in 
some sense completion and adjustment of our observations. 
The ideas and statements are illustrated by examples introduced 
throughout the paper to illuminate them for the reader who is 
supposed to be acquainted with basic algebraic notions, such as 
a ring or a field, and with the essentials of complex analysis. If 
necessary, uncommon notions and statements are provided here. 
It is worth noting that although the particular controller design 
in RQM is not the main message of this paper, an illustrative 
example is given as well. The reader is referred for details to 
the analogous topic solved for RQM e.g. in [29].

The paper is organized as follows. An overview of sta-
bility notions for system (1), elementary general algebraic 
terms and properties, basics of complex analysis and a sum-
mary of the original definition of RMS are provided in the 
preliminary Section 2, followed by the attention drawn to 
highlight its deficiencies given via examples. The revision 
giving rise to the definition of RQM and the consequential 
discussion are the content of Section 3. In Section 4, selected 
algebraic and functional properties of the revised ring defini-
tion are introduced. The usability of RQM for control design is 
outlined in Section 5 via a concise example. Finally, Section 
6 concludes the paper.

Thorough the paper, C, R, and N denote the set of com-
plex numbers, real numbers, and non-negative integers, re-
spectively. We use L(¢) for the Laplace transform of (¢). For 
s 2 C, Re(s) and Im(s) denote, respectively, the real part and 
imaginary part of s, C– := {s 2 C jRe(s) < 0}, C0

+ = C\C–,  
the set of polynomials is denoted as R[s]. It holds that 
(¢) 2 H1 , k(¢)k1 :=  sup

Re(s)¸0
j(¢)j < 1.

2.	 Preliminaries

The direct use of the Laplace transform to (1) yields the transfer 
function G(s) = b(s)/a(s), where a(s), b(s) are quasipolyno-
mials of the general form
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3. In Section 4, selected algebraic and functional properties 
of the revised ring definition are introduced. The usability 
of RMS for control design is outlined in Section 5 via a 
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Thorough the paper, C , R  and N  denote the set  of, 
respectively, complex numbers, real numbers, and non-
negative integers. We use  L  for the Laplace transform 

of   . For Cs , )Re(s  and )Im(s  denote, respectively, 
the real part and imaginary part of s , 
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2. Preliminaries 

The direct use of the Laplace transform to (1) yields the 
transfer function      sasbsG /  where    sbsa ,  are 
quasipolynomials of the general form 
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ij qssqssq i ,0,exp
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where if 0:  kk   then 0kq  holds for the retarded 
one, and k  such that 0,0  kk q  hold in the neutral 
case. 
 
2.1 TDS stability. Let us concisely introduce basic notions 
regarding TDS stability useful in the text hereinafter. 

Exponential stability simply agrees with the finite-
dimensional case, i.e. all system poles satisfying 

  0/1 sG  have (strictly) negative real parts. A system is 
said to be H∞ stable if   HsG  (i.e. the function is 

analytic and bounded in 
0C ) [19]. In particular for neutral 

TDS, a transfer function having no pole in 
0C  but an 

infinite sequence of poles with real parts converging to zero 
can be H∞ unstable due to unbounded gain at the imaginary 
axis. Further, a system is BIBO stable if a bounded input 
  1Mtu  , 01 M  a bounded output   2Mty  , 02 M

. The decision about BIBO stability is usually more 
difficult to analyze, and it holds that BIBO stability implies 
H∞ stability [19], [27]. 

Regarding very specific stability notions for TDS, 
formal stability (formulated primarily in the state space 
[32]) can be given in the parlance of the Laplace transfer 
function as follows: A neutral TDS is formally stable if it 
has only a finite number of poles in C , i.e. the rightmost 
vertical strip of poles of a neutral system does not reach or 
cross the imaginary axis. However, there is no simple rule 
how to ascertain formal stability from the transfer function; 
therefore, let us mention a similar yet a rather stronger 
stability notion – strong stability. This type of neutral TDS 
stability means that the vertical strip remains in C  when 
subjected to small variations in delays, i.e. a system 
remains formally stable. E.g. in [33], a simple strong 
stability criterion was provided as 

 11  
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where if 9k : τvk  6= 0, then qvk = 0 holds for the retarded one, 
and 9k, such that τvk  6= 0, qvk  6= 0 holds in the neutral case.
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criterion was provided as
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therefore, let us mention a similar yet a rather stronger 
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From the above introduced stability notions it is evident that 
the strong stability condition (3) implies the formal stability and 
it can be used as a sufficient formal stability test (with some 
conservativeness).

2.2. Algebraic and complex analysis notions, operations and 
properties. The reader is supposed to be acquainted with ele-
mentary algebraic notions (such as a ring, a field, an integral 
domain, an irreducible, and a prime element of the commuta-
tive ring), algebraic operations and features (the divisibility, 
the coprimeness, the associativity), and terms from complex 
analysis (poles of a meromorphic function, etc.). We add some 
less known ones, yet necessary for the further text, as well as 
selected results [33].

A ring R in which every nonzero noninvertible a 2 R can 
uniquely be decomposed in a product of a finite number of 
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irreducible or prime elements (except for the ordering and 
associativity) is called a unique factorization ring (UFR). If, 
moreover, R is an integral domain, the ring constitutes a unique 
factorization domain (UFD).

An ideal I of the ring R is a subset of R with the following 
properties: for every a, b 2 I it holds that a + b 2 I, and for 
each a 2 I and r 2 R it holds a ¢ r 2 I. Let be given 
M = {a1, a2, …, an} µ R; an intersection of all ideals of R 
containing M is called an ideal generated by M. Ideals of the 
form aR = {a ¢ r jr 2 R}, i.e. those generated by the single 
element a, are called principal. If every ideal of an integral 
domain is principal, a so-called principal ideal domain (ID) 
is obtained. In a Bézout domain, every finitely generated ideal 
is principal.

Proposition 2.1. Every principal ID is UFD. The converse is 
not true in general [33].

Definition 2.1. T1(s), T2(s) 2 H1 form a Bézout (coprime) fac-
torization iff [13], [19]:

	 inf
Re(s)¸0

(jT1(s)j + jT2(s)j) > 0.� (4)

Proposition 2.2. If a neutral TDS governed by the transfer func-
tion G(s) = B(s)/A(s), A(s), B(s) 2 H1 is BIBO stabilizable, 
then it holds that it admits a Bézout factorization over H1, that 
there exists a coprime pair X(s), Y(s) 2 H1 such that

	 A(s)X(s) + B(s)Y(s) = 1,� (5)

and that any coprime factorization G(s) = B(s)/A(s) is Bézout 
[13, 19].

Rephrasing Proposition 2.2, if (4) does not hold for a co-
prime factorization, the factorization is not Bézout and thus the 
system is not BIBO stabilizable. For an example of a coprime 
factorization not being Bézout, the reader is referred to [26] or 
Example 3.1 in this paper.

Proposition 2.3. In a Bézout domain R, for every pair  there 
exists the greatest common divisor (GCD) which satisfies the 
linear Diophantine equation [33]:

	

3 

From the above introduced stability notions it is evident 
that the strong stability condition (3) implies the formal 
stability and it can be used as a sufficient formal stability 
test (with some conservativeness). 

 
2.2 Algebraic and complex analysis notions, operations 
and properties. The reader is supposed to be acquainted 
with elementary algebraic notions (such as a ring, a field, an 
integral domain, an irreducible and a prime element of the 
commutative ring), algebraic operations and features (the 
divisibility, the coprimeness, the associativity) and terms 
from complex analysis (poles of a meromorphic function, 
etc.). We add some less known ones yet necessary for the 
further text, as well as selected results [34]. 

A ring R in which every nonzero noninvertible Ra  
can uniquely be decomposed in a product of a finite number 
of irreducible or prime elements (except for the ordering 
and associativity) is called a unique factorization ring 
(UFR). If, moreover, R is an integral domain, the ring 
constitutes a unique factorization domain (UFD). 

An ideal I of the ring R is a subset of R with the 
following properties:  For every Iba , , it holds that 

Iba  , and for each Ia  and Rr , it holds Ira 
. Let be given   RaaaM n  ,..., 21 ; an intersection of all 
ideals of R containing M  is called an ideal generated by 
M. Ideals of the form  RrraaR  | , i.e. those 
generated by the single element a  are called principal. If 
every ideal of an integral domain is principal, a so-called 
principal ideal domain (ID) is obtained. In a Bézout 
domain, every finitely generated ideal is principal. 
 
Proposition 2.1. [34] Every principal ID is UFD. The 
converse is not true in general. 
 
Definition 2.1. [14], [20]     HsTsT 21 ,  form a Bézout 
(coprime) factorization iff 


 

     0inf 210Re



sTsT

s
 (4)

Proposition 2.2. [14], [20] If a neutral TDS governed by 
the transfer function      ,/ sAsBsG       HsBsA ,  is 
BIBO stabilizable, then it hold that: It admits a Bézout 
factorization over H  and there exist a coprime pair 
    HsYsX , such that 

         1 sYsBsXsA  (5)

and any coprime factorization      sAsBsG /  is Bézout. 
 
Rephrasing Proposition 2.2, if (4) does not hold for a 

coprime factorization, the factorization is not Bézout and 
thus the system is not BIBO stabilizable. For an example of 
a coprime factorization not being Bézout, the reader is 
referred e.g. to [27] or Example 3.1 in this paper.  

Proposition 2.3. [34] In a Bézout domain R, for every pair 
Rba ,  there exists the greatest common divisor (GCD) 

which satisfies the linear Diophantine equation 


 

    Ryxy
ba

bx
ba

a
baybxa





,,1
,GCD,GCD

,GCD
(6)

The extended (generalized) Euclidean algorithm 
solving (6) – and also (5) – for a general Bézout ring R can 
be descried as follows: Set initial reminders as ar 1 , 

br 2 . In the ith iteration it holds that 

  nirrrrqrr iiiiiii ...,,4,3,, 1212   , where iq  is 
the quotient. It is always it is possible to write the identity 

iii ybxar   for some Ryx ii , . The eventual d  then 
equals the last nonzero reminder,  nrn ,0 . 

The whole procedure can be expressed in a table 
(matrix) form as follows 

 















dyx

tv
b
a 0

~
operations

matrix
elementary

~
10
01

 (7)

and then the result is determined by two equations 
dybxatbva  ,0 . 

In the case when the task is to solve (6) for any fixed 
Rc  on the right-hand side instead of  bad ,GCD  it is 

possible to use the extended Euclidean algorithm again (if 
a solution exists) in the following two possibilities. Either 
scheme (7) is used for c  instead of d  (generally, it is not 
necessary to achieve the zero entry on the upper right 
matrix corner), or cybxa  ~~  where  


d
cyy

d
cxx  ~,~  (8)

Note that a (particular) solution of (6), 00,yx , can be 
parameterized as  dbtxx /0  ,  datyy /0   for any 

Rt . 
 
