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Abstract. The objective of this paper is to determine dynamic instability areas of moderately thick beams and frames. The effect of moderate 
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performed in the Mathematica programme environment.
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The majority of studies reported in the literature use nu-
merical analysis for determining resonance areas. Only a few 
researchers have adopted an analytical approach.

The purpose of this article is to propose two methods for 
determining parametric resonance areas for moderately thick 
beams and frames under various support conditions. These 
methods, never before used for this purpose, are the harmonic 
balance method (HBM) and the perturbation method (PM). The 
latter of these two methods represents a surprisingly simple tool 
for achieving the goal, as its results are very close to those 
obtained from the standard harmonic balance method which is 
far more troublesome in application.

An analytical approach is used to analyze simply sup-
ported moderately thick beams, and a numerical technique, 
based on the finite element method with the use of physical 
shape functions [32] is applied to other beams and frames. 
The analysis covers the effect of moderate thickness on res-
onance frequencies and the influence of type of fixing used 
in the beams and frames on the instability areas. For this 
purpose, shear deformation and rotatory inertia are taken into 
account. The Timoshenko beam theory is applied to examine 
how these factors affect resonance frequency values. The re-
sults are compared with those obtained with the Bernoul-
li-Euler beam theory.

In addition, the effect of linear dumping of induced para-
metric vibration is considered.

2.	 Analysis of a simply supported beam

The following assumptions are adopted in physical and numer-
ical modeling:
●	 The beam is made of an isotropic homogenous linear elastic 

material with Young’s modulus E, shear modulus G and 
Poisson’s ratio v.

1.	 Introduction

In the relevant literature, parametric vibration is often classi-
fied as the most difficult problem of linear structure dynamics 
which closely combines the issues of both stability and vibra-
tion (hence the name “dynamic stability”). Several important 
aspects of this special subject can be found in [1–4].

Some important papers have been dedicated to the dynamic 
stability analysis that leads to determining the parametric res-
onance areas for frame structures, using either the Bernoul-
li-Euler theory or the Timoshenko beam theory. The first ap-
proach is used for slender rods (straight lines or planes normal 
to the neutral beam axis remain straight and normal after de-
formation) [5‒8] and the latter for stocky rods (the rods with 
small length-to-depth ratio) in which the transverse shear de-
formation and the rotatory inertia are involved [9, 10]. Various 
aspects for Timoshenko beam theory have been investigated, 
for example, beams with asymmetric cross-section [11], beams 
excited by a sequence of moving masses [12], twisted beams 
[13, 14], beams with damping [14] and beams under tangential 
follower forces [15‒17]. The Timoshenko beam theory can also 
be used to study dynamic stability of sandwich beams [18‒20]. 
With the resonance areas identified, dynamic parameters of the 
system can be determined, these parameters being very sensitive 
to damage in structures [21‒23].

Analysis of the instability phenomenon involves solving 
the nonlinear time varying discretized equation of motion. The 
most common methods used to solve this equation include har-
monic balance [1, 3, 24] and multiscale methods [25], averaging 
method [26], discrete singular convolution [27], the homotopy 
perturbation method [28, 29] and the perturbation method (the 
small parameter method or the Poincaré method) [30, 31].
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●	 The transverse cross-section of the beam is doubly sym-
metric with respect to the area A and the moment of inertia I.

●	 The beam has uniform mass density ρ per unit length.
●	 The central axis is a straight line.
●	 The shear coefficient κ depending on the shape of cross-sec-

tion is taken into account.
●	 The effects of transverse shear deformation and rotatory 

inertia are taken into account.
●	 Let’s consider a beam of initial length L, axially compressed 

with periodic force (Fig. 1a)
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where So is the static component, St is the amplitude and  
is the frequency of periodic force. 

In Timoshenko beam theory, the section forces can be 
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Fig. 1. a) Simply supported beam, b) deformation of infinitesimal 

element of the beam. 

The dynamic equilibrium on the infinitesimal element 
of the beam is shown in Fig. 1b. Assuming a small 
curvature in the current configuration and taking into 
account (2), one can obtain equilibrium equations in the 
form 

  

where is the non-dimensional coordinate along 
the axis of the beam. 
Equations (3) can be written as 

  

where parameters 

  

describe the geometrical and material characteristics of 
the beam, and parameters 

   

include the effects of transverse shear deformation and 
rotatory inertia. The parameters in (6) depend only on 
Poisson’s ratio v, shear coefficient and slenderness ratio

. If the parameters (6) are omitted, equation 
(4) becomes the equation of dynamic equilibrium in the 
Bernoulli-Euler beam theory.   

Taking the solution to (4) in the form of the Fourier 
series that satisfies the boundary conditions of the simply 
supported beam 
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where So is the static component, St is the amplitude and θ is 
the frequency of periodic force.

In Timoshenko beam theory, the section forces can be ex-
pressed by the deflection we = we(x, t) and the rotation function 
φe = φe(x, t) as follows
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The dynamic equilibrium on the infinitesimal element of 
the beam is shown in Fig. 1b. Assuming a small curvature in 
the current configuration and taking into account (2), one can 
obtain equilibrium equations in the form
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where ξ = x/L is the non-dimensional coordinate along the axis 
of the beam.

Equations (3) can be written as
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where parameters
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2. Analysis of a simply supported beam 

The following assumptions are adopted in physical 
and numerical modeling: 
 The beam is made of an isotropic homogenous linear 

elastic material with Young’s modulus E, shear 
modulus G and Poisson’s ratio v 

 The transverse cross-section of the beam is doubly 
symmetric with respect to the area A and the moment 
of inertia I. 

 The beam has uniform mass density per unit length. 
 The central axis is a straight line. 
 The shear coefficient depending on the shape of 

cross-section is taken into account. 
 The effects of transverse shear deformation and 

rotatory inertia are taken into account.  
Let’s consider a beam of initial length L, axially 

compressed with periodic force (Fig. 1a) 

  

where So is the static component, St is the amplitude and  
is the frequency of periodic force. 

In Timoshenko beam theory, the section forces can be 
expressed by the deflection  txww ,~~   and the rotation 
function  tx,~~    as follows 
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Fig. 1. a) Simply supported beam, b) deformation of infinitesimal 

element of the beam. 

The dynamic equilibrium on the infinitesimal element 
of the beam is shown in Fig. 1b. Assuming a small 
curvature in the current configuration and taking into 
account (2), one can obtain equilibrium equations in the 
form 

  

where is the non-dimensional coordinate along 
the axis of the beam. 
Equations (3) can be written as 

  

where parameters 

  

describe the geometrical and material characteristics of 
the beam, and parameters 

   

include the effects of transverse shear deformation and 
rotatory inertia. The parameters in (6) depend only on 
Poisson’s ratio v, shear coefficient and slenderness ratio

. If the parameters (6) are omitted, equation 
(4) becomes the equation of dynamic equilibrium in the 
Bernoulli-Euler beam theory.   

Taking the solution to (4) in the form of the Fourier 
series that satisfies the boundary conditions of the simply 
supported beam 
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describe the geometrical and material characteristics of the 
beam, and parameters
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2. Analysis of a simply supported beam 

The following assumptions are adopted in physical 
and numerical modeling: 
 The beam is made of an isotropic homogenous linear 

elastic material with Young’s modulus E, shear 
modulus G and Poisson’s ratio v 

 The transverse cross-section of the beam is doubly 
symmetric with respect to the area A and the moment 
of inertia I. 

 The beam has uniform mass density per unit length. 
 The central axis is a straight line. 
 The shear coefficient depending on the shape of 

cross-section is taken into account. 
 The effects of transverse shear deformation and 

rotatory inertia are taken into account.  
Let’s consider a beam of initial length L, axially 

compressed with periodic force (Fig. 1a) 

  

where So is the static component, St is the amplitude and  
is the frequency of periodic force. 

In Timoshenko beam theory, the section forces can be 
expressed by the deflection  txww ,~~   and the rotation 
function  tx,~~    as follows 
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Fig. 1. a) Simply supported beam, b) deformation of infinitesimal 

element of the beam. 

The dynamic equilibrium on the infinitesimal element 
of the beam is shown in Fig. 1b. Assuming a small 
curvature in the current configuration and taking into 
account (2), one can obtain equilibrium equations in the 
form 

  

where is the non-dimensional coordinate along 
the axis of the beam. 
Equations (3) can be written as 

  

where parameters 

  

describe the geometrical and material characteristics of 
the beam, and parameters 

   

include the effects of transverse shear deformation and 
rotatory inertia. The parameters in (6) depend only on 
Poisson’s ratio v, shear coefficient and slenderness ratio

. If the parameters (6) are omitted, equation 
(4) becomes the equation of dynamic equilibrium in the 
Bernoulli-Euler beam theory.   

Taking the solution to (4) in the form of the Fourier 
series that satisfies the boundary conditions of the simply 
supported beam 
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include the effects of transverse shear deformation and rotatory 
inertia. The parameters in (6) depend only on Poisson’s ratio 
v, shear coefficient κ and slenderness ratio λ = √AL2/I . If the 
parameters (6) are omitted, equation (4) becomes the equation 
of dynamic equilibrium in the Bernoulli-Euler beam theory.	

Taking the solution to (4) in the form of the Fourier series 
that satisfies the boundary conditions of the simply supported 
beam
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2. Analysis of a simply supported beam 

The following assumptions are adopted in physical 
and numerical modeling: 
 The beam is made of an isotropic homogenous linear 

elastic material with Young’s modulus E, shear 
modulus G and Poisson’s ratio v 

 The transverse cross-section of the beam is doubly 
symmetric with respect to the area A and the moment 
of inertia I. 

 The beam has uniform mass density per unit length. 
 The central axis is a straight line. 
 The shear coefficient depending on the shape of 

cross-section is taken into account. 
 The effects of transverse shear deformation and 

rotatory inertia are taken into account.  
Let’s consider a beam of initial length L, axially 

compressed with periodic force (Fig. 1a) 
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where So is the static component, St is the amplitude and  
is the frequency of periodic force. 

In Timoshenko beam theory, the section forces can be 
expressed by the deflection  txww ,~~   and the rotation 
function  tx,~~    as follows 
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Fig. 1. a) Simply supported beam, b) deformation of infinitesimal 

element of the beam. 

The dynamic equilibrium on the infinitesimal element 
of the beam is shown in Fig. 1b. Assuming a small 
curvature in the current configuration and taking into 
account (2), one can obtain equilibrium equations in the 
form 

  

where is the non-dimensional coordinate along 
the axis of the beam. 
Equations (3) can be written as 

  

where parameters 

  

describe the geometrical and material characteristics of 
the beam, and parameters 

   

include the effects of transverse shear deformation and 
rotatory inertia. The parameters in (6) depend only on 
Poisson’s ratio v, shear coefficient and slenderness ratio

. If the parameters (6) are omitted, equation 
(4) becomes the equation of dynamic equilibrium in the 
Bernoulli-Euler beam theory.   

Taking the solution to (4) in the form of the Fourier 
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On the assumption that So = 0, equation (4), for all forms of 
vibration, can be written as
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2. Analysis of a simply supported beam 

The following assumptions are adopted in physical 
and numerical modeling: 
 The beam is made of an isotropic homogenous linear 

elastic material with Young’s modulus E, shear 
modulus G and Poisson’s ratio v 

 The transverse cross-section of the beam is doubly 
symmetric with respect to the area A and the moment 
of inertia I. 

 The beam has uniform mass density per unit length. 
 The central axis is a straight line. 
 The shear coefficient depending on the shape of 

cross-section is taken into account. 
 The effects of transverse shear deformation and 

rotatory inertia are taken into account.  
Let’s consider a beam of initial length L, axially 

compressed with periodic force (Fig. 1a) 
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where So is the static component, St is the amplitude and  
is the frequency of periodic force. 

In Timoshenko beam theory, the section forces can be 
expressed by the deflection  txww ,~~   and the rotation 
function  tx,~~    as follows 
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Fig. 1. a) Simply supported beam, b) deformation of infinitesimal 

element of the beam. 

The dynamic equilibrium on the infinitesimal element 
of the beam is shown in Fig. 1b. Assuming a small 
curvature in the current configuration and taking into 
account (2), one can obtain equilibrium equations in the 
form 

  

where is the non-dimensional coordinate along 
the axis of the beam. 
Equations (3) can be written as 

  

where parameters 

  

describe the geometrical and material characteristics of 
the beam, and parameters 

   

include the effects of transverse shear deformation and 
rotatory inertia. The parameters in (6) depend only on 
Poisson’s ratio v, shear coefficient and slenderness ratio

. If the parameters (6) are omitted, equation 
(4) becomes the equation of dynamic equilibrium in the 
Bernoulli-Euler beam theory.   

Taking the solution to (4) in the form of the Fourier 
series that satisfies the boundary conditions of the simply 
supported beam 
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where

	

3 

  

is the pulsation ratio, 

   

are the critical force and the natural frequency of the 
simply supported beam with the effects of transverse 
shear deformation and 

 




are the parameters dependent on the characteristics of the 
cross section.  