Definition 2.2. A partially ordered set (poset) is an ordered 
pair  ,SP   where S  stands for the ground set of P  
and   expresses the partial order of P . For any Scba ,,  
it hold that: aa ; if ba  and ab , then ba  ; ba  
and cb  implies ca . 

 
2.3 RMS definition and its deficiencies. 
 
Definition 2.3. (RMS ring) [1]       MSRsdsnsT  / , 
where  sn ,  sd  are retarded quasipolynomials with 

.
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The extended (generalized) Euclidean algorithm solving (6) 
– and also (5) – for a general Bézout ring R can be descried as 
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iteration it holds that ri = ri–2 ¡ bqic¢ ri–1, ri–2 ¸ ri–1 ¸ ri, 
i = 3, 4, …, n, where qi is the quotient. It is always possible to 
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n < 1.

The whole procedure can be expressed in a table (matrix) 
form as follows:
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From the above introduced stability notions it is evident 
that the strong stability condition (3) implies the formal 
stability and it can be used as a sufficient formal stability 
test (with some conservativeness). 

 
2.2 Algebraic and complex analysis notions, operations 
and properties. The reader is supposed to be acquainted 
with elementary algebraic notions (such as a ring, a field, an 
integral domain, an irreducible and a prime element of the 
commutative ring), algebraic operations and features (the 
divisibility, the coprimeness, the associativity) and terms 
from complex analysis (poles of a meromorphic function, 
etc.). We add some less known ones yet necessary for the 
further text, as well as selected results [34]. 

A ring R in which every nonzero noninvertible Ra  
can uniquely be decomposed in a product of a finite number 
of irreducible or prime elements (except for the ordering 
and associativity) is called a unique factorization ring 
(UFR). If, moreover, R is an integral domain, the ring 
constitutes a unique factorization domain (UFD). 

An ideal I of the ring R is a subset of R with the 
following properties:  For every Iba , , it holds that 

Iba  , and for each Ia  and Rr , it holds Ira 
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ideals of R containing M  is called an ideal generated by 
M. Ideals of the form  RrraaR  | , i.e. those 
generated by the single element a  are called principal. If 
every ideal of an integral domain is principal, a so-called 
principal ideal domain (ID) is obtained. In a Bézout 
domain, every finitely generated ideal is principal. 
 
Proposition 2.1. [34] Every principal ID is UFD. The 
converse is not true in general. 
 
Definition 2.1. [14], [20]     HsTsT 21 ,  form a Bézout 
(coprime) factorization iff 
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Proposition 2.2. [14], [20] If a neutral TDS governed by 
the transfer function      ,/ sAsBsG       HsBsA ,  is 
BIBO stabilizable, then it hold that: It admits a Bézout 
factorization over H  and there exist a coprime pair 
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and any coprime factorization      sAsBsG /  is Bézout. 
 
Rephrasing Proposition 2.2, if (4) does not hold for a 

coprime factorization, the factorization is not Bézout and 
thus the system is not BIBO stabilizable. For an example of 
a coprime factorization not being Bézout, the reader is 
referred e.g. to [27] or Example 3.1 in this paper.  

Proposition 2.3. [34] In a Bézout domain R, for every pair 
Rba ,  there exists the greatest common divisor (GCD) 
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The extended (generalized) Euclidean algorithm 
solving (6) – and also (5) – for a general Bézout ring R can 
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br 2 . In the ith iteration it holds that 

  nirrrrqrr iiiiiii ...,,4,3,, 1212   , where iq  is 
the quotient. It is always it is possible to write the identity 
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and then the result is determined by two equations 
dybxatbva  ,0 . 

In the case when the task is to solve (6) for any fixed 
Rc  on the right-hand side instead of  bad ,GCD  it is 

possible to use the extended Euclidean algorithm again (if 
a solution exists) in the following two possibilities. Either 
scheme (7) is used for c  instead of d  (generally, it is not 
necessary to achieve the zero entry on the upper right 
matrix corner), or cybxa  ~~  where  
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cyy
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Note that a (particular) solution of (6), 00,yx , can be 
parameterized as  dbtxx /0  ,  datyy /0   for any 

Rt . 
 
Definition 2.2. A partially ordered set (poset) is an ordered 
pair  ,SP   where S  stands for the ground set of P  
and   expresses the partial order of P . For any Scba ,,  
it hold that: aa ; if ba  and ab , then ba  ; ba  
and cb  implies ca . 

 
2.3 RMS definition and its deficiencies. 
 
Definition 2.3. (RMS ring) [1]       MSRsdsnsT  / , 
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,� (7)

and then the result is determined by two equations b ¢ v + b ¢ t = 0, 
a ¢ x + b ¢ y = d.

In the case when the task is to solve (6) for any fixed c 2 R 
on the right-hand side instead of d = GDC(a, b), it is possible 
to use the extended Euclidean algorithm again (if a solution 
exists) in the following two possibilities. Either scheme (7) is 
used for c instead of d (generally, it is not necessary to achieve 
the zero entry on the upper right matrix corner), or ax⁓ + b ¢ y⁓ = c, 
where:
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From the above introduced stability notions it is evident 
that the strong stability condition (3) implies the formal 
stability and it can be used as a sufficient formal stability 
test (with some conservativeness). 

 
2.2 Algebraic and complex analysis notions, operations 
and properties. The reader is supposed to be acquainted 
with elementary algebraic notions (such as a ring, a field, an 
integral domain, an irreducible and a prime element of the 
commutative ring), algebraic operations and features (the 
divisibility, the coprimeness, the associativity) and terms 
from complex analysis (poles of a meromorphic function, 
etc.). We add some less known ones yet necessary for the 
further text, as well as selected results [34]. 
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(UFR). If, moreover, R is an integral domain, the ring 
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converse is not true in general. 
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Rephrasing Proposition 2.2, if (4) does not hold for a 

coprime factorization, the factorization is not Bézout and 
thus the system is not BIBO stabilizable. For an example of 
a coprime factorization not being Bézout, the reader is 
referred e.g. to [27] or Example 3.1 in this paper.  
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The extended (generalized) Euclidean algorithm 
solving (6) – and also (5) – for a general Bézout ring R can 
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and then the result is determined by two equations 
dybxatbva  ,0 . 

In the case when the task is to solve (6) for any fixed 
Rc  on the right-hand side instead of  bad ,GCD  it is 

possible to use the extended Euclidean algorithm again (if 
a solution exists) in the following two possibilities. Either 
scheme (7) is used for c  instead of d  (generally, it is not 
necessary to achieve the zero entry on the upper right 
matrix corner), or cybxa  ~~  where  
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Note that a (particular) solution of (6), 00,yx , can be 
parameterized as  dbtxx /0  ,  datyy /0   for any 

Rt . 
 
Definition 2.2. A partially ordered set (poset) is an ordered 
pair  ,SP   where S  stands for the ground set of P  
and   expresses the partial order of P . For any Scba ,,  
it hold that: aa ; if ba  and ab , then ba  ; ba  
and cb  implies ca . 

 
2.3 RMS definition and its deficiencies. 
 
Definition 2.3. (RMS ring) [1]       MSRsdsnsT  / , 
where  sn ,  sd  are retarded quasipolynomials with 

.� (8)

Note that a (particular) solution of (6), x0, y0, can be param-
eterized as x = x0 ±t(b/d), y = y0  t(a/d) for any t 2 R.

Definition 2.2. A partially ordered set (poset) is an ordered pair 
P = (S, ¹) where S stands for the ground set of P and ¹ ex-
presses the partial order of P. For any a, b, c 2 S it holds that: 
a¹a; if a¹b and b¹a, then a ´ b; a¹b and b¹ c implies 
a¹ c.

2.3. RMS definition and its deficiencies.

Definition 2.3. (RMS ring) [21] T(s) = n(s)/d(s) 2 RMS, where 
n(s) and d(s) are retarded quasipolynomials with degsd(s) = vd, 
and n(s) factorizable as n(s) = n⁓(s)exp(–τs), where n⁓(s) is a re-
tarded quasipolynomial with degsn⁓(s) = vn, τ > 0. Moreover, 
d(s) is stable in the sense that it has no zero si 2 ℂ0

+, and the 
ratio is proper in the sense vn ∙ vd.

A deeper insight into the formulation of Definition 2.3 
brings some imperfections into the light. First, the condition 
τ > 0 is undue restrictive or more probably a misprint, hence, 
the inequality τ ¸ 0 would be more natural instead. The car-
dinal drawback exists in the finding that the defined algebraic 
set does not constitute a ring, which is shown in the following 
example.

Example 2.1. Consider T1(s) = (s exp(–2s))/(s + 1) and 
T2(s) = ((s + 2)exp(–s))/(s + 1) satisfying Definition 2.3. The 
sum T1(s) + T2(s), however, does not meet the definition, since 
n⁓(s) = s(1 + exp(–s)) + 2exp(–s) is a neutral quasipolynomial. 
Although the RMS structure has been introduced to pursue re-
tarded TDS, this example indicates that it is necessary to include 
neutral terms in the definition.

Example 2.2. Another drawback comes from the requirement of 
a stable denominator. Consider the finite convolution expressing 
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distributed delays as y(t) = ∫0
1exp(τ)u(t ¡ τ)dτ giving rise to the 

transfer function

	

4 

  ds sd deg , and  sn  factorizable as 
     ssnsn  exp~  where  sn~  is a retarded 

quasipolynomial with   ns sn ~deg , 0 . Moreover, 

 sd  is stable in the meaning that it has no zero  0Cis , 
and the ratio is proper in the sense dn   . 

 
A deeper insight into the formulation of Definition 2.3 

brings some imperfections into the light. As first, the 
condition 0  is undue restrictive or more probably a 
misprint, hence, the inequality 0  would be more 
natural instead. The cardinal drawback insists in the finding 
the defined algebraic set does not constitute a ring, which 
is shown in the following example. 
 
Example 2.1. Consider       1/2exp1  ssssT  and 
        1/exp22  ssssT  satisfying Definition 2.3. 

The sum      sTsTsT 21  , however, does not meet the 
definition since       ssssn  exp2exp1~  is a 
neutral quasipolynomial. Although the RMS structure has 
been introduced to pursue retarded TDS, this example 
indicates that it is necessary to include neutral terms in the 
definition.  
 
Example 2.2. Another drawback comes from the 
requirement of a stable denominator. Consider the finite 
convolution expressing distributed delays as 
       1

0 dexp  tuty  giving rise to the transfer function 
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The function includes the denominator with root 10 s  
while the whole system is stable. Thus, an element of the ring 
can include a removable singularity in 

0C  not being poles. 

3. The extension of the conception, RQM 

Based on the examples above, we propose an extension of 
the conception of RMS called the RQM ring and provides the 
reader with a discussion on this definition. 
 
Definition 3.1. (RQM ring)       QMRsdsnsT  / , where 
 sn ,  sd  are neutral quasipolynomials (in general) and 
 sn  is factorizable as      ssnsn  exp~ , 0 . 

Moreover,  sT  is formally stable and   HsT . 
 
Discuss now some issues formulated within the 

definition. It is habitual that  sT  is proper; the condition 
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for some 0R , expresses that  sT  is proper in a more 
general way than the usual formulation via the highest s-
powers [27]. However, by comparison of the H  set with 
(10), it is evident that H  implies (10) since it is sufficient 
to take any positive R. 

Formal and H  stability would be touched in more 
detail. Loiseau et al. [32] stated that a system which is not 
formally stable is not H∞ and hence not BIBO stable and 
stabilizable; nevertheless, Partington and Bonnet [27] 
revised this statement and showed that a formally unstable 
TDS can be H∞ and BIBO stable but not stabilizable, see 
the following example. 
 
Example 3.1. Let be given three different neutral delayed 
systems governed by transfer functions 
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 It can be verified that all the functions in (11) have poles 
located in C  except for poles is  with   isIm  where 
the asymptotic vertical chain of roots tends to the imaginary 
axis. However, they cannot be considered as asymptotically 
(exponentially) stable since there is no 0  satisfying 

  isRe  for all is . These systems are neither strongly 
nor formally stable; condition (3) is not valid in any case. 
Numerical tests can show that 

1G , 22 


G , 

13 


G , hence HG1 , HGG 32 , . Moreover, as 

proved in [27], 1G  and 2G  are not BIBO stable but 3G  is 
BIBO stable. It means that formal instability does not 
automatically imply H  or BIBO instability. 
 

In addition, the requirement of formal (or strong) 
stability is not desirable only from the practical point of 
view resulting from the stability definitions but also from 
algebraic reasons. Consider a coprime factorization of 
system  sG2  from (11) over H  as 



The factorization is coprime in the sense that there is no 
nontrivial (nonunit) common factor of    sBsA , H , yet 
it is not Bézout (in infinity). As stated above, 2G  is formally 
unstable but from H . However, one can verify that 

  sA 1
H . Hence, although there is no noninvertible 

common factor of both to be cancelled, the fraction 
       sAsBsAsB 1/   seems that it implicitly performs 

such a cancelation. This yields a somewhat mismatch in the 

                 22
2 2/,2/,/  ssasAssbsBsAsBsG

.� (9)

The function includes the denominator with root s0 = 1 
while the whole system is stable. Thus, an element of the ring 
can include a removable singularity in C0

+ not being poles.

3.	 The extension of the conception RQM

Based on the examples above, we propose an extension of the 
conception of RMS, called the RQM ring, and provide the reader 
with a discussion on this definition.

Definition 3.1. (RQM ring) T(s) = n(s)/d(s) 2 RQM, where n(s), 
d(s) are neutral quasipolynomials (in general) and n(s) is factor-
izable as n(s) = n⁓(s)exp(–τs), τ ¸ 0. Moreover, T(s) is formally 
stable and T(s) 2 H1.

Discussed now will be some issues formulated within the 
definition. It is habitual that T(s) is proper; the condition
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  ds sd deg , and  sn  factorizable as 
     ssnsn  exp~  where  sn~  is a retarded 

quasipolynomial with   ns sn ~deg , 0 . Moreover, 

 sd  is stable in the meaning that it has no zero  0Cis , 
and the ratio is proper in the sense dn   . 

 
A deeper insight into the formulation of Definition 2.3 

brings some imperfections into the light. As first, the 
condition 0  is undue restrictive or more probably a 
misprint, hence, the inequality 0  would be more 
natural instead. The cardinal drawback insists in the finding 
the defined algebraic set does not constitute a ring, which 
is shown in the following example. 
 
Example 2.1. Consider       1/2exp1  ssssT  and 
        1/exp22  ssssT  satisfying Definition 2.3. 

The sum      sTsTsT 21  , however, does not meet the 
definition since       ssssn  exp2exp1~  is a 
neutral quasipolynomial. Although the RMS structure has 
been introduced to pursue retarded TDS, this example 
indicates that it is necessary to include neutral terms in the 
definition.  
 
Example 2.2. Another drawback comes from the 
requirement of a stable denominator. Consider the finite 
convolution expressing distributed delays as 
       1

0 dexp  tuty  giving rise to the transfer function 
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The function includes the denominator with root 10 s  
while the whole system is stable. Thus, an element of the ring 
can include a removable singularity in 

0C  not being poles. 

3. The extension of the conception, RQM 

Based on the examples above, we propose an extension of 
the conception of RMS called the RQM ring and provides the 
reader with a discussion on this definition. 
 
Definition 3.1. (RQM ring)       QMRsdsnsT  / , where 
 sn ,  sd  are neutral quasipolynomials (in general) and 
 sn  is factorizable as      ssnsn  exp~ , 0 . 

Moreover,  sT  is formally stable and   HsT . 
 
Discuss now some issues formulated within the 

definition. It is habitual that  sT  is proper; the condition 
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for some 0R , expresses that  sT  is proper in a more 
general way than the usual formulation via the highest s-
powers [27]. However, by comparison of the H  set with 
(10), it is evident that H  implies (10) since it is sufficient 
to take any positive R. 

Formal and H  stability would be touched in more 
detail. Loiseau et al. [32] stated that a system which is not 
formally stable is not H∞ and hence not BIBO stable and 
stabilizable; nevertheless, Partington and Bonnet [27] 
revised this statement and showed that a formally unstable 
TDS can be H∞ and BIBO stable but not stabilizable, see 
the following example. 
 
Example 3.1. Let be given three different neutral delayed 
systems governed by transfer functions 
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 It can be verified that all the functions in (11) have poles 
located in C  except for poles is  with   isIm  where 
the asymptotic vertical chain of roots tends to the imaginary 
axis. However, they cannot be considered as asymptotically 
(exponentially) stable since there is no 0  satisfying 

  isRe  for all is . These systems are neither strongly 
nor formally stable; condition (3) is not valid in any case. 
Numerical tests can show that 

1G , 22 


G , 

13 


G , hence HG1 , HGG 32 , . Moreover, as 

proved in [27], 1G  and 2G  are not BIBO stable but 3G  is 
BIBO stable. It means that formal instability does not 
automatically imply H  or BIBO instability. 
 

In addition, the requirement of formal (or strong) 
stability is not desirable only from the practical point of 
view resulting from the stability definitions but also from 
algebraic reasons. Consider a coprime factorization of 
system  sG2  from (11) over H  as 



The factorization is coprime in the sense that there is no 
nontrivial (nonunit) common factor of    sBsA , H , yet 
it is not Bézout (in infinity). As stated above, 2G  is formally 
unstable but from H . However, one can verify that 

  sA 1
H . Hence, although there is no noninvertible 

common factor of both to be cancelled, the fraction 
       sAsBsAsB 1/   seems that it implicitly performs 

such a cancelation. This yields a somewhat mismatch in the 

                 22
2 2/,2/,/  ssasAssbsBsAsBsG

jT(s)j > 1� (10)

for some R > 0, expresses that T(s) is proper in a more general 
way than the usual formulation via the highest s-powers [26]. 
However, by comparison of the H1 set with (10), it is evident 
that H1 implies (10), since it is sufficient to take any positive R.

Formal and H1 stability will be discussed in more detail. 
Loiseau et al. [31] stated that a system which is not formally 
stable is not H∞ and hence, not BIBO stable and stabilizable. 
Nevertheless, Partington and Bonnet [26] revised this statement 
and showed that a formally unstable TDS can be H1 and BIBO 
stable but not stabilizable, as seen in the following example.

Example 3.1. Let be given three different neutral delayed sys-
tems governed by transfer functions:
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  ds sd deg , and  sn  factorizable as 
     ssnsn  exp~  where  sn~  is a retarded 

quasipolynomial with   ns sn ~deg , 0 . Moreover, 

 sd  is stable in the meaning that it has no zero  0Cis , 
and the ratio is proper in the sense dn   . 

 
A deeper insight into the formulation of Definition 2.3 

brings some imperfections into the light. As first, the 
condition 0  is undue restrictive or more probably a 
misprint, hence, the inequality 0  would be more 
natural instead. The cardinal drawback insists in the finding 
the defined algebraic set does not constitute a ring, which 
is shown in the following example. 
 
Example 2.1. Consider       1/2exp1  ssssT  and 
        1/exp22  ssssT  satisfying Definition 2.3. 

The sum      sTsTsT 21  , however, does not meet the 
definition since       ssssn  exp2exp1~  is a 
neutral quasipolynomial. Although the RMS structure has 
been introduced to pursue retarded TDS, this example 
indicates that it is necessary to include neutral terms in the 
definition.  
 
Example 2.2. Another drawback comes from the 
requirement of a stable denominator. Consider the finite 
convolution expressing distributed delays as 
       1

0 dexp  tuty  giving rise to the transfer function 
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The function includes the denominator with root 10 s  
while the whole system is stable. Thus, an element of the ring 
can include a removable singularity in 

0C  not being poles. 

3. The extension of the conception, RQM 

Based on the examples above, we propose an extension of 
the conception of RMS called the RQM ring and provides the 
reader with a discussion on this definition. 
 
Definition 3.1. (RQM ring)       QMRsdsnsT  / , where 
 sn ,  sd  are neutral quasipolynomials (in general) and 
 sn  is factorizable as      ssnsn  exp~ , 0 . 

Moreover,  sT  is formally stable and   HsT . 
 
Discuss now some issues formulated within the 

definition. It is habitual that  sT  is proper; the condition 


 

  


sT
Rss ,0Re

sup  (10)

for some 0R , expresses that  sT  is proper in a more 
general way than the usual formulation via the highest s-
powers [27]. However, by comparison of the H  set with 
(10), it is evident that H  implies (10) since it is sufficient 
to take any positive R. 

Formal and H  stability would be touched in more 
detail. Loiseau et al. [32] stated that a system which is not 
formally stable is not H∞ and hence not BIBO stable and 
stabilizable; nevertheless, Partington and Bonnet [27] 
revised this statement and showed that a formally unstable 
TDS can be H∞ and BIBO stable but not stabilizable, see 
the following example. 
 
Example 3.1. Let be given three different neutral delayed 
systems governed by transfer functions 
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 It can be verified that all the functions in (11) have poles 
located in C  except for poles is  with   isIm  where 
the asymptotic vertical chain of roots tends to the imaginary 
axis. However, they cannot be considered as asymptotically 
(exponentially) stable since there is no 0  satisfying 

  isRe  for all is . These systems are neither strongly 
nor formally stable; condition (3) is not valid in any case. 
Numerical tests can show that 

1G , 22 


G , 

13 


G , hence HG1 , HGG 32 , . Moreover, as 

proved in [27], 1G  and 2G  are not BIBO stable but 3G  is 
BIBO stable. It means that formal instability does not 
automatically imply H  or BIBO instability. 
 