Equation (8) is the differential equation with variable 
coefficients accounting for the transverse shear 
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are contained within the lines representing the pair of 
values, and characterizing the frequency of periodic 
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To solve this nonlinear problem, two approximate 
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are the critical force and the natural frequency of the simply 
supported beam with the effects of transverse shear deforma-
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Equation (8) is the differential equation with variable 
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methods, the harmonic balance method (HBM) and the 
perturbation method (PM), are used.  
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are the parameters dependent on the characteristics of the cross 
section.

Equation (8) is the differential equation with variable co-
efficients accounting for the transverse shear deformation and 
rotatory inertia of the beam. The areas of dynamic instability 
are determined based on (8) with the period T and 2T, where 
T = 2π/θ [1, 3, 23]. These areas are contained within the lines 
representing the pair of values, θ and υ, characterizing the fre-
quency of periodic force and the pulsation ratio (9).

Fig. 1. a) Simply supported beam, b) deformation of infinitesimal 
element of the beam
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Dynamic stability of moderately thick beams and frames with the use of harmonic balance and perturbation methods

To solve this nonlinear problem, two approximate methods, 
the harmonic balance method (HBM) and the perturbation 
method (PM), are used.

Harmonic balance method. The first and third resonance 
areas. In order to determine the first and third areas of insta-
bility, it is possible to use the Fourier series with period 2T for 
all forms of oscillation (index in the function f is omitted)
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where ai and bi are constant coefficients. Substituting (12) into 
(8) finally gives a linear combination of trigonometric functions
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  

is the pulsation ratio, 

   

are the critical force and the natural frequency of the 
simply supported beam with the effects of transverse 
shear deformation and 

 




are the parameters dependent on the characteristics of the 
cross section.  

Equation (8) is the differential equation with variable 
coefficients accounting for the transverse shear 
deformation and rotatory inertia of the beam. The areas of 
dynamic instability are determined based on (8) with the 
period T and 2T, where 2T  [1, 3, 23]. These areas 
are contained within the lines representing the pair of 
values, and characterizing the frequency of periodic 
force and the pulsation ratio (9).  

To solve this nonlinear problem, two approximate 
methods, the harmonic balance method (HBM) and the 
perturbation method (PM), are used.  

 
Harmonic balance method. The first and third 
resonance areas. In order to determine the first and third 
areas of instability, it is possible to use the Fourier series 
with period 2T for all forms of oscillation (index in the 
function f is omitted) 
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where Ai and Bi are the coefficients arising after balancing the 
terms with appropriate harmonic
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is the pulsation ratio, 
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are the critical force and the natural frequency of the 
simply supported beam with the effects of transverse 
shear deformation and 

 




are the parameters dependent on the characteristics of the 
cross section.  

Equation (8) is the differential equation with variable 
coefficients accounting for the transverse shear 
deformation and rotatory inertia of the beam. The areas of 
dynamic instability are determined based on (8) with the 
period T and 2T, where 2T  [1, 3, 23]. These areas 
are contained within the lines representing the pair of 
values, and characterizing the frequency of periodic 
force and the pulsation ratio (9).  

To solve this nonlinear problem, two approximate 
methods, the harmonic balance method (HBM) and the 
perturbation method (PM), are used.  

 
Harmonic balance method. The first and third 
resonance areas. In order to determine the first and third 
areas of instability, it is possible to use the Fourier series 
with period 2T for all forms of oscillation (index in the 
function f is omitted) 
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where
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is the pulsation ratio, 
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are the critical force and the natural frequency of the 
simply supported beam with the effects of transverse 
shear deformation and 

 




are the parameters dependent on the characteristics of the 
cross section.  

Equation (8) is the differential equation with variable 
coefficients accounting for the transverse shear 
deformation and rotatory inertia of the beam. The areas of 
dynamic instability are determined based on (8) with the 
period T and 2T, where 2T  [1, 3, 23]. These areas 
are contained within the lines representing the pair of 
values, and characterizing the frequency of periodic 
force and the pulsation ratio (9).  

To solve this nonlinear problem, two approximate 
methods, the harmonic balance method (HBM) and the 
perturbation method (PM), are used.  

 
Harmonic balance method. The first and third 
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with period 2T for all forms of oscillation (index in the 
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Equation (13) are satisfied for each t provided

	

3 

  

is the pulsation ratio, 

   

are the critical force and the natural frequency of the 
simply supported beam with the effects of transverse 
shear deformation and 

 




are the parameters dependent on the characteristics of the 
cross section.  

Equation (8) is the differential equation with variable 
coefficients accounting for the transverse shear 
deformation and rotatory inertia of the beam. The areas of 
dynamic instability are determined based on (8) with the 
period T and 2T, where 2T  [1, 3, 23]. These areas 
are contained within the lines representing the pair of 
values, and characterizing the frequency of periodic 
force and the pulsation ratio (9).  

To solve this nonlinear problem, two approximate 
methods, the harmonic balance method (HBM) and the 
perturbation method (PM), are used.  
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resonance areas. In order to determine the first and third 
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with period 2T for all forms of oscillation (index in the 
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Condition (16) leads to the generation of two linear separated 
homogenous systems with infinite equations and infinite un-
knowns ai and bi. Solutions different from zero exist if
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  

is the pulsation ratio, 

   

are the critical force and the natural frequency of the 
simply supported beam with the effects of transverse 
shear deformation and 

 




are the parameters dependent on the characteristics of the 
cross section.  

Equation (8) is the differential equation with variable 
coefficients accounting for the transverse shear 
deformation and rotatory inertia of the beam. The areas of 
dynamic instability are determined based on (8) with the 
period T and 2T, where 2T  [1, 3, 23]. These areas 
are contained within the lines representing the pair of 
values, and characterizing the frequency of periodic 
force and the pulsation ratio (9).  

To solve this nonlinear problem, two approximate 
methods, the harmonic balance method (HBM) and the 
perturbation method (PM), are used.  

 
Harmonic balance method. The first and third 
resonance areas. In order to determine the first and third 
areas of instability, it is possible to use the Fourier series 
with period 2T for all forms of oscillation (index in the 
function f is omitted) 
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where ai and bi are constant coefficients. Substituting (12) 
into (8) finally gives a linear combination of trigonometric 
functions 
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where Ai and Bi are the coefficients arising after balancing 
the terms with appropriate harmonic  
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Equation (13) are satisfied for each t provided 

  

Condition (16) leads to the generation of two linear 
separated homogenous systems with infinite equations 
and infinite unknowns ai and bi. Solutions different from 
zero exist if 

  

Considering the determinant of the first degree, it is 
sufficient to obtain the boundaries of the first area of 
instability 
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which leads to the formula 
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With the determinant of the second degree 

  

the boundaries of both the first (with second 
approximation) and third areas of instability are 
determined. 
 
The second resonance area. In order to determine the 
second area of instability, it is possible to use the Fourier 
series with period T 
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Substituting (21) into (8) gives two linear separated 
homogenous systems with infinite equations and infinite 
unknowns ai and bi. Solutions different from zero exist if 
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Considering the determinant of the first degree, it is suf-
ficient to obtain the boundaries of the first area of instability
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  

is the pulsation ratio, 

   

are the critical force and the natural frequency of the 
simply supported beam with the effects of transverse 
shear deformation and 

 




are the parameters dependent on the characteristics of the 
cross section.  

Equation (8) is the differential equation with variable 
coefficients accounting for the transverse shear 
deformation and rotatory inertia of the beam. The areas of 
dynamic instability are determined based on (8) with the 
period T and 2T, where 2T  [1, 3, 23]. These areas 
are contained within the lines representing the pair of 
values, and characterizing the frequency of periodic 
force and the pulsation ratio (9).  

To solve this nonlinear problem, two approximate 
methods, the harmonic balance method (HBM) and the 
perturbation method (PM), are used.  

 
Harmonic balance method. The first and third 
resonance areas. In order to determine the first and third 
areas of instability, it is possible to use the Fourier series 
with period 2T for all forms of oscillation (index in the 
function f is omitted) 
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where ai and bi are constant coefficients. Substituting (12) 
into (8) finally gives a linear combination of trigonometric 
functions 
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where Ai and Bi are the coefficients arising after balancing 
the terms with appropriate harmonic  
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Equation (13) are satisfied for each t provided 

  

Condition (16) leads to the generation of two linear 
separated homogenous systems with infinite equations 
and infinite unknowns ai and bi. Solutions different from 
zero exist if 

  

Considering the determinant of the first degree, it is 
sufficient to obtain the boundaries of the first area of 
instability 

  

which leads to the formula 

  

With the determinant of the second degree 

  

the boundaries of both the first (with second 
approximation) and third areas of instability are 
determined. 
 
The second resonance area. In order to determine the 
second area of instability, it is possible to use the Fourier 
series with period T 
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Substituting (21) into (8) gives two linear separated 
homogenous systems with infinite equations and infinite 
unknowns ai and bi. Solutions different from zero exist if 
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which leads to the formula
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  

is the pulsation ratio, 

   

are the critical force and the natural frequency of the 
simply supported beam with the effects of transverse 
shear deformation and 

 




are the parameters dependent on the characteristics of the 
cross section.  

Equation (8) is the differential equation with variable 
coefficients accounting for the transverse shear 
deformation and rotatory inertia of the beam. The areas of 
dynamic instability are determined based on (8) with the 
period T and 2T, where 2T  [1, 3, 23]. These areas 
are contained within the lines representing the pair of 
values, and characterizing the frequency of periodic 
force and the pulsation ratio (9).  

To solve this nonlinear problem, two approximate 
methods, the harmonic balance method (HBM) and the 
perturbation method (PM), are used.  

 
Harmonic balance method. The first and third 
resonance areas. In order to determine the first and third 
areas of instability, it is possible to use the Fourier series 
with period 2T for all forms of oscillation (index in the 
function f is omitted) 
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where ai and bi are constant coefficients. Substituting (12) 
into (8) finally gives a linear combination of trigonometric 
functions 
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where Ai and Bi are the coefficients arising after balancing 
the terms with appropriate harmonic  
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Equation (13) are satisfied for each t provided 

  

Condition (16) leads to the generation of two linear 
separated homogenous systems with infinite equations 
and infinite unknowns ai and bi. Solutions different from 
zero exist if 

  

Considering the determinant of the first degree, it is 
sufficient to obtain the boundaries of the first area of 
instability 

  

which leads to the formula 

  

With the determinant of the second degree 

  

the boundaries of both the first (with second 
approximation) and third areas of instability are 
determined. 
 
The second resonance area. In order to determine the 
second area of instability, it is possible to use the Fourier 
series with period T 
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Substituting (21) into (8) gives two linear separated 
homogenous systems with infinite equations and infinite 
unknowns ai and bi. Solutions different from zero exist if 
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With the determinant of the second degree

	

3 

  

is the pulsation ratio, 

   

are the critical force and the natural frequency of the 
simply supported beam with the effects of transverse 
shear deformation and 

 




are the parameters dependent on the characteristics of the 
cross section.  

Equation (8) is the differential equation with variable 
coefficients accounting for the transverse shear 
deformation and rotatory inertia of the beam. The areas of 
dynamic instability are determined based on (8) with the 
period T and 2T, where 2T  [1, 3, 23]. These areas 
are contained within the lines representing the pair of 
values, and characterizing the frequency of periodic 
force and the pulsation ratio (9).  

To solve this nonlinear problem, two approximate 
methods, the harmonic balance method (HBM) and the 
perturbation method (PM), are used.  

 
Harmonic balance method. The first and third 
resonance areas. In order to determine the first and third 
areas of instability, it is possible to use the Fourier series 
with period 2T for all forms of oscillation (index in the 
function f is omitted) 
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where ai and bi are constant coefficients. Substituting (12) 
into (8) finally gives a linear combination of trigonometric 
functions 
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where Ai and Bi are the coefficients arising after balancing 
the terms with appropriate harmonic  
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Equation (13) are satisfied for each t provided 

  

Condition (16) leads to the generation of two linear 
separated homogenous systems with infinite equations 
and infinite unknowns ai and bi. Solutions different from 
zero exist if 
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Considering the determinant of the first degree, it is 
sufficient to obtain the boundaries of the first area of 
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which leads to the formula 
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With the determinant of the second degree 
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the boundaries of both the first (with second 
approximation) and third areas of instability are 
determined. 
 
The second resonance area. In order to determine the 
second area of instability, it is possible to use the Fourier 
series with period T 
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Substituting (21) into (8) gives two linear separated 
homogenous systems with infinite equations and infinite 
unknowns ai and bi. Solutions different from zero exist if 
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the boundaries of both the first (with second approximation) 
and third areas of instability are determined.

The second resonance area. In order to determine the second 
area of instability, it is possible to use the Fourier series with 
period T
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  

is the pulsation ratio, 

   

are the critical force and the natural frequency of the 
simply supported beam with the effects of transverse 
shear deformation and 

 




are the parameters dependent on the characteristics of the 
cross section.  