In addition, the requirement of formal (or strong) 
stability is not desirable only from the practical point of 
view resulting from the stability definitions but also from 
algebraic reasons. Consider a coprime factorization of 
system  sG2  from (11) over H  as 



The factorization is coprime in the sense that there is no 
nontrivial (nonunit) common factor of    sBsA , H , yet 
it is not Bézout (in infinity). As stated above, 2G  is formally 
unstable but from H . However, one can verify that 

  sA 1
H . Hence, although there is no noninvertible 

common factor of both to be cancelled, the fraction 
       sAsBsAsB 1/   seems that it implicitly performs 

such a cancelation. This yields a somewhat mismatch in the 

                 22
2 2/,2/,/  ssasAssbsBsAsBsG

� (11)

It can be verified that all the functions in (11) have poles 
located in C– except for poles si with Im(si)→1, where the 
asymptotic vertical chain of roots tends to the imaginary axis. 
However, they cannot be considered as asymptotically (expo-
nentially) stable since there is no α > 0 satisfying Re(si) ∙ –α 
for all si. These systems are neither strongly nor formally stable; 
condition (3) is not valid in any case. Numerical tests show 
that kG1k1 = 1, kG2k1 = 2, kG3k1 = 1, hence G1 2/ H1, 
G2, G3 2 H1. Moreover, as proved in [26], G1 and G2 are not 

BIBO stable but G3 is BIBO stable. It means that formal in-
stability does not automatically imply H1 or BIBO instability.

In addition, the requirement of formal (or strong) stability 
is not desirable only from the practical point of view, resulting 
from the stability definitions, but also for algebraic reasons. 
Consider a coprime factorization of system G2(s) from (11) 
over H1 as

G2(s) = B(s)/A(s), B(s) = b(s)/(s + 2)2, A(s) = a(s)/(s + 2)2

The factorization is coprime in the sense that there is no 
nontrivial (nonunit) common factor of A(s), B(s) 2 H1, yet it 
is not Bézout (in infinity). As stated above, G2 is formally un-
stable, but from H1. However, one can verify that A–1(s) 2/ H1. 
Hence, although there is no noninvertible common factor of 
both to be cancelled, the fraction B(s)/A(s) = B(s)A–1(s) seems 
to implicitly perform such a cancelation. This yields somewhat 
of a mismatch in the ring definition since there is not an un-
ambiguous answer whether A(s) is a unit (i.e. an invertible el-
ement) or not. Obviously, if A(s), B(s) were not coprime, it 
would not pose a problem, since the particular nonunit factor 
would be canceled by the division A(s), B(s) 2 H1. Moreover, 
if G2 was formally stable, the inversion A–1(s) would also be 
included in H1 and hence, A(s) would be considered invertible. 
To sum up, the set H1 itself cannot be a sufficient candidate for 
the RQM ring due to the existence of formally unstable neutral 
TDS, and formal (or strong) stability is desirable to be required 
in the definition.

Last but not least, the question is why cannot the strong 
stability though a simple test (3) be included in the definition of 
RQM. Consider the strongly stable denominator quasipolynomial 
a(s) = (1 + 0.9exp(–s))s + 1 of some T(s) 2 H1. Clearly the 
square a–(s) = a2(s) has ja–11j + ja–21j = 1.8 + 0.81 = 2.61 > 1, 
i.e. T 2(s) is strongly unstable but formally stable since T(s) and 
T 2(s) own the same spectrum, except for poles multiplicities (it 
is generalized in Proposition 3.1, the proof of which is intro-
duced in the Appendix).

Proposition 3.1. Given two formally stable neutral terms 
T1(s), T2(s) 2 H1, the formal stability property over H1 is 
closed under addition and multiplication.

The primary task in the control design is to stabilize the con-
trol feedback system, therefore it is desirable to get the element 
of RQM from H1 and, from the examples above, to ensure that it 
is, in addition, formally stable. Moreover, if the neutral system 
is of a nonzero relative order, one may wish for it to be formally 
stable as well as to avoid a formally unstable numerator qua-
sipolynomial in T(s) 2 RQM, and thus to have a Bézout coprime 
stabilizing pair, which, however, is not possible in all cases [26]. 
Note that the relative order of neutral system G(s) = b(s)/a(s) 
equals degsa(s) ¡ degsb(s).

4.	 Some RQM properties and operations

Adopting the concept of the RQM ring established in Defini-
tion 3.1 we are going to derive and provide some elementary 
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algebraic properties of the ring, along with the presentation of 
operation over the ring useful for control design, in the fol-
lowing subsections.

4.1. Algebraic properties.

Lemma 4.1. The RQM set constitutes a commutative ring.

The proof is given to the reader in the Appendix.

Lemma 4.2. An element T(s) 2 RQM is a unit (i.e. an invertible 
element) iff T(s) has zero relative order, has no zero z0 such that 
Re z0 ¸ 0, and has a formally stable numerator.

Proof. The proof is evident since the required relative order 
ensures the properness of T –1(s), stable zeros give rise to stable 
poles of the inversion, and a formally stable numerator trans-
forms into a formally stable denominator. The reader can easily 
deduce that both the required implications are clear.

Lemma 4.3. An element T(s) 2 RQM is irreducible iff its nu-
merator is formally stable and

	 OR + NU ∙ 1,� (12)

where OR ¸ 0 stands for the relative order of T(s) and NU ¸ 0 is 
the number of real zeros sU, i, i = 1, 2, …, NU or conjugate pairs 
sU, i, s–U, i, i = 1, 2, …, NU with Re(ssU, i) ¸ 0 and Re(s–U, i) ¸ 0 (ex-
cluding infinity) of T(s), respectively.

Again, the proof can be found in the Appendix.

Lemma 4.4. The RQM ring constitutes an integral domain; how-
ever, it is not a UFD.

See Appendix for proof.

Lemma 4.5. The RQM ring does not constitute a principal ID.
The proof is clearly seen from Lemma 4.4 and Proposi-

tion 2.1.

Lemma 4.6. The RQM ring does not constitute a Bézout do-
main.

A proof that can be done using Propositions 2.2 and 2.3 is 
omitted since the lemma is not constructive for the practice.

4.2. Algebraic operations. Dealing with algebraic control de-
sign for a TDS, a (Bézout) coprime factorization, by which the 
transfer function is decomposed into a coprime (or relatively 
prime) pair of ring elements (see e.g. Example 3.1), and the 
solution of the Bézout identity (5) or (6), leading to a stable 
feedback system, are one of the mostly used operations. Hence, 
let us briefly present some details about these techniques over 
the RQM ring.

The crucial problem is to decide whether for a particular 
T1(s), T2(s) 2 RQM it holds true that T1(s) divides T2(s), i.e. if 
T2(s)/T1(s) 2 RQM.

Lemma 4.7. Any T1(s) = n1(s)/d1(s) 2 RQM divides T2(s) = 
= n2(s)/d2(s) 2 RQM, or T1(s)jT2(s), iff all finite zeros zi 2 C0

+ 
of T1(s) are those of T2(s), the relative order of T1(s) is less or 
equal to the relative order of T2(s), and all formally unstable 
factors of the numerator of T1(s) are those of T2(s).

The proof of Lemma 4.7 is evident and therefore can be 
omitted.

Remark 4.1. Dealing with TDS brings about an interesting 
feature which is unparalleled to a finite-dimensional case, 
where if T(s) = n(s)/d(s), n(s), d(s) 2 R[s], and deg d(s) > de-
g n(s), there exists at least one zero jz0j → 1. This, how-
ever, is not true for quasipolynomials and their fractions. Let 
a term T(s) = n(s)/d(s) 2 RQM with degsd(s) > degsn(s) and 
no common roots of the numerator and the denominator be 
considered. Choose ε > 0 and consider a chain of poles si 
of T(s), where 9n, 8i > n :jsij > 1/ε. Then, the limit limjs-

j>1/ε, ε →  0T(s) = limjσj<ε, ε →  0T(1/σ) = limjσj<ε, ε →  0F(σ) does 
not exist, since whenever the zero of F(s) is approached on the 
disk D(0, ε) outside the points σi  = si

–1, the limit goes to zero, 
whereas the limit reaches infinity exactly at these points. It 
means that in jsj → 1 function T(s) has the so-called essential 
singularities and there is no zero in infinity of the function. 
Therefore, the formulation including the statement about zeros 
in infinity, habitual for a finite-dimensional case [20], cannot 
be used in Lemma 4.7.

Regarding the coprime factorization, recall that problems 
appear when dealing with neutral TDS or with those including 
distributed delays. An example of coprime, yet not Bézout fac-
torization of a formally unstable neutral TDS was demonstrated 
in Example 3.1 and e.g. in [26]. The task is to obtain a coprime 
pair for a (formally stable) TDS.

Lemma 4.8. Consider a TDS governed by the transfer function 
G(s) = b(s)/a(s) where a(s), b(s) are quasipolynomials with 
degsb(s) ∙ degsa(s). The system has a coprime factorization
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Lemma 4.7. Any       QMRsdsnsT  111 /  divides 
      QMRsdsnsT  222 / , or    sTsT 21 | , iff all finite 

zeros  0Ciz  of  sT1  are those of  sT2 , the relative order 
of   sT1  is less or equal to the relative order of  sT2 , and 
all formally unstable factors of the numerator of  sT1  are 
those of  sT2 . 
 

The proof of Lemma 4.7 evident and hence can be 
omitted. 
 
Remark 4.1. Dealing with TDS brings about an interesting 
feature which is unparalleled to a finite-dimensional case, 
where if      sdsnsT / ,    sdsn ,  sR  and 

   snsd degdeg  , there exists at least one zero 0z  . 
This is, however, not true for quasipolynomials and their 
fractions. Let a term       QMRsdsnsT  /  with 

   snsd ss degdeg   and no common roots of the numerator 
and the denominator be considered. Choose 0  and 
consider a chain of poles is  of  sT  where 

/1:,  isnin . Then the limit  sTs 0,/1lim    

     FT 0,0, lim/1lim    does not exist since 

whenever the zero of  sF  is approached on the disk  

 ,0D  outside the points 1 ii s , the limit goes to zero; 
whereas, the limit reaches infinity exactly at these points. It 
means that in s  function  sT  has so-called essential 
singularities and there is no zero in infinity of the function. 
Therefore the formulation including the statement about 
zeros in infinity, habitual for a finite-dimensional case [21], 
cannot be used in Lemma 4.7. 

Regarding the coprime factorization, recall that 
problems appear when dealing with neutral TDS or with 
those including distributed delays. An example of coprime, 
yet not Bézout, factorization of a formally unstable neutral 
TDS was demonstrated in Example 3.1 and e.g. in [27]. The 
task is to obtain a coprime pair for a (formally stable) TDS. 
 
Lemma 4.8. Consider a TDS governed by the transfer 
function      sasbsG /  where  sa ,  sb  are 
quasipolynomials with    sasb ss degdeg  . The system 
has a coprime factorization 

    
 

 
 
 
 

 
 sA
sB

sm
sa
sm
sb

sa
sbsG   (13) 

over RQM, i.e.     MSRsBsA ,  are coprime or relatively 
prime, iff    sasm ss degdeg   and all common roots 

     0,0: Ciiii ssbsas  are the only unstable roots of 
formally stable (quasi)polynomial  sm . 
 

For a proof, the reader is referred to Appendix. Note 
that the coprime factorization according to Lemma 4.8 does 
not imply that it is a Bézout one, and also that even if it 
exists a noninvertible   QMRsT   for      sTsAsA ~

 , 
 sA  can still be irreducible since  sT  might be associated 

with  sA  and  sA~  be a unit; therefore, Lemma 4.3 cannot 
be used directly in the proof. 

 
Example 4.1. Consider a simple system with distributed 
delays governed by the transfer function (9) and suggest a 
coprime factorization. In this case, the common 
denominator (quasi)polynomial  sm  cannot be stable 
since it would lead to scheme (22). Hence,  sm  must 
include all common zeros is  with 0Re is . Thus, the 
coprime factorization should read 

     
   

 
 sA
sB

s
s
s

s

s
ssG 













1
1
1
exp1exp1

1
exp1exp1 (14) 

Remark 4.2. The concept of the QMR  ring resulting in 
Lemma 4.8 excludes the existence of a coprime factorization 
(or QMR  elements) for some mathematical “monsters”. For 
instance, assume hypothetically the following transfer 
function            sssasbsG 2exp1/3exp1/  , 
where both the neutral quasipolynomials  sa ,  sb  are 
formally unstable with their roots j1,, ks kka  , 

j,3/21,, ks kkb  Nk , respectively. Thus, there exists 
an infinite number of different unstable roots of  sA  and 
 sB ; however, there are also infinitely many common 

unstable roots   ksss kkBkkAkk 2,LCM 1,,1,,1,   , where 
LCM(.,.) denotes the least common multiple. The monic 
quasipolynomial of the zero degree owning exactly roots 

1, kks  reads    ssm  exp1 . The coprime (even Bézout 
coprime) factorization would be      smsasA / , 
     smsbsB / . Obviously,     QMRsBsA ,  according 

to Definition 2.3 due to the formally unstable denominator; 
however, both the expressions have no pole in 

0C  and it is 
possible to establish a ring concept that would accept such 
terms and factorizations. Nevertheless, it is arguable whether 
this endeavour would be useful and desirable from the 
practical point of view. 
 

Finally, let us look at the solution of the Bézout identity 
over QMR  which is closely related to the existence of a 

� (13)

over RQM, i.e. A(s), B(s) 2 RMS are coprime or relatively prime iff 
degsm(s) = degsa(s) and all common roots si : a(si) = b(si) = 0, 
si 2 C0

+ are the only unstable roots of the formally stable (quasi)
polynomial m(s).

For a proof, the reader is referred to Appendix. Note that 
the coprime factorization, according to Lemma 4.8, does not 
imply that it is a Bézout one, and also that even if it exists, 
a noninvertible T(s) 2 RQM for A(s) = A⁓(s)T(s) A(s) can still be 
irreducible since T(s) might be associated with A(s) and A⁓(s) 
might be a unit. Therefore, Lemma 4.3 cannot be used directly 
in the proof.

Example 4.1. Consider a simple system with distributed delays 
governed by the transfer function (9) and suggest a coprime fac-
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torization. In this case, the common denominator (quasi)poly-
nomial m(s) cannot be stable, since it would lead to scheme 
(22). Therefore, m(s) must include all common zeros si with 
Re si ¸ 0. Thus, the coprime factorization should read
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Lemma 4.7. Any       QMRsdsnsT  111 /  divides 
      QMRsdsnsT  222 / , or    sTsT 21 | , iff all finite 

zeros  0Ciz  of  sT1  are those of  sT2 , the relative order 
of   sT1  is less or equal to the relative order of  sT2 , and 
all formally unstable factors of the numerator of  sT1  are 
those of  sT2 . 
 

The proof of Lemma 4.7 evident and hence can be 
omitted. 
 
Remark 4.1. Dealing with TDS brings about an interesting 
feature which is unparalleled to a finite-dimensional case, 
where if      sdsnsT / ,    sdsn ,  sR  and 

   snsd degdeg  , there exists at least one zero 0z  . 
This is, however, not true for quasipolynomials and their 
fractions. Let a term       QMRsdsnsT  /  with 

   snsd ss degdeg   and no common roots of the numerator 
and the denominator be considered. Choose 0  and 
consider a chain of poles is  of  sT  where 

/1:,  isnin . Then the limit  sTs 0,/1lim    

     FT 0,0, lim/1lim    does not exist since 

whenever the zero of  sF  is approached on the disk  

 ,0D  outside the points 1 ii s , the limit goes to zero; 
whereas, the limit reaches infinity exactly at these points. It 
means that in s  function  sT  has so-called essential 
singularities and there is no zero in infinity of the function. 
Therefore the formulation including the statement about 
zeros in infinity, habitual for a finite-dimensional case [21], 
cannot be used in Lemma 4.7. 

Regarding the coprime factorization, recall that 
problems appear when dealing with neutral TDS or with 
those including distributed delays. An example of coprime, 
yet not Bézout, factorization of a formally unstable neutral 
TDS was demonstrated in Example 3.1 and e.g. in [27]. The 
task is to obtain a coprime pair for a (formally stable) TDS. 
 
Lemma 4.8. Consider a TDS governed by the transfer 
function      sasbsG /  where  sa ,  sb  are 
quasipolynomials with    sasb ss degdeg  . The system 
has a coprime factorization 

    
 

 
 
 
 

 
 sA
sB

sm
sa
sm
sb

sa
sbsG   (13) 

over RQM, i.e.     MSRsBsA ,  are coprime or relatively 
prime, iff    sasm ss degdeg   and all common roots 

     0,0: Ciiii ssbsas  are the only unstable roots of 
formally stable (quasi)polynomial  sm . 
 

For a proof, the reader is referred to Appendix. Note 
that the coprime factorization according to Lemma 4.8 does 
not imply that it is a Bézout one, and also that even if it 
exists a noninvertible   QMRsT   for      sTsAsA ~

 , 
 sA  can still be irreducible since  sT  might be associated 

with  sA  and  sA~  be a unit; therefore, Lemma 4.3 cannot 
be used directly in the proof. 

 
Example 4.1. Consider a simple system with distributed 
delays governed by the transfer function (9) and suggest a 
coprime factorization. In this case, the common 
denominator (quasi)polynomial  sm  cannot be stable 
since it would lead to scheme (22). Hence,  sm  must 
include all common zeros is  with 0Re is . Thus, the 
coprime factorization should read 
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Remark 4.2. The concept of the QMR  ring resulting in 
Lemma 4.8 excludes the existence of a coprime factorization 
(or QMR  elements) for some mathematical “monsters”. For 
instance, assume hypothetically the following transfer 
function            sssasbsG 2exp1/3exp1/  , 
where both the neutral quasipolynomials  sa ,  sb  are 
formally unstable with their roots j1,, ks kka  , 

j,3/21,, ks kkb  Nk , respectively. Thus, there exists 
an infinite number of different unstable roots of  sA  and 
 sB ; however, there are also infinitely many common 

unstable roots   ksss kkBkkAkk 2,LCM 1,,1,,1,   , where 
LCM(.,.) denotes the least common multiple. The monic 
quasipolynomial of the zero degree owning exactly roots 

1, kks  reads    ssm  exp1 . The coprime (even Bézout 
coprime) factorization would be      smsasA / , 
     smsbsB / . Obviously,     QMRsBsA ,  according 

to Definition 2.3 due to the formally unstable denominator; 
however, both the expressions have no pole in 

0C  and it is 
possible to establish a ring concept that would accept such 
terms and factorizations. Nevertheless, it is arguable whether 
this endeavour would be useful and desirable from the 
practical point of view. 
 

Finally, let us look at the solution of the Bézout identity 
over QMR  which is closely related to the existence of a 

� (14)

Remark 4.2. The concept of the RQM ring resulting in 
Lemma 4.8 excludes the existence of a coprime factorization 
(or RQM elements) for some mathematical “monsters”. For in-
stance, assume hypothetically the following transfer function 
G(s) = b(s)/a(s) = (1 ¡ exp(–3s))/(1 ¡ exp(–2s)), where both 
the neutral quasipolynomials a(s), b(s) are formally unstable with 
their roots sa, k, k+1 = ±kπj and sb, k, k+1 = ±2/3kπj, k 2 N, respec-
tively. Thus, there exists an infinite number of different unstable 
roots of A(s) and B(s). However, there are also infinitely many 
common unstable roots sk, k+1 = LCM(sA, k, k+1, sB, k, k+1) = ±2kπ, 
where LCM(.,.) denotes the least common multiple. The monic 
quasipolynomial of the zero-degree owning exactly roots sk, k+1 
reads m(s) = 1 ¡ exp(–s). The coprime (even Bézout coprime) 
factorization would be A(s) = a(s)/m(s), B(s) = b(s)/m(s). Ob-
viously, A(s), B(s) 2/ RQM according to Definition 2.3, due to the 
formally unstable denominator. However, both expressions have 
no pole in C0

+ and it is possible to establish a ring concept that 
would accept such terms and factorizations. Nevertheless, it is 
arguable whether this endeavour would be useful and desirable 
from the practical point of view.

Finally, let us look at the solution of the Bézout identity over 
RQM which is closely related to the existence of a Bézout fac-
torization. As stated above, if a pair A(s), B(s) 2 RQM is Bézout 
coprime, it is possible to find a solution of the Bézout identity 
or, equivalently, to find the GCD(A(s), B(s)) by means of the 
extended Euclidean algorithm (see subsection 2.2).

Define the poset P = (RQM, ¹) for A(s), B(s) 2 RQM as fol-
lows: A(s) ¹ B(s) iff A(s)jB(s); A(s) ´ B(s) iff A(s)jB(s) and 
B(s)jA(s), or equivalently, A(s) is associated with B(s); A(s) is 
not related to B(s) iff A(s) j/ B(s) and B(s) j/ A(s). Once the poset 
for RQM is established, the extended Euclidean algorithm (7), 
solving A(s)X(s) + B(s)Y(s) = GCD(A(s), B(s)) for a Bézout 
coprime pair A(s), B(s) 2 RQM, can be used. Consider the fol-
lowing three possibilities:
a) If A(s) ¹ B(s), keep the following scheme:
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Bézout factorization. As stated above, if a pair 
    QMRsBsA ,  is Bézout coprime, it is possible to find a 

solution of the Bézout identity or equivalently to find the 
    sBsA ,GCD  by means of the extended Euclidean 

algorithm, see Subsection 2.2. 
Define the poset  ,QMRP   for     QMRsBsA ,  as 

follows:    sBsA   iff    sBsA | ;    sBsA   iff 

   sBsA |  and    sAsB | , or equivalently,  sA  is 
associated with  sB ;  sA  is not related to  sB  iff 
   sBsA |  and    sAsB | . Once the poset for QMR  is 

established, the extended Euclidean algorithm (7) solving 
            sBsAsYsBsXsA ,GCD  for a Bézout 

coprime pair     QMRsBsA ,   can be used. Consider the 
following three possibilities: 

a) If    sBsA  , keep the following scheme 
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10
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(15) 

hence,       sBsAsA ,GCD . If    sBsA  , the 
procedure is analogous with the result 
      sBsAsB ,GCD . 

b) If    sBsA  , then     sBsA ,GCD  is simply 
either  sA  or  sB  (or any term from the ring associated 
with them). 

c) Let  sA  and  sB  be not related to each other. In 
this case, follow the scheme 
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Here,             sYsBsXsAsBsA ,GCD  where it 
is supposed that there can be found quotients 
    QMRsYsX ,  such that the element 

         sYsBsXsAsT   divides  sA ,  sB . Since 
 sA ,  sB  are Bézout coprime,  sT  must be a unit of the 

ring. In other words, the objective is to find structures of 
 sX ,  sY  and to set zeros and poles of  sT  such that 

divisibility conditions as in Lemma 4.7 are satisfied or the 
element is invertible. This task can be troublesome because 
of a possibility of a neutral numerator in  sT ; however, a 
Bézout coprime pair  sA ,  sB  has only a finite number 
of unstable zeros, which would make possible to find the 

    sBsA ,GCD . 
 