Equation (8) is the differential equation with variable 
coefficients accounting for the transverse shear 
deformation and rotatory inertia of the beam. The areas of 
dynamic instability are determined based on (8) with the 
period T and 2T, where 2T  [1, 3, 23]. These areas 
are contained within the lines representing the pair of 
values, and characterizing the frequency of periodic 
force and the pulsation ratio (9).  

To solve this nonlinear problem, two approximate 
methods, the harmonic balance method (HBM) and the 
perturbation method (PM), are used.  

 
Harmonic balance method. The first and third 
resonance areas. In order to determine the first and third 
areas of instability, it is possible to use the Fourier series 
with period 2T for all forms of oscillation (index in the 
function f is omitted) 
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Condition (16) leads to the generation of two linear 
separated homogenous systems with infinite equations 
and infinite unknowns ai and bi. Solutions different from 
zero exist if 
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Considering the determinant of the first degree, it is 
sufficient to obtain the boundaries of the first area of 
instability 
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the boundaries of both the first (with second 
approximation) and third areas of instability are 
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series with period T 
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Substituting (21) into (8) gives two linear separated homog-
enous systems with infinite equations and infinite unknowns 
ai and bi. Solutions different from zero exist if
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To determine the boundaries of the second area of 
instability, it is necessary to consider at least the 
determinant of the second degree 

   

The first three areas of dynamic instability are 
determined based on equations (18), (20) and (24).  
 
Damping effect on the first and third resonance areas. 
With linear damping which causes the resistance force 
proportional to the speed of movement, adopted for 
considerations, equation (8) takes the form 

 

 
,...,2,1

;0)(cos21)(2

)(cos21)(2)(

42

2

.

.........






k
tfttfd

tfttfdtf

kkkkkk

kkkkk





 

where  is the damping coefficient and c is the 
proportionality coefficient. The harmonic balance method 
using the Fourier series with period 2T (12) allows 
computing conditions for determining the first and third 
areas of dynamic instability 
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or 
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2.2 Perturbation method. The first resonance area. In 
the perturbation method, a solution is found as a power 
series in a small parameter. Here, the pulsation ratio (9) is 
treated as the small parameter and the solution of equation 
(8) is represented as the power series 
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Secular terms (increasing amplitudes of oscillation) 
occurring during the analysis have to be removed. For this 
purpose, the frequency of oscillation is assumed to depend 
on the small parameter 
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Substituting (28) and (29) into (8) gives an infinite 
recursive sequence of differential equations with constant 
coefficients 
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The small parameter method allows finding solutions 
for any approximation, thus any areas of instability can be 
attained. To determine the first area of instability, the 
first-order perturbation correction can be used, which 
involves solving equation (30)2. By the application of 
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To determine the boundaries of the second area of 
instability, it is necessary to consider at least the 
determinant of the second degree 

   

The first three areas of dynamic instability are 
determined based on equations (18), (20) and (24).  
 
Damping effect on the first and third resonance areas. 
With linear damping which causes the resistance force 
proportional to the speed of movement, adopted for 
considerations, equation (8) takes the form 
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where  is the damping coefficient and c is the 
proportionality coefficient. The harmonic balance method 
using the Fourier series with period 2T (12) allows 
computing conditions for determining the first and third 
areas of dynamic instability 
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or 
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2.2 Perturbation method. The first resonance area. In 
the perturbation method, a solution is found as a power 
series in a small parameter. Here, the pulsation ratio (9) is 
treated as the small parameter and the solution of equation 
(8) is represented as the power series 
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Secular terms (increasing amplitudes of oscillation) 
occurring during the analysis have to be removed. For this 
purpose, the frequency of oscillation is assumed to depend 
on the small parameter 
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Substituting (28) and (29) into (8) gives an infinite 
recursive sequence of differential equations with constant 
coefficients 
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The small parameter method allows finding solutions 
for any approximation, thus any areas of instability can be 
attained. To determine the first area of instability, the 
first-order perturbation correction can be used, which 
involves solving equation (30)2. By the application of 
auxiliary solution 
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To determine the boundaries of the second area of insta-
bility, it is necessary to consider at least the determinant of the 
second degree
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To determine the boundaries of the second area of 
instability, it is necessary to consider at least the 
determinant of the second degree 

   

The first three areas of dynamic instability are 
determined based on equations (18), (20) and (24).  
 
Damping effect on the first and third resonance areas. 
With linear damping which causes the resistance force 
proportional to the speed of movement, adopted for 
considerations, equation (8) takes the form 
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where  is the damping coefficient and c is the 
proportionality coefficient. The harmonic balance method 
using the Fourier series with period 2T (12) allows 
computing conditions for determining the first and third 
areas of dynamic instability 
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or 



2.2 Perturbation method. The first resonance area. In 
the perturbation method, a solution is found as a power 
series in a small parameter. Here, the pulsation ratio (9) is 
treated as the small parameter and the solution of equation 
(8) is represented as the power series 
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Secular terms (increasing amplitudes of oscillation) 
occurring during the analysis have to be removed. For this 
purpose, the frequency of oscillation is assumed to depend 
on the small parameter 
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Substituting (28) and (29) into (8) gives an infinite 
recursive sequence of differential equations with constant 
coefficients 
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The small parameter method allows finding solutions 
for any approximation, thus any areas of instability can be 
attained. To determine the first area of instability, the 
first-order perturbation correction can be used, which 
involves solving equation (30)2. By the application of 
auxiliary solution 
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The first three areas of dynamic instability are determined 
based on equations (18), (20) and (24).

Damping effect on the first and third resonance areas. With 
linear damping which causes the resistance force proportional 
to the speed of movement, adopted for considerations, equation 
(8) takes the form
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To determine the boundaries of the second area of 
instability, it is necessary to consider at least the 
determinant of the second degree 

   

The first three areas of dynamic instability are 
determined based on equations (18), (20) and (24).  
 
Damping effect on the first and third resonance areas. 
With linear damping which causes the resistance force 
proportional to the speed of movement, adopted for 
considerations, equation (8) takes the form 
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where  is the damping coefficient and c is the 
proportionality coefficient. The harmonic balance method 
using the Fourier series with period 2T (12) allows 
computing conditions for determining the first and third 
areas of dynamic instability 
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2.2 Perturbation method. The first resonance area. In 
the perturbation method, a solution is found as a power 
series in a small parameter. Here, the pulsation ratio (9) is 
treated as the small parameter and the solution of equation 
(8) is represented as the power series 
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occurring during the analysis have to be removed. For this 
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Substituting (28) and (29) into (8) gives an infinite 
recursive sequence of differential equations with constant 
coefficients 
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The small parameter method allows finding solutions 
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first-order perturbation correction can be used, which 
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where d = c/2Aρ is the damping coefficient and c is the pro-
portionality coefficient. The harmonic balance method using 
the Fourier series with period 2T (12) allows computing con-
ditions for determining the first and third areas of dynamic 
instability
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To determine the boundaries of the second area of 
instability, it is necessary to consider at least the 
determinant of the second degree 

   

The first three areas of dynamic instability are 
determined based on equations (18), (20) and (24).  
 
Damping effect on the first and third resonance areas. 
With linear damping which causes the resistance force 
proportional to the speed of movement, adopted for 
considerations, equation (8) takes the form 
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where  is the damping coefficient and c is the 
proportionality coefficient. The harmonic balance method 
using the Fourier series with period 2T (12) allows 
computing conditions for determining the first and third 
areas of dynamic instability 
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2.2 Perturbation method. The first resonance area. In 
the perturbation method, a solution is found as a power 
series in a small parameter. Here, the pulsation ratio (9) is 
treated as the small parameter and the solution of equation 
(8) is represented as the power series 

         ...2
2

10  tftftftf   

Secular terms (increasing amplitudes of oscillation) 
occurring during the analysis have to be removed. For this 
purpose, the frequency of oscillation is assumed to depend 
on the small parameter 
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Substituting (28) and (29) into (8) gives an infinite 
recursive sequence of differential equations with constant 
coefficients 
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The small parameter method allows finding solutions 
for any approximation, thus any areas of instability can be 
attained. To determine the first area of instability, the 
first-order perturbation correction can be used, which 
involves solving equation (30)2. By the application of 
auxiliary solution 
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To determine the boundaries of the second area of 
instability, it is necessary to consider at least the 
determinant of the second degree 

   

The first three areas of dynamic instability are 
determined based on equations (18), (20) and (24).  
 
Damping effect on the first and third resonance areas. 
With linear damping which causes the resistance force 
proportional to the speed of movement, adopted for 
considerations, equation (8) takes the form 
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where  is the damping coefficient and c is the 
proportionality coefficient. The harmonic balance method 
using the Fourier series with period 2T (12) allows 
computing conditions for determining the first and third 
areas of dynamic instability 
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2.2 Perturbation method. The first resonance area. In 
the perturbation method, a solution is found as a power 
series in a small parameter. Here, the pulsation ratio (9) is 
treated as the small parameter and the solution of equation 
(8) is represented as the power series 
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Substituting (28) and (29) into (8) gives an infinite 
recursive sequence of differential equations with constant 
coefficients 
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The small parameter method allows finding solutions 
for any approximation, thus any areas of instability can be 
attained. To determine the first area of instability, the 
first-order perturbation correction can be used, which 
involves solving equation (30)2. By the application of 
auxiliary solution 
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To determine the boundaries of the second area of 
instability, it is necessary to consider at least the 
determinant of the second degree 

   

The first three areas of dynamic instability are 
determined based on equations (18), (20) and (24).  
 
Damping effect on the first and third resonance areas. 
With linear damping which causes the resistance force 
proportional to the speed of movement, adopted for 
considerations, equation (8) takes the form 
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where  is the damping coefficient and c is the 
proportionality coefficient. The harmonic balance method 
using the Fourier series with period 2T (12) allows 
computing conditions for determining the first and third 
areas of dynamic instability 
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or 
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2.2 Perturbation method. The first resonance area. In 
the perturbation method, a solution is found as a power 
series in a small parameter. Here, the pulsation ratio (9) is 
treated as the small parameter and the solution of equation 
(8) is represented as the power series 
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Secular terms (increasing amplitudes of oscillation) 
occurring during the analysis have to be removed. For this 
purpose, the frequency of oscillation is assumed to depend 
on the small parameter 
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Substituting (28) and (29) into (8) gives an infinite 
recursive sequence of differential equations with constant 
coefficients 
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The small parameter method allows finding solutions 
for any approximation, thus any areas of instability can be 
attained. To determine the first area of instability, the 
first-order perturbation correction can be used, which 
involves solving equation (30)2. By the application of 
auxiliary solution 
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obtained from (30)1, where 
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equation (30)2 takes the form 
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To determine the boundaries of the second area of 
instability, it is necessary to consider at least the 
determinant of the second degree 

   

The first three areas of dynamic instability are 
determined based on equations (18), (20) and (24).  
 
Damping effect on the first and third resonance areas. 
With linear damping which causes the resistance force 
proportional to the speed of movement, adopted for 
considerations, equation (8) takes the form 
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where  is the damping coefficient and c is the 
proportionality coefficient. The harmonic balance method 
using the Fourier series with period 2T (12) allows 
computing conditions for determining the first and third 
areas of dynamic instability 
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or 



2.2 Perturbation method. The first resonance area. In 
the perturbation method, a solution is found as a power 
series in a small parameter. Here, the pulsation ratio (9) is 
treated as the small parameter and the solution of equation 
(8) is represented as the power series 
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Secular terms (increasing amplitudes of oscillation) 
occurring during the analysis have to be removed. For this 
purpose, the frequency of oscillation is assumed to depend 
on the small parameter 
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Substituting (28) and (29) into (8) gives an infinite 
recursive sequence of differential equations with constant 
coefficients 
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The small parameter method allows finding solutions 
for any approximation, thus any areas of instability can be 
attained. To determine the first area of instability, the 
first-order perturbation correction can be used, which 
involves solving equation (30)2. By the application of 
auxiliary solution 
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obtained from (30)1, where 
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equation (30)2 takes the form 
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2.2 Perturbation method. The first resonance area. In the 
perturbation method, a solution is found as a power series in 
a small parameter. Here, the pulsation ratio (9) is treated as the 
small parameter and the solution of equation (8) is represented 
as the power series
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To determine the boundaries of the second area of 
instability, it is necessary to consider at least the 
determinant of the second degree 

   

The first three areas of dynamic instability are 
determined based on equations (18), (20) and (24).  
 
Damping effect on the first and third resonance areas. 
With linear damping which causes the resistance force 
proportional to the speed of movement, adopted for 
considerations, equation (8) takes the form 
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where  is the damping coefficient and c is the 
proportionality coefficient. The harmonic balance method 
using the Fourier series with period 2T (12) allows 
computing conditions for determining the first and third 
areas of dynamic instability 
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2.2 Perturbation method. The first resonance area. In 
the perturbation method, a solution is found as a power 
series in a small parameter. Here, the pulsation ratio (9) is 
treated as the small parameter and the solution of equation 
(8) is represented as the power series 
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Secular terms (increasing amplitudes of oscillation) 
occurring during the analysis have to be removed. For this 
purpose, the frequency of oscillation is assumed to depend 
on the small parameter 
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Substituting (28) and (29) into (8) gives an infinite 
recursive sequence of differential equations with constant 
coefficients 
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The small parameter method allows finding solutions 
for any approximation, thus any areas of instability can be 
attained. To determine the first area of instability, the 
first-order perturbation correction can be used, which 
involves solving equation (30)2. By the application of 
auxiliary solution 
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Secular terms (increasing amplitudes of oscillation) occur-
ring during the analysis have to be removed. For this purpose, 
the frequency of oscillation is assumed to depend on the small 
parameter
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To determine the boundaries of the second area of 
instability, it is necessary to consider at least the 
determinant of the second degree 

   

The first three areas of dynamic instability are 
determined based on equations (18), (20) and (24).  
 
Damping effect on the first and third resonance areas. 
With linear damping which causes the resistance force 
proportional to the speed of movement, adopted for 
considerations, equation (8) takes the form 
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where  is the damping coefficient and c is the 
proportionality coefficient. The harmonic balance method 
using the Fourier series with period 2T (12) allows 
computing conditions for determining the first and third 
areas of dynamic instability 

  

or 



2.2 Perturbation method. The first resonance area. In 
the perturbation method, a solution is found as a power 
series in a small parameter. Here, the pulsation ratio (9) is 
treated as the small parameter and the solution of equation 
(8) is represented as the power series 
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Secular terms (increasing amplitudes of oscillation) 
occurring during the analysis have to be removed. For this 
purpose, the frequency of oscillation is assumed to depend 
on the small parameter 
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Substituting (28) and (29) into (8) gives an infinite 
recursive sequence of differential equations with constant 
coefficients 
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The small parameter method allows finding solutions 
for any approximation, thus any areas of instability can be 
attained. To determine the first area of instability, the 
first-order perturbation correction can be used, which 
involves solving equation (30)2. By the application of 
auxiliary solution 
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Substituting (28) and (29) into (8) gives an infinite recursive 
sequence of differential equations with constant coefficients
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To determine the boundaries of the second area of 
instability, it is necessary to consider at least the 
determinant of the second degree 

   

The first three areas of dynamic instability are 
determined based on equations (18), (20) and (24).  
 
Damping effect on the first and third resonance areas. 
With linear damping which causes the resistance force 
proportional to the speed of movement, adopted for 
considerations, equation (8) takes the form 
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where  is the damping coefficient and c is the 
proportionality coefficient. The harmonic balance method 
using the Fourier series with period 2T (12) allows 
computing conditions for determining the first and third 
areas of dynamic instability 
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or 
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2.2 Perturbation method. The first resonance area. In 
the perturbation method, a solution is found as a power 
series in a small parameter. Here, the pulsation ratio (9) is 
treated as the small parameter and the solution of equation 
(8) is represented as the power series 
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Secular terms (increasing amplitudes of oscillation) 
occurring during the analysis have to be removed. For this 
purpose, the frequency of oscillation is assumed to depend 
on the small parameter 
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Substituting (28) and (29) into (8) gives an infinite 
recursive sequence of differential equations with constant 
coefficients 
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The small parameter method allows finding solutions 
for any approximation, thus any areas of instability can be 
attained. To determine the first area of instability, the 
first-order perturbation correction can be used, which 
involves solving equation (30)2. By the application of 
auxiliary solution 
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equation (30)2 takes the form 
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The small parameter method allows finding solutions for 
any approximation, thus any areas of instability can be attained. 
To determine the first area of instability, the first-order pertur-
bation correction can be used, which involves solving equation 
(30)2. By the application of auxiliary solution
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To determine the boundaries of the second area of 
instability, it is necessary to consider at least the 
determinant of the second degree 

   

The first three areas of dynamic instability are 
determined based on equations (18), (20) and (24).  
 
Damping effect on the first and third resonance areas. 
With linear damping which causes the resistance force 
proportional to the speed of movement, adopted for 
considerations, equation (8) takes the form 
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where  is the damping coefficient and c is the 
proportionality coefficient. The harmonic balance method 
using the Fourier series with period 2T (12) allows 
computing conditions for determining the first and third 
areas of dynamic instability 
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or 



2.2 Perturbation method. The first resonance area. In 
the perturbation method, a solution is found as a power 
series in a small parameter. Here, the pulsation ratio (9) is 
treated as the small parameter and the solution of equation 
(8) is represented as the power series 
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Secular terms (increasing amplitudes of oscillation) 
occurring during the analysis have to be removed. For this 
purpose, the frequency of oscillation is assumed to depend 
on the small parameter 
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Substituting (28) and (29) into (8) gives an infinite 
recursive sequence of differential equations with constant 
coefficients 
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The small parameter method allows finding solutions 
for any approximation, thus any areas of instability can be 
attained. To determine the first area of instability, the 
first-order perturbation correction can be used, which 
involves solving equation (30)2. By the application of 
auxiliary solution 
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obtained from (30)1, where 
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equation (30)2 takes the form 
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obtained from (30)1, where
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To determine the boundaries of the second area of 
instability, it is necessary to consider at least the 
determinant of the second degree 

   

The first three areas of dynamic instability are 
determined based on equations (18), (20) and (24).  
 
Damping effect on the first and third resonance areas. 
With linear damping which causes the resistance force 
proportional to the speed of movement, adopted for 
considerations, equation (8) takes the form 
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where  is the damping coefficient and c is the 
proportionality coefficient. The harmonic balance method 
using the Fourier series with period 2T (12) allows 
computing conditions for determining the first and third 
areas of dynamic instability 

  

or 



2.2 Perturbation method. The first resonance area. In 
the perturbation method, a solution is found as a power 
series in a small parameter. Here, the pulsation ratio (9) is 
treated as the small parameter and the solution of equation 
(8) is represented as the power series 

         ...2
2

10  tftftftf   

Secular terms (increasing amplitudes of oscillation) 
occurring during the analysis have to be removed. For this 
purpose, the frequency of oscillation is assumed to depend 
on the small parameter 
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Substituting (28) and (29) into (8) gives an infinite 
recursive sequence of differential equations with constant 
coefficients 
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The small parameter method allows finding solutions 
for any approximation, thus any areas of instability can be 
attained. To determine the first area of instability, the 
first-order perturbation correction can be used, which 
involves solving equation (30)2. By the application of 
auxiliary solution 
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equation (30)2 takes the form 
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equation (30)2 takes the form
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To determine the boundaries of the second area of 
instability, it is necessary to consider at least the 
determinant of the second degree 

   

The first three areas of dynamic instability are 
determined based on equations (18), (20) and (24).  
 
Damping effect on the first and third resonance areas. 
With linear damping which causes the resistance force 
proportional to the speed of movement, adopted for 
considerations, equation (8) takes the form 
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where  is the damping coefficient and c is the 
proportionality coefficient. The harmonic balance method 
using the Fourier series with period 2T (12) allows 
computing conditions for determining the first and third 
areas of dynamic instability 
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or 



2.2 Perturbation method. The first resonance area. In 
the perturbation method, a solution is found as a power 
series in a small parameter. Here, the pulsation ratio (9) is 
treated as the small parameter and the solution of equation 
(8) is represented as the power series 
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Secular terms (increasing amplitudes of oscillation) 
occurring during the analysis have to be removed. For this 
purpose, the frequency of oscillation is assumed to depend 
on the small parameter 
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Substituting (28) and (29) into (8) gives an infinite 
recursive sequence of differential equations with constant 
coefficients 
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The small parameter method allows finding solutions 
for any approximation, thus any areas of instability can be 
attained. To determine the first area of instability, the 
first-order perturbation correction can be used, which 
involves solving equation (30)2. By the application of 
auxiliary solution 

  

obtained from (30)1, where 
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To determine the boundaries of the second area of 
instability, it is necessary to consider at least the 
determinant of the second degree 
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The first three areas of dynamic instability are 
determined based on equations (18), (20) and (24).  
 
Damping effect on the first and third resonance areas. 
With linear damping which causes the resistance force 
proportional to the speed of movement, adopted for 
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where  is the damping coefficient and c is the 
proportionality coefficient. The harmonic balance method 
using the Fourier series with period 2T (12) allows 
computing conditions for determining the first and third 
areas of dynamic instability 
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2.2 Perturbation method. The first resonance area. In 
the perturbation method, a solution is found as a power 
series in a small parameter. Here, the pulsation ratio (9) is 
treated as the small parameter and the solution of equation 
(8) is represented as the power series 
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Assume that the frequency of periodic force is twice the 
frequency of vibration. Then the solution of (33) is a function
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Assume that the frequency of periodic force is twice 
the frequency of vibration. Then the solution of (33) is a 
function 

  

where 

  

After integration according to (36), two sets of secular 
terms determining the unstable nature of the solution are 
obtained on the right-hand side of (33). The removal of 
one of the terms gives a classic border solution composed 
of periodic functions and one secular term. The secular 
terms is removed as follows 

  

After the substitution of (determined from (37)) into 
(29), the frequency of oscillation takes the form 

  

and the first area of dynamic instability is determined 
based on equation 

  

2.3 Examples. The areas of dynamic instability are 
determined based on (19) and (39). The areas are 
contained within the lines representing the pair of values 
 and where is the frequency of periodic force and 
is the pulsation ratio (9). he pulsation ratio determines 
which part of the first critical value Se is the amplitude of 
periodic force St. The examples evaluate in detail the 
effects of the shear deformation and the rotatory inertia on 
the instability areas of the simply supported beam. The 
calculations are made in the Mathematica environment. 
 
Example 1. In the first example, the first three areas of 
dynamic instability for reinforced concrete simply 
supported beam are determined using the Timoshenko and 
Bernoulli-Euler beam theories. In the second approach, 
the parameters (6) are skipped. This example illustrates 
the influence of the shear deformation and the rotatory 
inertia on the instability areas of the beam. 

Let us consider a beam with a rectangular cross-
section and the following geometric and mechanical 
characteristics: length L=8 m, width b=0.5 m, height 
h=1.6, shear factor =1.2, Young’s modulus 

E=2.7x1010 Pa, Poisson’s ratio v=0.2 and mass density 
=2400 kgm-3. The non-dimensional parameters (6) for 
accepted data are and n=2.88. The results are 
shown in Fig. 2. 

The effect of moderate thickness is the greatest on the 
third instability area. Areas determined using the 
Bernoulli-Euler beam theory (dotted line) and 
Timoshenko beam theory (solid line) do not have 
common parts (Fig. 2). In case of the first instability area, 
the maximum relative error between the resonance 
frequency values determined using the two theories is 6%.  

Further calculations allow determining which 
parameters describing the moderate thickness, shear 
deformation or rotatory inertia have a greater influence on 
resonance areas. The boundaries of the first instability 
area for a simply supported beam with and without the 
effect of rotatory inertia are determined (Fig. 3). The 
effect is minor because the resonance frequency is about 
1.4% lower than that given without considering the 
rotatory inertia. In the case of the second and third areas, 
the effect is even smaller. Thus the rotational inertia may 
be omitted from the calculations. 

 
Example 2. In the second example, the harmonic 

balance method (HBM) and perturbation method (PM) are 
compared. The boundaries of the first area of instability 
for the beam are determined from the first example. The 
results are shown in Table 1. The differences between the 
frequencies obtained by using these two methods are 
negligible – maximum difference is 0.0019 rad/s. Since 
the second approach (PM) gives a simpler formula (39), 
the perturbation method is proposed for determining the 
resonance areas. 

 

 
Fig. 2. First three areas of instability for simply supported beam; 

Bernoulli-Euler beam theory (---), Timoshenko beam theory (—); 
first area (●), second area (■), third area (▲). 
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where
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Assume that the frequency of periodic force is twice 
the frequency of vibration. Then the solution of (33) is a 
function 

  

where 
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After integration according to (36), two sets of secular 
terms determining the unstable nature of the solution are 
obtained on the right-hand side of (33). The removal of 
one of the terms gives a classic border solution composed 
of periodic functions and one secular term. The secular 
terms is removed as follows 
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After the substitution of (determined from (37)) into 
(29), the frequency of oscillation takes the form 
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and the first area of dynamic instability is determined 
based on equation 
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2.3 Examples. The areas of dynamic instability are 
determined based on (19) and (39). The areas are 
contained within the lines representing the pair of values 
 and where is the frequency of periodic force and 
is the pulsation ratio (9). he pulsation ratio determines 
which part of the first critical value Se is the amplitude of 
periodic force St. The examples evaluate in detail the 
effects of the shear deformation and the rotatory inertia on 
the instability areas of the simply supported beam. The 
calculations are made in the Mathematica environment. 
 
Example 1. In the first example, the first three areas of 
dynamic instability for reinforced concrete simply 
supported beam are determined using the Timoshenko and 
Bernoulli-Euler beam theories. In the second approach, 
the parameters (6) are skipped. This example illustrates 
the influence of the shear deformation and the rotatory 
inertia on the instability areas of the beam. 