Example 4.2. Assume Bézout coprime factorization (14) 
and find     sBsA ,GCD . Since  sA  divides  sB , it 
holds that    sAsB  , hence according to (15) we have 

           11/1,GCD  sssAsBsA . 
 
Example 4.3. Let the system and its coprime factorization 
be given by 
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In this case,    sBsA |  and    sAsB | , thus both the 
elements are not related to one another since  sa  has a 

complex conjugate root in 
0C . Following scheme (16) 

yields a possible calculation 
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where    sYsX ,  are chosen as real constants for the 
simplicity.  

Then, for instance, a particular solution of the Bézout 
identity (5) by using (8) reads 
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with the parameterization  

� (15)

Iand hence, A(s) = GCD(A(s), B(s)). If A(s) º B(s), the pro-
cedure is analogous to the result B(s) = GCD(A(s), B(s)).

b) �If A(s) ´ B(s), then GCD(A(s), B(s)) is simply either A(s) or 
B(s) (or any term from the ring associated with them).

c) �Let A(s) and B(s) be not related to each other. In this case, 
follow the scheme

Here, GCD(A(s), B(s)) = A(s)X(s) + B(s)Y(s)where it is as-
sumed that there can be found quotients X(s), Y(s) 2 RQM such 
that the element T(s) = A(s)X(s) + B(s)Y(s) divides A(s), B(s). 
Since A(s), B(s) are Bézout coprime, T(s) must be a unit of the 
ring. In other words, the objective is to find structures of X(s), 
Y(s) and to set zeros and poles of T(s) such that divisibility 
conditions as in Lemma 4.7 are satisfied or the element is in-
vertible. This task can be troublesome because of a possibility 
of a neutral numerator in T(s). However, a Bézout coprime pair 
A(s), B(s) has only a finite number of unstable zeros, which 
would make it possible to find the GCD(A(s), B(s)).

Example 4.2. Assume Bézout coprime factorization (14) and 
find GCD(A(s), B(s)). Since A(s) divides B(s), it holds that 
B(s) º A(s), hence according to (15) we have GCD(A(s), B(s)) =  
= A(s) = (s ¡ 1)/(s ¡ 1) = 1.

Example 4.3. Let the system and its coprime factorization be

	

7 

Bézout factorization. As stated above, if a pair 
    QMRsBsA ,  is Bézout coprime, it is possible to find a 

solution of the Bézout identity or equivalently to find the 
    sBsA ,GCD  by means of the extended Euclidean 

algorithm, see Subsection 2.2. 
Define the poset  ,QMRP   for     QMRsBsA ,  as 

follows:    sBsA   iff    sBsA | ;    sBsA   iff 

   sBsA |  and    sAsB | , or equivalently,  sA  is 
associated with  sB ;  sA  is not related to  sB  iff 
   sBsA |  and    sAsB | . Once the poset for QMR  is 

established, the extended Euclidean algorithm (7) solving 
            sBsAsYsBsXsA ,GCD  for a Bézout 

coprime pair     QMRsBsA ,   can be used. Consider the 
following three possibilities: 

a) If    sBsA  , keep the following scheme 


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hence,       sBsAsA ,GCD . If    sBsA  , the 
procedure is analogous with the result 
      sBsAsB ,GCD . 

b) If    sBsA  , then     sBsA ,GCD  is simply 
either  sA  or  sB  (or any term from the ring associated 
with them). 

c) Let  sA  and  sB  be not related to each other. In 
this case, follow the scheme 
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Here,             sYsBsXsAsBsA ,GCD  where it 
is supposed that there can be found quotients 
    QMRsYsX ,  such that the element 

         sYsBsXsAsT   divides  sA ,  sB . Since 
 sA ,  sB  are Bézout coprime,  sT  must be a unit of the 

ring. In other words, the objective is to find structures of 
 sX ,  sY  and to set zeros and poles of  sT  such that 

divisibility conditions as in Lemma 4.7 are satisfied or the 
element is invertible. This task can be troublesome because 
of a possibility of a neutral numerator in  sT ; however, a 
Bézout coprime pair  sA ,  sB  has only a finite number 
of unstable zeros, which would make possible to find the 

    sBsA ,GCD . 
 
Example 4.2. Assume Bézout coprime factorization (14) 
and find     sBsA ,GCD . Since  sA  divides  sB , it 
holds that    sAsB  , hence according to (15) we have 

           11/1,GCD  sssAsBsA . 
 
Example 4.3. Let the system and its coprime factorization 
be given by 


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In this case,    sBsA |  and    sAsB | , thus both the 
elements are not related to one another since  sa  has a 

complex conjugate root in 
0C . Following scheme (16) 

yields a possible calculation 


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where    sYsX ,  are chosen as real constants for the 
simplicity.  

Then, for instance, a particular solution of the Bézout 
identity (5) by using (8) reads 


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with the parameterization  

.
� (17)

In this case, A(s) j/ B(s) and B(s) j/ A(s), and thus, both ele-
ments are not related to one another since a(s) has a complex 
conjugate root in C0

+. Following scheme (16) yields a possible 
calculation:
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Bézout factorization. As stated above, if a pair 
    QMRsBsA ,  is Bézout coprime, it is possible to find a 

solution of the Bézout identity or equivalently to find the 
    sBsA ,GCD  by means of the extended Euclidean 

algorithm, see Subsection 2.2. 
Define the poset  ,QMRP   for     QMRsBsA ,  as 

follows:    sBsA   iff    sBsA | ;    sBsA   iff 

   sBsA |  and    sAsB | , or equivalently,  sA  is 
associated with  sB ;  sA  is not related to  sB  iff 
   sBsA |  and    sAsB | . Once the poset for QMR  is 

established, the extended Euclidean algorithm (7) solving 
            sBsAsYsBsXsA ,GCD  for a Bézout 

coprime pair     QMRsBsA ,   can be used. Consider the 
following three possibilities: 

a) If    sBsA  , keep the following scheme 
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hence,       sBsAsA ,GCD . If    sBsA  , the 
procedure is analogous with the result 
      sBsAsB ,GCD . 

b) If    sBsA  , then     sBsA ,GCD  is simply 
either  sA  or  sB  (or any term from the ring associated 
with them). 

c) Let  sA  and  sB  be not related to each other. In 
this case, follow the scheme 
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Here,             sYsBsXsAsBsA ,GCD  where it 
is supposed that there can be found quotients 
    QMRsYsX ,  such that the element 

         sYsBsXsAsT   divides  sA ,  sB . Since 
 sA ,  sB  are Bézout coprime,  sT  must be a unit of the 

ring. In other words, the objective is to find structures of 
 sX ,  sY  and to set zeros and poles of  sT  such that 

divisibility conditions as in Lemma 4.7 are satisfied or the 
element is invertible. This task can be troublesome because 
of a possibility of a neutral numerator in  sT ; however, a 
Bézout coprime pair  sA ,  sB  has only a finite number 
of unstable zeros, which would make possible to find the 

    sBsA ,GCD . 
 
Example 4.2. Assume Bézout coprime factorization (14) 
and find     sBsA ,GCD . Since  sA  divides  sB , it 
holds that    sAsB  , hence according to (15) we have 

           11/1,GCD  sssAsBsA . 
 
Example 4.3. Let the system and its coprime factorization 
be given by 
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In this case,    sBsA |  and    sAsB | , thus both the 
elements are not related to one another since  sa  has a 

complex conjugate root in 
0C . Following scheme (16) 

yields a possible calculation 
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where    sYsX ,  are chosen as real constants for the 
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solution of the Bézout identity or equivalently to find the 
    sBsA ,GCD  by means of the extended Euclidean 

algorithm, see Subsection 2.2. 
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follows:    sBsA   iff    sBsA | ;    sBsA   iff 
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   sBsA |  and    sAsB | . Once the poset for QMR  is 
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hence,       sBsAsA ,GCD . If    sBsA  , the 
procedure is analogous with the result 
      sBsAsB ,GCD . 

b) If    sBsA  , then     sBsA ,GCD  is simply 
either  sA  or  sB  (or any term from the ring associated 
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Here,             sYsBsXsAsBsA ,GCD  where it 
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 sA ,  sB  are Bézout coprime,  sT  must be a unit of the 

ring. In other words, the objective is to find structures of 
 sX ,  sY  and to set zeros and poles of  sT  such that 

divisibility conditions as in Lemma 4.7 are satisfied or the 
element is invertible. This task can be troublesome because 
of a possibility of a neutral numerator in  sT ; however, a 
Bézout coprime pair  sA ,  sB  has only a finite number 
of unstable zeros, which would make possible to find the 

    sBsA ,GCD . 
 
Example 4.2. Assume Bézout coprime factorization (14) 
and find     sBsA ,GCD . Since  sA  divides  sB , it 
holds that    sAsB  , hence according to (15) we have 
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In this case,    sBsA |  and    sAsB | , thus both the 
elements are not related to one another since  sa  has a 

complex conjugate root in 
0C . Following scheme (16) 

yields a possible calculation 
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where    sYsX ,  are chosen as real constants for the 
simplicity.  

Then, for instance, a particular solution of the Bézout 
identity (5) by using (8) reads 
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hence,       sBsAsA ,GCD . If    sBsA  , the 
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In this case,    sBsA |  and    sAsB | , thus both the 
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for any   QMRsT  . 

5. Controller design in RQM – An example 

The following simple example concisely demonstrates the 
utilization of the herein analyzed ring RQM to control design 
for TDS.  
 