Let us consider a beam with a rectangular cross-
section and the following geometric and mechanical 
characteristics: length L=8 m, width b=0.5 m, height 
h=1.6, shear factor =1.2, Young’s modulus 

E=2.7x1010 Pa, Poisson’s ratio v=0.2 and mass density 
=2400 kgm-3. The non-dimensional parameters (6) for 
accepted data are and n=2.88. The results are 
shown in Fig. 2. 

The effect of moderate thickness is the greatest on the 
third instability area. Areas determined using the 
Bernoulli-Euler beam theory (dotted line) and 
Timoshenko beam theory (solid line) do not have 
common parts (Fig. 2). In case of the first instability area, 
the maximum relative error between the resonance 
frequency values determined using the two theories is 6%.  

Further calculations allow determining which 
parameters describing the moderate thickness, shear 
deformation or rotatory inertia have a greater influence on 
resonance areas. The boundaries of the first instability 
area for a simply supported beam with and without the 
effect of rotatory inertia are determined (Fig. 3). The 
effect is minor because the resonance frequency is about 
1.4% lower than that given without considering the 
rotatory inertia. In the case of the second and third areas, 
the effect is even smaller. Thus the rotational inertia may 
be omitted from the calculations. 

 
Example 2. In the second example, the harmonic 

balance method (HBM) and perturbation method (PM) are 
compared. The boundaries of the first area of instability 
for the beam are determined from the first example. The 
results are shown in Table 1. The differences between the 
frequencies obtained by using these two methods are 
negligible – maximum difference is 0.0019 rad/s. Since 
the second approach (PM) gives a simpler formula (39), 
the perturbation method is proposed for determining the 
resonance areas. 

 

 
Fig. 2. First three areas of instability for simply supported beam; 

Bernoulli-Euler beam theory (---), Timoshenko beam theory (—); 
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After integration according to (36), two sets of secular 
terms determining the unstable nature of the solution are ob-
tained on the right-hand side of (33). The removal of one of 
the terms gives a classic border solution composed of periodic 
functions and one secular term. The secular terms is removed 
as follows
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Assume that the frequency of periodic force is twice 
the frequency of vibration. Then the solution of (33) is a 
function 
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After integration according to (36), two sets of secular 
terms determining the unstable nature of the solution are 
obtained on the right-hand side of (33). The removal of 
one of the terms gives a classic border solution composed 
of periodic functions and one secular term. The secular 
terms is removed as follows 
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(29), the frequency of oscillation takes the form 
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and the first area of dynamic instability is determined 
based on equation 
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2.3 Examples. The areas of dynamic instability are 
determined based on (19) and (39). The areas are 
contained within the lines representing the pair of values 
 and where is the frequency of periodic force and 
is the pulsation ratio (9). he pulsation ratio determines 
which part of the first critical value Se is the amplitude of 
periodic force St. The examples evaluate in detail the 
effects of the shear deformation and the rotatory inertia on 
the instability areas of the simply supported beam. The 
calculations are made in the Mathematica environment. 
 
Example 1. In the first example, the first three areas of 
dynamic instability for reinforced concrete simply 
supported beam are determined using the Timoshenko and 
Bernoulli-Euler beam theories. In the second approach, 
the parameters (6) are skipped. This example illustrates 
the influence of the shear deformation and the rotatory 
inertia on the instability areas of the beam. 

Let us consider a beam with a rectangular cross-
section and the following geometric and mechanical 
characteristics: length L=8 m, width b=0.5 m, height 
h=1.6, shear factor =1.2, Young’s modulus 

E=2.7x1010 Pa, Poisson’s ratio v=0.2 and mass density 
=2400 kgm-3. The non-dimensional parameters (6) for 
accepted data are and n=2.88. The results are 
shown in Fig. 2. 

The effect of moderate thickness is the greatest on the 
third instability area. Areas determined using the 
Bernoulli-Euler beam theory (dotted line) and 
Timoshenko beam theory (solid line) do not have 
common parts (Fig. 2). In case of the first instability area, 
the maximum relative error between the resonance 
frequency values determined using the two theories is 6%.  

Further calculations allow determining which 
parameters describing the moderate thickness, shear 
deformation or rotatory inertia have a greater influence on 
resonance areas. The boundaries of the first instability 
area for a simply supported beam with and without the 
effect of rotatory inertia are determined (Fig. 3). The 
effect is minor because the resonance frequency is about 
1.4% lower than that given without considering the 
rotatory inertia. In the case of the second and third areas, 
the effect is even smaller. Thus the rotational inertia may 
be omitted from the calculations. 
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for the beam are determined from the first example. The 
results are shown in Table 1. The differences between the 
frequencies obtained by using these two methods are 
negligible – maximum difference is 0.0019 rad/s. Since 
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After the substitution of ω1 (determined from (37)) into (29), 
the frequency of oscillation takes the form
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Assume that the frequency of periodic force is twice 
the frequency of vibration. Then the solution of (33) is a 
function 

  

where 

  

After integration according to (36), two sets of secular 
terms determining the unstable nature of the solution are 
obtained on the right-hand side of (33). The removal of 
one of the terms gives a classic border solution composed 
of periodic functions and one secular term. The secular 
terms is removed as follows 
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After the substitution of (determined from (37)) into 
(29), the frequency of oscillation takes the form 

  

and the first area of dynamic instability is determined 
based on equation 

  

2.3 Examples. The areas of dynamic instability are 
determined based on (19) and (39). The areas are 
contained within the lines representing the pair of values 
 and where is the frequency of periodic force and 
is the pulsation ratio (9). he pulsation ratio determines 
which part of the first critical value Se is the amplitude of 
periodic force St. The examples evaluate in detail the 
effects of the shear deformation and the rotatory inertia on 
the instability areas of the simply supported beam. The 
calculations are made in the Mathematica environment. 
 
Example 1. In the first example, the first three areas of 
dynamic instability for reinforced concrete simply 
supported beam are determined using the Timoshenko and 
Bernoulli-Euler beam theories. In the second approach, 
the parameters (6) are skipped. This example illustrates 
the influence of the shear deformation and the rotatory 
inertia on the instability areas of the beam. 

Let us consider a beam with a rectangular cross-
section and the following geometric and mechanical 
characteristics: length L=8 m, width b=0.5 m, height 
h=1.6, shear factor =1.2, Young’s modulus 

E=2.7x1010 Pa, Poisson’s ratio v=0.2 and mass density 
=2400 kgm-3. The non-dimensional parameters (6) for 
accepted data are and n=2.88. The results are 
shown in Fig. 2. 

The effect of moderate thickness is the greatest on the 
third instability area. Areas determined using the 
Bernoulli-Euler beam theory (dotted line) and 
Timoshenko beam theory (solid line) do not have 
common parts (Fig. 2). In case of the first instability area, 
the maximum relative error between the resonance 
frequency values determined using the two theories is 6%.  

Further calculations allow determining which 
parameters describing the moderate thickness, shear 
deformation or rotatory inertia have a greater influence on 
resonance areas. The boundaries of the first instability 
area for a simply supported beam with and without the 
effect of rotatory inertia are determined (Fig. 3). The 
effect is minor because the resonance frequency is about 
1.4% lower than that given without considering the 
rotatory inertia. In the case of the second and third areas, 
the effect is even smaller. Thus the rotational inertia may 
be omitted from the calculations. 
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and the first area of dynamic instability is determined based 
on equation
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2.3 Examples. The areas of dynamic instability are determined 
based on (19) and (39). The areas are contained within the lines 
representing the pair of values θ and υ where θ is the frequency 
of periodic force and υ is the pulsation ratio (9). The pulsation 
ratio determines which part of the first critical value Se is the 
amplitude of periodic force St. The examples evaluate in detail 
the effects of the shear deformation and the rotatory inertia on 
the instability areas of the simply supported beam. The calcu-
lations are made in the Mathematica environment.

Example 1. In the first example, the first three areas of dy-
namic instability for reinforced concrete simply supported 
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beam are determined using the Timoshenko and Bernoul-
li-Euler beam theories. In the second approach, the parameters 
(6) are skipped. This example illustrates the influence of the 
shear deformation and the rotatory inertia on the instability 
areas of the beam.

Let us consider a beam with a rectangular cross-section and 
the following geometric and mechanical characteristics: length 
L = 8 m, width b = 0.5 m, height h = 1.6, shear factor κ = 1.2, 
Young’s modulus E = 2.7£1010 Pa, Poisson’s ratio v = 0.2 and 
mass density ρ = 2400 kgm-3. The non-dimensional parameters 
(6) for accepted data are ξ = 0.0096 and n = 2.88. The results 
are shown in Fig. 2.

The effect of moderate thickness is the greatest on the 
third instability area. Areas determined using the Bernoul-
li-Euler beam theory (dotted line) and Timoshenko beam 
theory (solid line) do not have common parts (Fig. 2). In 
case of the first instability area, the maximum relative error 
between the resonance frequency values determined using 
the two theories is 6%.

Further calculations allow determining which parameters 
describing the moderate thickness, shear deformation or rota-
tory inertia have a greater influence on resonance areas. The 
boundaries of the first instability area for a simply supported 
beam with and without the effect of rotatory inertia are deter-
mined (Fig. 3). The effect is minor because the resonance fre-
quency is about 1.4% lower than that given without considering 
the rotatory inertia. In the case of the second and third areas, 
the effect is even smaller. Thus the rotational inertia may be 
omitted from the calculations.

Example 2. In the second example, the harmonic balance 
method (HBM) and perturbation method (PM) are compared. 
The boundaries of the first area of instability for the beam are 
determined from the first example. The results are shown in 
Table 1. The differences between the frequencies obtained by 
using these two methods are negligible – maximum difference 
is 0.0019 rad/s. Since the second approach (PM) gives a simpler 
formula (39), the perturbation method is proposed for deter-
mining the resonance areas.

Table 1 
Resonance frequency of periodic force for simply supported beam. 

Comparison of two methods

υ [–] MBH MMP diffe-
rence 

[rad/s]]

MBH MMP diffe-
rence 

[rad/s]]
θ1  

[rad/s]
θ1  

[rad/s]
θ1  

[rad/s]
θ1  

[rad/s]

0 318.5663 318.5663 0.0000 318.5663 318.5663 0.0000

0.125 337.8891 337.8893 0.0002 297.9927 297.9929 0.0002

0.25 356.1649 356.1655 0.0006 275.8888 275.8896 0.0008

0.375 373.5473 373.5486 0.0013 251.8519 251.8539 0.0019

Example 3. The third example express the damping effect on 
the first and third resonance area for the beam from the first 
example. It is assumed that the damping coefficient d = Δω/2π 
(Δ is a logarithmic decrement). Calculations are made for two 
values of the logarithmic decrement Δ = 0.02 and Δ = 0.19. 
The results indicate that the first area is most dangerous because 
damping moves the boundaries of instability away from the 
axis θ. In the first case (Fig. 4a), borders of the first instability 
area move away from the axis θ by about υ = 0.0063, and 
borders of the third instability area move away from the axis 
θ by about υ = 0.167, with about υ = 0.0597 and υ = 0.3425, 
respectively, in the second case (Fig. 4b).

Fig. 3. Boundaries of the first instability area for simply supported 
beam with effect of rotatory inertia (—) and with no effect of rotatory 

inertia (— ¢ —)

Fig. 2. First three areas of instability for simply supported beam; 
Bernoulli-Euler beam theory (- - -), Timoshenko beam theory (—); 

first area (●), second area (■), third area (▲)
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Fig. 4. Damping effect for simply supported beam: a) Δ = 0.02, b) Δ = 0.19; first area (●), third area (▲)

3.	 Analysis of rods and frame structures

The system of equations of motion can be written in the finite 
element form
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3. Analysis of rods and frame structures 

The system of equations of motion can be written in 
the finite element form 

           0qKKqqMM  ttStt G
R   

where M, MR, K and KG are respectively the mass matrix, 
the rotatory inertia matrix, the stiffness matrix and the 
incremental (or geometric) stiffness matrix. These 
matrices include effects of the shear deformation and are 
developed based on physical shape functions [29]. 

 

 

 
Fig. 4. Damping effect for simply supported beam: a)=0.02, 

b)=0.19; first area (●), third area (▲). 

Equation (40) allows determining the instability areas 
on the plane of parameters defining the load (S0, St, ) 
and properties of the frame structure such as the critical 
force Sek and free vibration frequency  

 ,...2,1;1  k
S
SΩ

ek

o
kk   

3.1 Harmonic balance method. To obtain the boundary 
frequency equations the Fourier series with period 2T (12) 
or T (21) can be used, assuming that    tftq  . Inserting 
(12) into (40) gives two linear separated homogenous 
systems with infinite equations and infinite unknowns ai 
and bi. Solutions different from zero exist if 
 



,� (40)

where M, MR, K and KG are respectively the mass matrix, the 
rotatory inertia matrix, the stiffness matrix and the incremental 
(or geometric) stiffness matrix. These matrices include effects 
of the shear deformation and are developed based on physical 
shape functions [29].

Equation (40) allows determining the instability areas on the 
plane of parameters defining the load (S0, St, θ ) and properties 

of the frame structure such as the critical force Sek and free 
vibration frequency 
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3.1 Harmonic balance method. To obtain the boundary fre-
quency equations the Fourier series with period 2T (12) or 
T (21) can be used, assuming that q(t) = f(t). Inserting (12) 
into (40) gives two linear separated homogenous systems with 
infinite equations and infinite unknowns ai and bi. Solutions 
different from zero exist if
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Similar considerations for solutions with period T (21) lead to two infinite equations 
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Equation (42) leads to determining first, third, fifth etc. 

resonance areas while equations (43) and (44) – second, 
fourth etc. To determine the boundaries of the first area of 
instability, it is necessary to consider the determinant of 
the first degree of matrix (42)  
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Equation (45) is the basis for determining the resonance 
frequency  for the given So and St. 
 
3.2 Perturbation method. A displacement vector q(t) is 
expressed in terms of the principal coordinates r(t)  
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matrix has the following properties: 
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where  is a diagonal matrix  
of square frequency vibration of the system determined 
from equation 

    .0det 2
0  R

G ΩS MMKK  

Equation (46) is used to convert the equations of motion 
(40) into modal equations of motion 
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where VKVK G
T

G *  is a geometric stiffness matrix with 
dominated diagonal terms taken into account  
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*
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*
GnGGG KKKdiagK  

The modal coordinate transformation decouples the 
coupled set of equations of motion thus they can be solved 
using the single Mathieu-Hill differential equation  

   ,...2,1;0cos212  krtΩr kGkkk   (52) 
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2 ... nΩΩΩdiagΩ

,� (42)

Similar considerations for solutions with period T (21) lead to two infinite equations
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Equation (42) leads to determining first, third, fifth etc. 

resonance areas while equations (43) and (44) – second, 
fourth etc. To determine the boundaries of the first area of 
instability, it is necessary to consider the determinant of 
the first degree of matrix (42)  
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Equation (45) is the basis for determining the resonance 
frequency  for the given So and St. 
 
3.2 Perturbation method. A displacement vector q(t) is 
expressed in terms of the principal coordinates r(t)  

  

where  nvvvV ...21  is the modal transformation 
matrix composed of M-orthonormal eigenvectors – 
eigenvectors are multiplied by 
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where mo=1 in the unit of mass. The modal transformation 
matrix has the following properties: 
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where  is a diagonal matrix  
of square frequency vibration of the system determined 
from equation 
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Equation (46) is used to convert the equations of motion 
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where VKVK G
T

G *  is a geometric stiffness matrix with 
dominated diagonal terms taken into account  
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GnGGG KKKdiagK  

The modal coordinate transformation decouples the 
coupled set of equations of motion thus they can be solved 
using the single Mathieu-Hill differential equation  
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Equation (42) leads to determining first, third, fifth etc. res-
onance areas while equations (43) and (44) – second, fourth 
etc. To determine the boundaries of the first area of instability, 
it is necessary to consider the determinant of the first degree 
of matrix (42)
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Equation (42) leads to determining first, third, fifth etc. 

resonance areas while equations (43) and (44) – second, 
fourth etc. To determine the boundaries of the first area of 
instability, it is necessary to consider the determinant of 
the first degree of matrix (42)  
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0 
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



  R

GtG SS MMKKK   

Equation (45) is the basis for determining the resonance 
frequency  for the given So and St. 
 
3.2 Perturbation method. A displacement vector q(t) is 
expressed in terms of the principal coordinates r(t)  

  

where  nvvvV ...21  is the modal transformation 
matrix composed of M-orthonormal eigenvectors – 
eigenvectors are multiplied by 
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,...,2,1; 


 k
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k
RT

k
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aMMa
  

where mo=1 in the unit of mass. The modal transformation 
matrix has the following properties: 
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IVMMV
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where  is a diagonal matrix  
of square frequency vibration of the system determined 
from equation 

    .0det 2
0  R

G ΩS MMKK  

Equation (46) is used to convert the equations of motion 
(40) into modal equations of motion 

     0rKΩr 

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 tt
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where VKVK G
T

G *  is a geometric stiffness matrix with 
dominated diagonal terms taken into account  

 ]...[ **
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GnGGG KKKdiagK  

The modal coordinate transformation decouples the 
coupled set of equations of motion thus they can be solved 
using the single Mathieu-Hill differential equation  

   ,...2,1;0cos212  krtΩr kGkkk   (52) 

   tt Vrq 
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2 ... nΩΩΩdiagΩ

.� (45)

Equation (45) is the basis for determining the resonance 
frequency θ for the given So and St.

3.2 Perturbation method. A displacement vector q(t) is ex-
pressed in terms of the principal coordinates r(t) 
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Equation (42) leads to determining first, third, fifth etc. 

resonance areas while equations (43) and (44) – second, 
fourth etc. To determine the boundaries of the first area of 
instability, it is necessary to consider the determinant of 
the first degree of matrix (42)  
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Equation (45) is the basis for determining the resonance 
frequency  for the given So and St. 
 
3.2 Perturbation method. A displacement vector q(t) is 
expressed in terms of the principal coordinates r(t)  

  

where  nvvvV ...21  is the modal transformation 
matrix composed of M-orthonormal eigenvectors – 
eigenvectors are multiplied by 
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where mo=1 in the unit of mass. The modal transformation 
matrix has the following properties: 


 
  ,

,
2

0 ΩVKKV
IVMMV

G o
T

o
RT

mS
m



 

where  is a diagonal matrix  
of square frequency vibration of the system determined 
from equation 
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Equation (46) is used to convert the equations of motion 
(40) into modal equations of motion 
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dominated diagonal terms taken into account  

 ]...[ **
2

*
1

*
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The modal coordinate transformation decouples the 
coupled set of equations of motion thus they can be solved 
using the single Mathieu-Hill differential equation  

   ,...2,1;0cos212  krtΩr kGkkk   (52) 
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2 ... nΩΩΩdiagΩ

,� (46)

where V = [v1  v2  …  vn] is the modal transformation matrix 
composed of M-orthonormal eigenvectors – eigenvectors are 
multiplied by

	

7 

 

 

 
,0

............

...
4
25

2
10

...
2
1

4
9

2
1

...0
2
1

4
1

2
1

det
2

0

2
0

2
0





































R
GGt

Gt
R

GGt

Gt
R

GtG

SS

SSS

SSS

MMKKK

KMMKKK

KMMKKK







 

Similar considerations for solutions with period T (21) lead to two infinite equations 

  

 
,0

............

...4
2
10

...
2
1

2
1

...0
2
1

det
2

0

2
0

0





































R
GGt

Gt
R

GGt

GtG

SS

SSS

SS

MMKKK

KMMKKK

KKK



   



 
  .04

2
1

2
1

det 2
0

2
0







































R
GGt

Gt
R

G

SS

SS

MMKKK

KMMKK





   

 
Equation (42) leads to determining first, third, fifth etc. 

resonance areas while equations (43) and (44) – second, 
fourth etc. To determine the boundaries of the first area of 
instability, it is necessary to consider the determinant of 
the first degree of matrix (42)  
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Equation (45) is the basis for determining the resonance 
frequency  for the given So and St. 
 
3.2 Perturbation method. A displacement vector q(t) is 
expressed in terms of the principal coordinates r(t)  

  

where  nvvvV ...21  is the modal transformation 
matrix composed of M-orthonormal eigenvectors – 
eigenvectors are multiplied by 
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where mo=1 in the unit of mass. The modal transformation 
matrix has the following properties: 
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where  is a diagonal matrix  
of square frequency vibration of the system determined 
from equation 
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0  R

G ΩS MMKK  

Equation (46) is used to convert the equations of motion 
(40) into modal equations of motion 
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dominated diagonal terms taken into account  
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The modal coordinate transformation decouples the 
coupled set of equations of motion thus they can be solved 
using the single Mathieu-Hill differential equation  

   ,...2,1;0cos212  krtΩr kGkkk   (52) 
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where mo = 1 in the unit of mass. The modal transformation 
matrix has the following properties:
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Equation (42) leads to determining first, third, fifth etc. 

resonance areas while equations (43) and (44) – second, 
fourth etc. To determine the boundaries of the first area of 
instability, it is necessary to consider the determinant of 
the first degree of matrix (42)  

   0
4
1

2
1det 2

0 





  R

GtG SS MMKKK   

Equation (45) is the basis for determining the resonance 
frequency  for the given So and St. 
 
3.2 Perturbation method. A displacement vector q(t) is 
expressed in terms of the principal coordinates r(t)  

  

where  nvvvV ...21  is the modal transformation 
matrix composed of M-orthonormal eigenvectors – 
eigenvectors are multiplied by 


 

,...,2,1; 


 k
m

k
RT

k

o
k

aMMa
  

where mo=1 in the unit of mass. The modal transformation 
matrix has the following properties: 


 
  ,

,
2

0 ΩVKKV
IVMMV

G o
T

o
RT

mS
m



 

where  is a diagonal matrix  
of square frequency vibration of the system determined 
from equation 

    .0det 2
0  R

G ΩS MMKK  

Equation (46) is used to convert the equations of motion 
(40) into modal equations of motion 

     0rKΩr 







 tt

m
St G

o

t cos*2  

where VKVK G
T

G *  is a geometric stiffness matrix with 
dominated diagonal terms taken into account  

 ]...[ **
2

*
1

*
GnGGG KKKdiagK  

The modal coordinate transformation decouples the 
coupled set of equations of motion thus they can be solved 
using the single Mathieu-Hill differential equation  

   ,...2,1;0cos212  krtΩr kGkkk   (52) 

   tt Vrq 

 22
2

2
1

2 ... nΩΩΩdiagΩ

� (48)

where Ω2 = diag[Ω1
2  Ω2

2  …  Ωn
2] is a diagonal matrix of square 

frequency vibration of the system determined from equation
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Equation (42) leads to determining first, third, fifth etc. 

resonance areas while equations (43) and (44) – second, 
fourth etc. To determine the boundaries of the first area of 
instability, it is necessary to consider the determinant of 
the first degree of matrix (42)  
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4
1

2
1det 2

0 





  R

GtG SS MMKKK   

Equation (45) is the basis for determining the resonance 
frequency  for the given So and St. 
 
3.2 Perturbation method. A displacement vector q(t) is 
expressed in terms of the principal coordinates r(t)  

  

where  nvvvV ...21  is the modal transformation 
matrix composed of M-orthonormal eigenvectors – 
eigenvectors are multiplied by 


 

,...,2,1; 


 k
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k
RT

k
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aMMa
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where mo=1 in the unit of mass. The modal transformation 
matrix has the following properties: 
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IVMMV
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where  is a diagonal matrix  
of square frequency vibration of the system determined 
from equation 
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Equation (46) is used to convert the equations of motion 
(40) into modal equations of motion 
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where VKVK G
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G *  is a geometric stiffness matrix with 
dominated diagonal terms taken into account  
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The modal coordinate transformation decouples the 
coupled set of equations of motion thus they can be solved 
using the single Mathieu-Hill differential equation  

   ,...2,1;0cos212  krtΩr kGkkk   (52) 

   tt Vrq 
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2 ... nΩΩΩdiagΩ

.� (49)

Equation (46) is used to convert the equations of motion (40) 
into modal equations of motion
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Equation (42) leads to determining first, third, fifth etc. 

resonance areas while equations (43) and (44) – second, 
fourth etc. To determine the boundaries of the first area of 
instability, it is necessary to consider the determinant of 
the first degree of matrix (42)  
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4
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



  R

GtG SS MMKKK   

Equation (45) is the basis for determining the resonance 
frequency  for the given So and St. 
 
3.2 Perturbation method. A displacement vector q(t) is 
expressed in terms of the principal coordinates r(t)  

  

where  nvvvV ...21  is the modal transformation 
matrix composed of M-orthonormal eigenvectors – 
eigenvectors are multiplied by 


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,...,2,1; 


 k
m

k
RT

k
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aMMa
  

where mo=1 in the unit of mass. The modal transformation 
matrix has the following properties: 
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,
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0 ΩVKKV
IVMMV

G o
T
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mS
m
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where  is a diagonal matrix  
of square frequency vibration of the system determined 
from equation 

    .0det 2
0  R

G ΩS MMKK  

Equation (46) is used to convert the equations of motion 
(40) into modal equations of motion 

     0rKΩr 



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 tt
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o
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where VKVK G
T

G *  is a geometric stiffness matrix with 
dominated diagonal terms taken into account  

 ]...[ **
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*
1

*
GnGGG KKKdiagK  

The modal coordinate transformation decouples the 
coupled set of equations of motion thus they can be solved 
using the single Mathieu-Hill differential equation  

   ,...2,1;0cos212  krtΩr kGkkk   (52) 

   tt Vrq 

 22
2

2
1

2 ... nΩΩΩdiagΩ

,� (50)

where K*
G = VTKGV is a geometric stiffness matrix with dom-

inated diagonal terms taken into account
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Equation (42) leads to determining first, third, fifth etc. 

resonance areas while equations (43) and (44) – second, 
fourth etc. To determine the boundaries of the first area of 
instability, it is necessary to consider the determinant of 
the first degree of matrix (42)  
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Equation (45) is the basis for determining the resonance 
frequency  for the given So and St. 
 