Example 5.1.  Consider the habitual simple negative 
feedback control system, in which  tr  stands for the 
reference,  te  is the control error and  to  represents the 
system output. Let the plant be governed by the Bézout 
coprimely factorized transfer function (17). Due to 
Proposition 2.2, the control system is stable (in RQM sense) 
if and only if the Bézout identity (5) holds where 
     sXsYsC /  stands for the controller transfer 

function (the proof can be made analogously to [1]). In 
Example 4.3, all stabilizable controllers are parameterized 
by (18) with   0~

sX . In the further text we take 

   sYsX ,  rather than    sYsX ~,~  for the simplicity. 
Now the task is to how to set   QMRsT   in order to 

meet other control performance requirements. In practice, 
a common task is to track the reference signal 
         sFsHsrtr rr /11   LL . Since (if (5) holds) the 

reference-to-error transfer function reads 
         sXsAsRsEsGre  / ,  tr  is asymptotically 

tracked by the output  to  if  sFr  divides    sXsA , i.e. 
      QMr RsFsXsA / , hence 
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Let the reference be from the family of step-wise 
functions, i.e.   ssFr  . In order to have  sX  in a 
sufficiently simple form, choose 
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By using simple algebra, the condition   00 X  that 
agrees with (19) yields 10 t . The substitution into (18) 
results in 
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Thus the eventual infinite-dimensional controller reads 
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2

2

 (20)

The step response of the feedback system can be seen 
in Fig. 1. Note that the overall performance can be 
improved either by the selection of other values of 
   sYsX ,  (see Example 4.3), or their degrees, or by the 

introduction of more degrees of freedom in  sT . 

 
Fig. 1. Feedback step response with plant (17) and controller (20) 

6. Conclusions 

To sum up, the concept of the ring of stable 
quasipolynomial meromorphic functions, RMS, for TDS has 
been attacked and extended giving rise to the new ring RQM 
covering neutral and distributed delays. It has been shown 
that the original conception has some crucial deficiencies, 
mainly from the algebraic point of view; hence, it should be 
revised. We have then introduced basic algebraic and 
functional properties of RQM, presented as lemmas that are 
mostly proved. For the engineering practice, some algebraic 
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in Fig. 1. Note that the overall performance can be 
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Fig. 1. Feedback step response with plant (17) and controller (20) 

6. Conclusions 
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relevant topics that still remain open, for instance to derive 
other algebraic properties, inclusions, and relationships between 
some other algebras.
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Appendix.

Proof of Proposition 3.1. Let T1(s) = n1(s)/d1(s), T2(s) = n2(s)/
d2(s), where n1(s), d1(s), n2(s), d2(s) are quasipolynomials as in 
(2). Define the sets of their zeros as ∑n, 1, ∑d, 1, ∑d, 1, ∑d, 2, respec-
tively. Then, the zeros and poles of Ti(s) agree with elements 
of sets ∑Z, i = ∑n, in(∑n, i ∩ ∑d, i), ∑P, i = ∑d, in(∑n, i ∩ ∑d, i), 
respectively. In addition, let us introduce subsets ∑+

¢, i, those with 
Re(σik) ¸ 0. Since both terms are formally stable, the number 
of unstable poles is finite, i.e. j∑+

P, ij < 1. Now consider oper-
ations of addition and multiplication TA(s) = T1(s) + T2(s) and 
TM(s) = T1(s)T2(s). Again, both resultants have a finite number 
of unstable poles, since the poles of TA(s) are entries of the set 
∑A, P =  ∑P, 1 ∪ ∑P, 2 except for those that are zeros of TA(s), and 
the set of all poles of TM(s) agrees with ∑M, P = (∑P, 1n(∑Z, 2 ∩ 
∩ ∑P, 1)) ∪ (∑P, 2n(∑Z, 1 ∩ ∑P, 2)). Again, since j∑+

P, ij < 1, 
then j∑+

M, ij < 1. □

Proof of Lemma 4.1. It is sufficient to verify ring proper-
ties and the commutativity of multiplication over RQM. Obvi-
ously, RQM is closed under addition, since it is known that if 
T1(s), T2(s) 2 H1, then T1(s) + T2(s) 2 H1, and according to 
Proposition 2.3, formal stability is not affected by the opera-
tion. Associativity is evident, the neutral element for addition is 
simply EA = 0 and inverse element IA, T(s) = RQM of T(s) 2 RQM 
reads IA, T(s) = –T(s). The closure under multiplication with as-
sociativity is also clear because of T1(s)T2(s) 2 H1 and Propo-
sition 3.1. In the case of distributed delays, it is not possible to 
obtain more unstable denominator zeros than numerator ones of 
any T(s) 2 RQM under multiplication. The multiplicative identity 
element EM equals 1. Since the operation of quasipolynomial 
multiplication is commutative, the ring is commutative, and left 
and right distributivity hold as well. □

Proof of Lemma 4.3. Necessity. Use the indirect proof and 
consider the following three cases for which (12) does not hold: 
a) OR = 0, NU > 1; b) OR > 1, NU = 0; c) OR > 1, NU > 0.

For a), consider a (quasi)polynomial xU(s) with only one 
unstable real zero (or a single pair of unstable zeros) of T(s), 
say xU(sU, 1) = 0 (or xU(sU, 1) = xU(s–U, 1) = 0), and an arbitrary 
stable (quasi)polynomial xS(s) of the same order (i.e. first or 
second one). Then, one can write
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again, since poles of   sTA  are entries of the set 

2,1,, PPPA   except for those that are zeros of  sTA , 
and the set of all poles of   sTM  agrees with 

     2,1,2,1,2,1,, \\ PZPPZPPM  . Again, 

since 
iP ,  then 

iM , . □ 

 
Proof of Lemma 4.1. It is sufficient to verify ring properties 
and the commutativity of multiplication over RQM. 
Obviously, RQM is closed under addition since it is known 
that if     HsTsT 21 , , then      HsTsT 21  and 
according to Proposition 2.3 formal stability is not affected 
by the operation. Associativity is evident, the neutral element 
for addition is simply 0AE  and inverse element 

  QMTA RsI ,  of   QMRsT   reads    sTsI TA , . The 
closure under multiplication with associativity is also clear 
because of     HsTsT 21  and Proposition 3.1. In a case of 
distributed delays, it is not possible to obtain more unstable 
denominator zeros than numerator ones of any   QMRsT   
under multiplication. The multiplicative identity element 

ME  equals 1. Since the operation of quasipolynomial 
multiplication is commutative, the ring is commutative and 
left and right distributivity hold as well. □  
 
Proof of Lemma 4.3. Necessity. Use the indirect proof and 
consider the following three cases for which (12) does not 
hold: a) 0RO , 1UN , b) 1RO , 0UN , c) 1RO , 

0UN . 
For a), consider a (quasi)polynomial  sxU  with only 

one unstable real zero (or a single pair of unstable zeros) of 
 sT , say   01, UU sx  (or     01,1,  UUUU sxsx ) and an 

arbitrary stable (quasi)polynomial  sxS  of the same order 
(i.e. first or second one). Then one can write 

    
 

   
   

 
     sTsT
sx
sx

sxst
sxst

st
stsT

S

U

Uden

Snum

den

num
21 (21)

where     QMRsTsT 21 ,  are neither associated with  sT  
nor units. 

Assume b) and a stable (quasi)polynomial  szS  of the 
first order, and follow the scheme 

      
       sTsT

szst
szstsT

Sden

Snum
43

1
  (22) 

Again,     QMRsTsT 43 ,  are neither associated with 
 sT  nor units. 

Finally, for c) it is possible to adopt e.g. factorization 
(22). 

Sufficiency. Formula (12) admits, in fact, only two 
possibilities: a) 0RO , 1UN , b) 1RO , 0UN . 

Our intention is to show that if these conditions hold, it 
is not possible to construct (21) or (22). Considering the 
case a) and the formally stable numerator, scheme (21) fails 
since  sT1  is a unit and  sT2  is associated with  sT . 
Moreover, there is not possible to find another “reducible” 
scheme. Analogously if the second point holds and  stnum  
is formally stable,  sT1  is a unit and  sT2  is associated 
with  sT  in scheme (22); hence,  sT  is irreducible. □ 
 
Proof of Lemma 4.4. In the first step it is easy to see that 
RQM meets the definition of an integral domain. Indeed, as 
mentioned in Introduction, it holds that two variables s  and 

 sz  exp , where   is some base delay, in 
quasipolynomial (2) are algebraically independent over 
R  , i.e. there is no nontrivial linear combination of s , z  
over R  such that quasipolynomial  sq  in (2) is identically 
zero. Thus, for any       0/ 111  sdsnsT , 
      QMRsdsnsT  0/ 222 , i.e.     0, 21 snsn , it is not 

possible to obtain     021 snsn  in the multiplication 
   sTsT 21 . 

To prove that the RQM ring is not a UFD consider 
     QMRsssT  /exp1   the zeros of which (i.e. 

nonzero roots of its numerator) read  j/2, kss kk  , 
Nk . Define a set of polynomials 

    kkk sssssP   . Then  sT  can be factorized as 

     
 

 
 

   
   

   
 

...exp1

exp1exp1

4
0

21

21

4
0

2
0

1

1

2
0















ms
sPsP

sPssP
mss

ms
sP

ssP
mss

s
s





(23)

,� (21)

where T1(s), T2(s) 2 RQM are neither associated with T(s) nor 
units.

Assume b) and a stable (quasi)polynomial zS(s) of the first 
order, and follow the scheme
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Appendix. 
Proof of Proposition 3.1. Let      sdsnsT 111 / , 
     sdsnsT 222 /  where        sdsnsdsn 2211 ,,,  are 

quasipolynomials as in (2). Define the sets of their zeros as 
2,1,1,1, ,,, dddn  , respectively. Then zeros and poles of 

 sTi  agree with elements of sets  idininiZ ,,,, \  , 
 idinidiP ,,,, \  , respectively. In addition, let us 

introduce subsets 
 i, , those with   0Re ik . Since both 

terms are formally stable, the number of unstable poles is 
finite, i.e. 

iP , . Now consider operations of addition 

and multiplication      sTsTsTA 21  ,      sTsTsTM 21 . 
Both the resultants have a finite number of unstable poles 
again, since poles of   sTA  are entries of the set 

2,1,, PPPA   except for those that are zeros of  sTA , 
and the set of all poles of   sTM  agrees with 

     2,1,2,1,2,1,, \\ PZPPZPPM  . Again, 

since 
iP ,  then 

iM , . □ 

 
Proof of Lemma 4.1. It is sufficient to verify ring properties 
and the commutativity of multiplication over RQM. 
Obviously, RQM is closed under addition since it is known 
that if     HsTsT 21 , , then      HsTsT 21  and 
according to Proposition 2.3 formal stability is not affected 
by the operation. Associativity is evident, the neutral element 
for addition is simply 0AE  and inverse element 

  QMTA RsI ,  of   QMRsT   reads    sTsI TA , . The 
closure under multiplication with associativity is also clear 
because of     HsTsT 21  and Proposition 3.1. In a case of 
distributed delays, it is not possible to obtain more unstable 
denominator zeros than numerator ones of any   QMRsT   
under multiplication. The multiplicative identity element 

ME  equals 1. Since the operation of quasipolynomial 
multiplication is commutative, the ring is commutative and 
left and right distributivity hold as well. □  
 
Proof of Lemma 4.3. Necessity. Use the indirect proof and 
consider the following three cases for which (12) does not 
hold: a) 0RO , 1UN , b) 1RO , 0UN , c) 1RO , 

0UN . 
For a), consider a (quasi)polynomial  sxU  with only 

one unstable real zero (or a single pair of unstable zeros) of 
 sT , say   01, UU sx  (or     01,1,  UUUU sxsx ) and an 

arbitrary stable (quasi)polynomial  sxS  of the same order 
(i.e. first or second one). Then one can write 

    
 

   
   

 
     sTsT
sx
sx

sxst
sxst

st
stsT

S

U

Uden

Snum

den

num
21 (21)

where     QMRsTsT 21 ,  are neither associated with  sT  
nor units. 