3.2 Perturbation method. A displacement vector q(t) is 
expressed in terms of the principal coordinates r(t)  

  

where  nvvvV ...21  is the modal transformation 
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eigenvectors are multiplied by 
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The modal coordinate transformation decouples the 
coupled set of equations of motion thus they can be solved 
using the single Mathieu-Hill differential equation  

   ,...2,1;0cos212  krtΩr kGkkk   (52) 

   tt Vrq 

 22
2

2
1

2 ... nΩΩΩdiagΩ

.� (51)

	

7 

 

 

 
,0

............

...
4
25

2
10

...
2
1

4
9

2
1

...0
2
1

4
1

2
1

det
2

0

2
0

2
0





































R
GGt

Gt
R

GGt

Gt
R

GtG

SS

SSS

SSS

MMKKK

KMMKKK

KMMKKK







 

Similar considerations for solutions with period T (21) lead to two infinite equations 

  

 
,0

............

...4
2
10

...
2
1

2
1

...0
2
1

det
2

0

2
0

0





































R
GGt

Gt
R

GGt

GtG

SS

SSS

SS

MMKKK

KMMKKK

KKK



   



 
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2
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2
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0

2
0




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
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




























R
GGt

Gt
R

G

SS

SS

MMKKK

KMMKK





   

 
Equation (42) leads to determining first, third, fifth etc. 

resonance areas while equations (43) and (44) – second, 
fourth etc. To determine the boundaries of the first area of 
instability, it is necessary to consider the determinant of 
the first degree of matrix (42)  

   0
4
1

2
1det 2

0 





  R

GtG SS MMKKK   

Equation (45) is the basis for determining the resonance 
frequency  for the given So and St. 
 
3.2 Perturbation method. A displacement vector q(t) is 
expressed in terms of the principal coordinates r(t)  

  

where  nvvvV ...21  is the modal transformation 
matrix composed of M-orthonormal eigenvectors – 
eigenvectors are multiplied by 


 

,...,2,1; 


 k
m

k
RT

k

o
k

aMMa
  

where mo=1 in the unit of mass. The modal transformation 
matrix has the following properties: 


 
  ,

,
2

0 ΩVKKV
IVMMV

G o
T

o
RT

mS
m



 

where  is a diagonal matrix  
of square frequency vibration of the system determined 
from equation 

    .0det 2
0  R

G ΩS MMKK  

Equation (46) is used to convert the equations of motion 
(40) into modal equations of motion 

     0rKΩr 







 tt

m
St G

o

t cos*2  

where VKVK G
T

G *  is a geometric stiffness matrix with 
dominated diagonal terms taken into account  

 ]...[ **
2

*
1

*
GnGGG KKKdiagK  

The modal coordinate transformation decouples the 
coupled set of equations of motion thus they can be solved 
using the single Mathieu-Hill differential equation  

   ,...2,1;0cos212  krtΩr kGkkk   (52) 

   tt Vrq 

 22
2

2
1

2 ... nΩΩΩdiagΩ

.� (44)

The modal coordinate transformation decouples the coupled 
set of equations of motion thus they can be solved using the 
single Mathieu-Hill differential equation
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Similar considerations for solutions with period T (21) lead to two infinite equations 
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0
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R
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



   

 
Equation (42) leads to determining first, third, fifth etc. 

resonance areas while equations (43) and (44) – second, 
fourth etc. To determine the boundaries of the first area of 
instability, it is necessary to consider the determinant of 
the first degree of matrix (42)  

   0
4
1

2
1det 2

0 





  R

GtG SS MMKKK   

Equation (45) is the basis for determining the resonance 
frequency  for the given So and St. 
 
3.2 Perturbation method. A displacement vector q(t) is 
expressed in terms of the principal coordinates r(t)  

  

where  nvvvV ...21  is the modal transformation 
matrix composed of M-orthonormal eigenvectors – 
eigenvectors are multiplied by 


 

,...,2,1; 


 k
m

k
RT

k

o
k

aMMa
  

where mo=1 in the unit of mass. The modal transformation 
matrix has the following properties: 


 
  ,

,
2

0 ΩVKKV
IVMMV

G o
T

o
RT

mS
m



 

where  is a diagonal matrix  
of square frequency vibration of the system determined 
from equation 

    .0det 2
0  R

G ΩS MMKK  

Equation (46) is used to convert the equations of motion 
(40) into modal equations of motion 

     0rKΩr 







 tt

m
St G

o

t cos*2  

where VKVK G
T

G *  is a geometric stiffness matrix with 
dominated diagonal terms taken into account  

 ]...[ **
2

*
1

*
GnGGG KKKdiagK  

The modal coordinate transformation decouples the 
coupled set of equations of motion thus they can be solved 
using the single Mathieu-Hill differential equation  

   ,...2,1;0cos212  krtΩr kGkkk   (52) 

   tt Vrq 

 22
2

2
1

2 ... nΩΩΩdiagΩ

� (52)

where
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where 


2

*

2 ko

Gkt
Gk Ωm

KS
  

The equation (52) is true for each form of vibrations, 
consequently the index k will be omitted in next 
investigations. The solutions of (52) and the frequency of 
oscillation (41) are represented as power series with 
respect of the parameter (53) 


     

      ....
...,

2
2

22
1

2
0

2

2
2

10





GGGGG

GG

ΩΩΩΩ
trtrtrr




 

Substituting (54) to (52) and omitting higher order 
terms gives the infinite recursive sequence of differential 
equations with constant coefficients 



 
.............................................................

,cos2
:

,cos2:
,0:

1
2
00

2
1

1
2
10

2
22

2
02

2

0
2
00

2
11

2
01

1

0
2
00

0

rΩrΩt
rΩrΩrΩr

trΩrΩrΩr
rΩr

G

G

G





















 

Assuming that the frequency of periodic force is twice 
the frequency of vibration and limiting consideration to the 
first-order approximation, we obtain the correction term 


 

   .3sin3cossin
cos

0000
2
00

2
1

2
00

0
2
1

2
001

2
01

tΩBtΩAΩtΩΩΩB
tΩΩArΩr






Solution of (56) is function 

 SrtΩBtΩAr 101011 sincos   

where 

   

tΩBtΩA

tΩt
Ω
ΩΩBtΩt

Ω
ΩΩAr S

0
0

0
0

0
0

2
1

2
00

0
0

2
1

2
00

1

3sin
8

3cos
8

cos
2

sin
2










 

is the particular integral. The two first terms of (58) are 
secular terms that determine the unstable nature of the 
solution. If we eliminate one of them, the classic border 
solution, consisting of periodic functions and one secular 
term, is obtained. This elimination is realized by 

 2
0

2
1

2
1

2
0 0 ΩΩΩΩ   

Condition (59) leads to the following formula 

 GΩ   12 0  

where is the first free vibration frequency including 
static component of periodic force. Based on (60), we can 
determine the first area of dynamic instability.  

Table 2 
Values of amplitude of periodic force St and pulsation ratio  depending 

on values of static component of periodic force So. 

St/So
So=0.2 Se So=0.5 Se So=0.8 Se 

St [-] St [-] St [-]

0 0 0 0 0 0 0 
0.25 0.05 Se 0.025 0.125 Se 0.063 0.2 Se 0.1 
0.50 0.10 Se 0.050 0.250 Se 0.125 0.4 Se 0.2 
0.75 0.15 Se 0.075 0.375 Se 0.188 0.6 Se 0.3 
1.00 0.20 Se 0.100 0.500 Se 0.250 0.8 Se 0.4 

 
3.3 Examples. The areas of dynamic instability are 
determined based on (45) and (60). These areas are 
contained within the lines representing a pair of values  
or  (and or St/So, where is the frequency of 
the beam and So is a static component of periodic force. 
Table 2 shows values of the pulsation ratio dependent on 
the values of the static component and amplitude of the 
periodic force. 

The examples show the effects of shear deformation 
and rotatory inertia on the instability areas of the frame 
structures. The calculations are performed in the 
Mathematica environment.  
 
Example 1. The main resonance area of instability for a 
simply supported steel column with battens (Fig. 5) is 
determined in this example. Three cases of static 
component values of periodic force: So=0.2Se, So=0.5Se 
and So=0.8Se are taken into account. The following 
mechanical and geometric properties are chosen for the 
analysis: 

 branches column IPE 300 (1): Iy=604x10-8 m4, 
A=53.8 x10-4 m2, L=2.40 m, 

 battens (2): I p=533.33x10-8 m4, Ap=32x10-4 m2, 
a=0.6 m, b=0.3 m, h=0.2 m, g=0.08 m, 

 the effective cross section: I=25418x10-8 m4, =1.2, 
 Young’s modulus E=2.1x1011Pa, Poisson’s ratio 

. 
The critical force for a column shown in Fig. 5, 

according to [4]  

 

is Se=2.2x107 N. Comparison of (61) with (10)1 defines   

0Ω

3.0















GbA
a

EI
a

EI
ab

L
EIL

EIS

pyp

e




2412
1

1
2

2

22

2

.� (53)

The equation (52) is true for each form of vibrations, con-
sequently the index k will be omitted in next investigations. 
The solutions of (52) and the frequency of oscillation (41) are 
represented as power series with respect of the parameter (53)
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where 


2

*

2 ko

Gkt
Gk Ωm

KS
  

The equation (52) is true for each form of vibrations, 
consequently the index k will be omitted in next 
investigations. The solutions of (52) and the frequency of 
oscillation (41) are represented as power series with 
respect of the parameter (53) 
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Substituting (54) to (52) and omitting higher order 
terms gives the infinite recursive sequence of differential 
equations with constant coefficients 
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:
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,0:
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rΩrΩrΩr
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 

Assuming that the frequency of periodic force is twice 
the frequency of vibration and limiting consideration to the 
first-order approximation, we obtain the correction term 
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Solution of (56) is function 

 SrtΩBtΩAr 101011 sincos   

where 
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
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is the particular integral. The two first terms of (58) are 
secular terms that determine the unstable nature of the 
solution. If we eliminate one of them, the classic border 
solution, consisting of periodic functions and one secular 
term, is obtained. This elimination is realized by 

 2
0

2
1

2
1

2
0 0 ΩΩΩΩ   

Condition (59) leads to the following formula 

 GΩ   12 0  

where is the first free vibration frequency including 
static component of periodic force. Based on (60), we can 
determine the first area of dynamic instability.  

Table 2 
Values of amplitude of periodic force St and pulsation ratio  depending 

on values of static component of periodic force So. 

St/So
So=0.2 Se So=0.5 Se So=0.8 Se 

St [-] St [-] St [-]

0 0 0 0 0 0 0 
0.25 0.05 Se 0.025 0.125 Se 0.063 0.2 Se 0.1 
0.50 0.10 Se 0.050 0.250 Se 0.125 0.4 Se 0.2 
0.75 0.15 Se 0.075 0.375 Se 0.188 0.6 Se 0.3 
1.00 0.20 Se 0.100 0.500 Se 0.250 0.8 Se 0.4 

 
3.3 Examples. The areas of dynamic instability are 
determined based on (45) and (60). These areas are 
contained within the lines representing a pair of values  
or  (and or St/So, where is the frequency of 
the beam and So is a static component of periodic force. 
Table 2 shows values of the pulsation ratio dependent on 
the values of the static component and amplitude of the 
periodic force. 

The examples show the effects of shear deformation 
and rotatory inertia on the instability areas of the frame 
structures. The calculations are performed in the 
Mathematica environment.  
 
Example 1. The main resonance area of instability for a 
simply supported steel column with battens (Fig. 5) is 
determined in this example. Three cases of static 
component values of periodic force: So=0.2Se, So=0.5Se 
and So=0.8Se are taken into account. The following 
mechanical and geometric properties are chosen for the 
analysis: 

 branches column IPE 300 (1): Iy=604x10-8 m4, 
A=53.8 x10-4 m2, L=2.40 m, 

 battens (2): I p=533.33x10-8 m4, Ap=32x10-4 m2, 
a=0.6 m, b=0.3 m, h=0.2 m, g=0.08 m, 

 the effective cross section: I=25418x10-8 m4, =1.2, 
 Young’s modulus E=2.1x1011Pa, Poisson’s ratio 

. 
The critical force for a column shown in Fig. 5, 

according to [4]  

 

is Se=2.2x107 N. Comparison of (61) with (10)1 defines   
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� (54)

Substituting (54) to (52) and omitting higher order terms 
gives the infinite recursive sequence of differential equations 
with constant coefficients
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where 
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  

The equation (52) is true for each form of vibrations, 
consequently the index k will be omitted in next 
investigations. The solutions of (52) and the frequency of 
oscillation (41) are represented as power series with 
respect of the parameter (53) 
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Substituting (54) to (52) and omitting higher order 
terms gives the infinite recursive sequence of differential 
equations with constant coefficients 
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Assuming that the frequency of periodic force is twice 
the frequency of vibration and limiting consideration to the 
first-order approximation, we obtain the correction term 
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Solution of (56) is function 

 SrtΩBtΩAr 101011 sincos   
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is the particular integral. The two first terms of (58) are 
secular terms that determine the unstable nature of the 
solution. If we eliminate one of them, the classic border 
solution, consisting of periodic functions and one secular 
term, is obtained. This elimination is realized by 
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Condition (59) leads to the following formula 

 GΩ   12 0  

where is the first free vibration frequency including 
static component of periodic force. Based on (60), we can 
determine the first area of dynamic instability.  