Assume b) and a stable (quasi)polynomial  szS  of the 
first order, and follow the scheme 

      
       sTsT

szst
szstsT

Sden

Snum
43

1
  (22) 

Again,     QMRsTsT 43 ,  are neither associated with 
 sT  nor units. 

Finally, for c) it is possible to adopt e.g. factorization 
(22). 

Sufficiency. Formula (12) admits, in fact, only two 
possibilities: a) 0RO , 1UN , b) 1RO , 0UN . 

Our intention is to show that if these conditions hold, it 
is not possible to construct (21) or (22). Considering the 
case a) and the formally stable numerator, scheme (21) fails 
since  sT1  is a unit and  sT2  is associated with  sT . 
Moreover, there is not possible to find another “reducible” 
scheme. Analogously if the second point holds and  stnum  
is formally stable,  sT1  is a unit and  sT2  is associated 
with  sT  in scheme (22); hence,  sT  is irreducible. □ 
 
Proof of Lemma 4.4. In the first step it is easy to see that 
RQM meets the definition of an integral domain. Indeed, as 
mentioned in Introduction, it holds that two variables s  and 

 sz  exp , where   is some base delay, in 
quasipolynomial (2) are algebraically independent over 
R  , i.e. there is no nontrivial linear combination of s , z  
over R  such that quasipolynomial  sq  in (2) is identically 
zero. Thus, for any       0/ 111  sdsnsT , 
      QMRsdsnsT  0/ 222 , i.e.     0, 21 snsn , it is not 

possible to obtain     021 snsn  in the multiplication 
   sTsT 21 . 

To prove that the RQM ring is not a UFD consider 
     QMRsssT  /exp1   the zeros of which (i.e. 

nonzero roots of its numerator) read  j/2, kss kk  , 
Nk . Define a set of polynomials 

    kkk sssssP   . Then  sT  can be factorized as 

     
 

 
 

   
   

   
 

...exp1

exp1exp1

4
0

21

21

4
0

2
0

1

1

2
0















ms
sPsP

sPssP
mss

ms
sP

ssP
mss

s
s





(23)

.� (22)

Again, T3(s), T4(s) 2 RQM are neither associated with T(s) 
nor units.

Finally, for c) it is possible to adopt e.g. factorization (22).
Sufficiency. Formula (12) admits, in fact, only two possibil-

ities: a) OR = 0, NU = 1 and b) OR = 1, NU = 0.
Our intention is to show that if these conditions hold, it is 

possible to construct neither (21) nor (22). Considering case 
a) and the formally stable numerator, scheme (21) fails, since 
T1(s) is a unit and T2(s) is associated with T(s). Moreover, it is 
not possible to find another “reducible” scheme. Analogously, 
if the second point holds and Tnum(s) is formally stable, T1(s) 
is a unit and T2(s) is associated with T(s) in scheme (22), and 
hence, T(s) is irreducible. □

Proof of Lemma 4.4. In the first step it is easy to see that 
RQM meets the definition of an integral domain. Indeed, as 
mentioned in Introduction, it holds that two variables s and 
z = exp(–τs), where τ is some base delay, are in quasipoly-
nomial (2) algebraically independent over R, i.e. there is 
no nontrivial linear combination of s, z over R, such that 
quasipolynomial q(s) in (2) is identically zero. Thus, for any 
T1(s) = n1(s)/d1(s)  6= 0, T2(s) = n2(s)/d2(s)  6= 0 2 RQM, i.e. 
n1(s), n2(s)  6= 0, it is not possible to obtain n1(s)n2(s) = 0 in 
the multiplication T1(s)T2(s).

To prove that the RQM ring is not a UFD, consider 
T(s) = (1 ¡ exp(–τs))/s 2 RQM, the zeros of which (i.e. nonzero 
roots of its numerator) read sk, s–k = ±(2kπ/τ)j, k 2 N. Define 
a set of polynomials Pk(s) = (s ¡ sk)(s ¡ s–k). Then T(s) can be 
factorized as
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Appendix. 
Proof of Proposition 3.1. Let      sdsnsT 111 / , 
     sdsnsT 222 /  where        sdsnsdsn 2211 ,,,  are 

quasipolynomials as in (2). Define the sets of their zeros as 
2,1,1,1, ,,, dddn  , respectively. Then zeros and poles of 

 sTi  agree with elements of sets  idininiZ ,,,, \  , 
 idinidiP ,,,, \  , respectively. In addition, let us 

introduce subsets 
 i, , those with   0Re ik . Since both 

terms are formally stable, the number of unstable poles is 
finite, i.e. 

iP , . Now consider operations of addition 

and multiplication      sTsTsTA 21  ,      sTsTsTM 21 . 
Both the resultants have a finite number of unstable poles 
again, since poles of   sTA  are entries of the set 

2,1,, PPPA   except for those that are zeros of  sTA , 
and the set of all poles of   sTM  agrees with 

     2,1,2,1,2,1,, \\ PZPPZPPM  . Again, 

since 
iP ,  then 

iM , . □ 

 
Proof of Lemma 4.1. It is sufficient to verify ring properties 
and the commutativity of multiplication over RQM. 
Obviously, RQM is closed under addition since it is known 
that if     HsTsT 21 , , then      HsTsT 21  and 
according to Proposition 2.3 formal stability is not affected 
by the operation. Associativity is evident, the neutral element 
for addition is simply 0AE  and inverse element 

  QMTA RsI ,  of   QMRsT   reads    sTsI TA , . The 
closure under multiplication with associativity is also clear 
because of     HsTsT 21  and Proposition 3.1. In a case of 
distributed delays, it is not possible to obtain more unstable 
denominator zeros than numerator ones of any   QMRsT   
under multiplication. The multiplicative identity element 

ME  equals 1. Since the operation of quasipolynomial 
multiplication is commutative, the ring is commutative and 
left and right distributivity hold as well. □  
 
Proof of Lemma 4.3. Necessity. Use the indirect proof and 
consider the following three cases for which (12) does not 
hold: a) 0RO , 1UN , b) 1RO , 0UN , c) 1RO , 

0UN . 
For a), consider a (quasi)polynomial  sxU  with only 

one unstable real zero (or a single pair of unstable zeros) of 
 sT , say   01, UU sx  (or     01,1,  UUUU sxsx ) and an 

arbitrary stable (quasi)polynomial  sxS  of the same order 
(i.e. first or second one). Then one can write 

    
 

   
   

 
     sTsT
sx
sx

sxst
sxst

st
stsT

S

U

Uden

Snum

den

num
21 (21)

where     QMRsTsT 21 ,  are neither associated with  sT  
nor units. 

Assume b) and a stable (quasi)polynomial  szS  of the 
first order, and follow the scheme 

      
       sTsT

szst
szstsT

Sden

Snum
43

1
  (22) 

Again,     QMRsTsT 43 ,  are neither associated with 
 sT  nor units. 

Finally, for c) it is possible to adopt e.g. factorization 
(22). 

Sufficiency. Formula (12) admits, in fact, only two 
possibilities: a) 0RO , 1UN , b) 1RO , 0UN . 

Our intention is to show that if these conditions hold, it 
is not possible to construct (21) or (22). Considering the 
case a) and the formally stable numerator, scheme (21) fails 
since  sT1  is a unit and  sT2  is associated with  sT . 
Moreover, there is not possible to find another “reducible” 
scheme. Analogously if the second point holds and  stnum  
is formally stable,  sT1  is a unit and  sT2  is associated 
with  sT  in scheme (22); hence,  sT  is irreducible. □ 
 
Proof of Lemma 4.4. In the first step it is easy to see that 
RQM meets the definition of an integral domain. Indeed, as 
mentioned in Introduction, it holds that two variables s  and 

 sz  exp , where   is some base delay, in 
quasipolynomial (2) are algebraically independent over 
R  , i.e. there is no nontrivial linear combination of s , z  
over R  such that quasipolynomial  sq  in (2) is identically 
zero. Thus, for any       0/ 111  sdsnsT , 
      QMRsdsnsT  0/ 222 , i.e.     0, 21 snsn , it is not 

possible to obtain     021 snsn  in the multiplication 
   sTsT 21 . 

To prove that the RQM ring is not a UFD consider 
     QMRsssT  /exp1   the zeros of which (i.e. 

nonzero roots of its numerator) read  j/2, kss kk  , 
Nk . Define a set of polynomials 

    kkk sssssP   . Then  sT  can be factorized as 

     
 

 
 

   
   

   
 

...exp1

exp1exp1

4
0

21

21

4
0

2
0

1

1

2
0















ms
sPsP

sPssP
mss

ms
sP

ssP
mss

s
s





(23)
,
�(23)

where m0 > 0. The chain of successive factorizations is in-
finite, none of left-hand factors in (23) is irreducible (see 
Lemma 4.3) for k < 1, none of all factors is a unit (compare 
with Lemma 4.2) or associated with T(s) and thus, the RQM ring 
is not a UFR. □

Proof of Lemma 4.8. Necessity. Assume a contradiction. If deg-
sm(s) < degsa(s), then A(s) is not proper. On the contrary, the 
choice degsm(s) > degsa(s) implies that there exists a non-as-
sociated, nonzero, nonunit T(s) 2 RQM such that A(s) = A⁓(s)
T(s), B(s) = B⁓(s)T(s), i.e. both terms are prime. Similarly, if 
there exists a common unstable root of a(s), b(s), say s0 2 R+ 
for the simplicity, which is not included in m(s), it is possible 
to write
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with a stable (quasi)polynomial m⁓(s) and noninvertible 
T(s) 2 RQM.

Sufficiency. Let us proceed with an indirect proof and con-
sider a prime pair A(s), B(s) 2 RQM, i.e. that there exists a non-
unit T(s) 2 RQM satisfying A(s) = A⁓(s)T(s), B(s) = B⁓(s)T(s) 
for some A⁓(s), B⁓(s) 2 RQM. According to Lemma 4.2, T(s) 
has a positive relative order, or at least one unstable zero 
or its numerator is formally unstable. If the relative order is 
positive, it means that A(s), B(s) are strictly proper, i.e. deg-
s m(s) > degs a(s). If there exists an unstable zero of T(s), it 
must be a common zero of both A(s), B(s). However, we have 
a contradiction, since m(s) should cancel all such common zeros 
and it cannot be included in A⁓(s), B⁓(s) because of their stability. 
Finally, the existence of a common, formally unstable numer-
ator (factor) would yield a formally unstable quasipolynomial 
m(s) having common unstable zeros, which is unfeasible due 
to Definition 2.3. □
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