Table 2 
Values of amplitude of periodic force St and pulsation ratio  depending 

on values of static component of periodic force So. 

St/So
So=0.2 Se So=0.5 Se So=0.8 Se 

St [-] St [-] St [-]

0 0 0 0 0 0 0 
0.25 0.05 Se 0.025 0.125 Se 0.063 0.2 Se 0.1 
0.50 0.10 Se 0.050 0.250 Se 0.125 0.4 Se 0.2 
0.75 0.15 Se 0.075 0.375 Se 0.188 0.6 Se 0.3 
1.00 0.20 Se 0.100 0.500 Se 0.250 0.8 Se 0.4 

 
3.3 Examples. The areas of dynamic instability are 
determined based on (45) and (60). These areas are 
contained within the lines representing a pair of values  
or  (and or St/So, where is the frequency of 
the beam and So is a static component of periodic force. 
Table 2 shows values of the pulsation ratio dependent on 
the values of the static component and amplitude of the 
periodic force. 

The examples show the effects of shear deformation 
and rotatory inertia on the instability areas of the frame 
structures. The calculations are performed in the 
Mathematica environment.  
 
Example 1. The main resonance area of instability for a 
simply supported steel column with battens (Fig. 5) is 
determined in this example. Three cases of static 
component values of periodic force: So=0.2Se, So=0.5Se 
and So=0.8Se are taken into account. The following 
mechanical and geometric properties are chosen for the 
analysis: 

 branches column IPE 300 (1): Iy=604x10-8 m4, 
A=53.8 x10-4 m2, L=2.40 m, 

 battens (2): I p=533.33x10-8 m4, Ap=32x10-4 m2, 
a=0.6 m, b=0.3 m, h=0.2 m, g=0.08 m, 

 the effective cross section: I=25418x10-8 m4, =1.2, 
 Young’s modulus E=2.1x1011Pa, Poisson’s ratio 

. 
The critical force for a column shown in Fig. 5, 

according to [4]  

 

is Se=2.2x107 N. Comparison of (61) with (10)1 defines   
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Assuming that the frequency of periodic force is twice the 
frequency of vibration and limiting consideration to the first-
order approximation, we obtain the correction term
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The equation (52) is true for each form of vibrations, 
consequently the index k will be omitted in next 
investigations. The solutions of (52) and the frequency of 
oscillation (41) are represented as power series with 
respect of the parameter (53) 
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Substituting (54) to (52) and omitting higher order 
terms gives the infinite recursive sequence of differential 
equations with constant coefficients 
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Assuming that the frequency of periodic force is twice 
the frequency of vibration and limiting consideration to the 
first-order approximation, we obtain the correction term 
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Solution of (56) is function 

 SrtΩBtΩAr 101011 sincos   
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is the particular integral. The two first terms of (58) are 
secular terms that determine the unstable nature of the 
solution. If we eliminate one of them, the classic border 
solution, consisting of periodic functions and one secular 
term, is obtained. This elimination is realized by 
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Condition (59) leads to the following formula 

 GΩ   12 0  

where is the first free vibration frequency including 
static component of periodic force. Based on (60), we can 
determine the first area of dynamic instability.  

Table 2 
Values of amplitude of periodic force St and pulsation ratio  depending 

on values of static component of periodic force So. 

St/So
So=0.2 Se So=0.5 Se So=0.8 Se 

St [-] St [-] St [-]

0 0 0 0 0 0 0 
0.25 0.05 Se 0.025 0.125 Se 0.063 0.2 Se 0.1 
0.50 0.10 Se 0.050 0.250 Se 0.125 0.4 Se 0.2 
0.75 0.15 Se 0.075 0.375 Se 0.188 0.6 Se 0.3 
1.00 0.20 Se 0.100 0.500 Se 0.250 0.8 Se 0.4 

 
3.3 Examples. The areas of dynamic instability are 
determined based on (45) and (60). These areas are 
contained within the lines representing a pair of values  
or  (and or St/So, where is the frequency of 
the beam and So is a static component of periodic force. 
Table 2 shows values of the pulsation ratio dependent on 
the values of the static component and amplitude of the 
periodic force. 

The examples show the effects of shear deformation 
and rotatory inertia on the instability areas of the frame 
structures. The calculations are performed in the 
Mathematica environment.  
 
Example 1. The main resonance area of instability for a 
simply supported steel column with battens (Fig. 5) is 
determined in this example. Three cases of static 
component values of periodic force: So=0.2Se, So=0.5Se 
and So=0.8Se are taken into account. The following 
mechanical and geometric properties are chosen for the 
analysis: 

 branches column IPE 300 (1): Iy=604x10-8 m4, 
A=53.8 x10-4 m2, L=2.40 m, 

 battens (2): I p=533.33x10-8 m4, Ap=32x10-4 m2, 
a=0.6 m, b=0.3 m, h=0.2 m, g=0.08 m, 

 the effective cross section: I=25418x10-8 m4, =1.2, 
 Young’s modulus E=2.1x1011Pa, Poisson’s ratio 

. 
The critical force for a column shown in Fig. 5, 

according to [4]  

 

is Se=2.2x107 N. Comparison of (61) with (10)1 defines   
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Solution of (56) is function
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where 
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The equation (52) is true for each form of vibrations, 
consequently the index k will be omitted in next 
investigations. The solutions of (52) and the frequency of 
oscillation (41) are represented as power series with 
respect of the parameter (53) 
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Substituting (54) to (52) and omitting higher order 
terms gives the infinite recursive sequence of differential 
equations with constant coefficients 
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Assuming that the frequency of periodic force is twice 
the frequency of vibration and limiting consideration to the 
first-order approximation, we obtain the correction term 
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Solution of (56) is function 

 SrtΩBtΩAr 101011 sincos   
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is the particular integral. The two first terms of (58) are 
secular terms that determine the unstable nature of the 
solution. If we eliminate one of them, the classic border 
solution, consisting of periodic functions and one secular 
term, is obtained. This elimination is realized by 
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Condition (59) leads to the following formula 

 GΩ   12 0  

where is the first free vibration frequency including 
static component of periodic force. Based on (60), we can 
determine the first area of dynamic instability.  

Table 2 
Values of amplitude of periodic force St and pulsation ratio  depending 

on values of static component of periodic force So. 

St/So
So=0.2 Se So=0.5 Se So=0.8 Se 

St [-] St [-] St [-]

0 0 0 0 0 0 0 
0.25 0.05 Se 0.025 0.125 Se 0.063 0.2 Se 0.1 
0.50 0.10 Se 0.050 0.250 Se 0.125 0.4 Se 0.2 
0.75 0.15 Se 0.075 0.375 Se 0.188 0.6 Se 0.3 
1.00 0.20 Se 0.100 0.500 Se 0.250 0.8 Se 0.4 

 
3.3 Examples. The areas of dynamic instability are 
determined based on (45) and (60). These areas are 
contained within the lines representing a pair of values  
or  (and or St/So, where is the frequency of 
the beam and So is a static component of periodic force. 
Table 2 shows values of the pulsation ratio dependent on 
the values of the static component and amplitude of the 
periodic force. 

The examples show the effects of shear deformation 
and rotatory inertia on the instability areas of the frame 
structures. The calculations are performed in the 
Mathematica environment.  
 
Example 1. The main resonance area of instability for a 
simply supported steel column with battens (Fig. 5) is 
determined in this example. Three cases of static 
component values of periodic force: So=0.2Se, So=0.5Se 
and So=0.8Se are taken into account. The following 
mechanical and geometric properties are chosen for the 
analysis: 

 branches column IPE 300 (1): Iy=604x10-8 m4, 
A=53.8 x10-4 m2, L=2.40 m, 

 battens (2): I p=533.33x10-8 m4, Ap=32x10-4 m2, 
a=0.6 m, b=0.3 m, h=0.2 m, g=0.08 m, 

 the effective cross section: I=25418x10-8 m4, =1.2, 
 Young’s modulus E=2.1x1011Pa, Poisson’s ratio 

. 
The critical force for a column shown in Fig. 5, 

according to [4]  

 

is Se=2.2x107 N. Comparison of (61) with (10)1 defines   
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where
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where 
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The equation (52) is true for each form of vibrations, 
consequently the index k will be omitted in next 
investigations. The solutions of (52) and the frequency of 
oscillation (41) are represented as power series with 
respect of the parameter (53) 
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Substituting (54) to (52) and omitting higher order 
terms gives the infinite recursive sequence of differential 
equations with constant coefficients 
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Assuming that the frequency of periodic force is twice 
the frequency of vibration and limiting consideration to the 
first-order approximation, we obtain the correction term 
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Solution of (56) is function 

 SrtΩBtΩAr 101011 sincos   
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is the particular integral. The two first terms of (58) are 
secular terms that determine the unstable nature of the 
solution. If we eliminate one of them, the classic border 
solution, consisting of periodic functions and one secular 
term, is obtained. This elimination is realized by 
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Condition (59) leads to the following formula 

 GΩ   12 0  

where is the first free vibration frequency including 
static component of periodic force. Based on (60), we can 
determine the first area of dynamic instability.  

Table 2 
Values of amplitude of periodic force St and pulsation ratio  depending 

on values of static component of periodic force So. 

St/So
So=0.2 Se So=0.5 Se So=0.8 Se 

St [-] St [-] St [-]

0 0 0 0 0 0 0 
0.25 0.05 Se 0.025 0.125 Se 0.063 0.2 Se 0.1 
0.50 0.10 Se 0.050 0.250 Se 0.125 0.4 Se 0.2 
0.75 0.15 Se 0.075 0.375 Se 0.188 0.6 Se 0.3 
1.00 0.20 Se 0.100 0.500 Se 0.250 0.8 Se 0.4 

 
3.3 Examples. The areas of dynamic instability are 
determined based on (45) and (60). These areas are 
contained within the lines representing a pair of values  
or  (and or St/So, where is the frequency of 
the beam and So is a static component of periodic force. 
Table 2 shows values of the pulsation ratio dependent on 
the values of the static component and amplitude of the 
periodic force. 

The examples show the effects of shear deformation 
and rotatory inertia on the instability areas of the frame 
structures. The calculations are performed in the 
Mathematica environment.  
 
Example 1. The main resonance area of instability for a 
simply supported steel column with battens (Fig. 5) is 
determined in this example. Three cases of static 
component values of periodic force: So=0.2Se, So=0.5Se 
and So=0.8Se are taken into account. The following 
mechanical and geometric properties are chosen for the 
analysis: 

 branches column IPE 300 (1): Iy=604x10-8 m4, 
A=53.8 x10-4 m2, L=2.40 m, 

 battens (2): I p=533.33x10-8 m4, Ap=32x10-4 m2, 
a=0.6 m, b=0.3 m, h=0.2 m, g=0.08 m, 

 the effective cross section: I=25418x10-8 m4, =1.2, 
 Young’s modulus E=2.1x1011Pa, Poisson’s ratio 

. 
The critical force for a column shown in Fig. 5, 

according to [4]  

 

is Se=2.2x107 N. Comparison of (61) with (10)1 defines   
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is the particular integral. The two first terms of (58) are secular 
terms that determine the unstable nature of the solution. If we 
eliminate one of them, the classic border solution, consisting 
of periodic functions and one secular term, is obtained. This 
elimination is realized by
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where 
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The equation (52) is true for each form of vibrations, 
consequently the index k will be omitted in next 
investigations. The solutions of (52) and the frequency of 
oscillation (41) are represented as power series with 
respect of the parameter (53) 
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Substituting (54) to (52) and omitting higher order 
terms gives the infinite recursive sequence of differential 
equations with constant coefficients 
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Assuming that the frequency of periodic force is twice 
the frequency of vibration and limiting consideration to the 
first-order approximation, we obtain the correction term 
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Solution of (56) is function 
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is the particular integral. The two first terms of (58) are 
secular terms that determine the unstable nature of the 
solution. If we eliminate one of them, the classic border 
solution, consisting of periodic functions and one secular 
term, is obtained. This elimination is realized by 
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Condition (59) leads to the following formula 

 GΩ   12 0  

where is the first free vibration frequency including 
static component of periodic force. Based on (60), we can 
determine the first area of dynamic instability.  

Table 2 
Values of amplitude of periodic force St and pulsation ratio  depending 

on values of static component of periodic force So. 

St/So
So=0.2 Se So=0.5 Se So=0.8 Se 

St [-] St [-] St [-]

0 0 0 0 0 0 0 
0.25 0.05 Se 0.025 0.125 Se 0.063 0.2 Se 0.1 
0.50 0.10 Se 0.050 0.250 Se 0.125 0.4 Se 0.2 
0.75 0.15 Se 0.075 0.375 Se 0.188 0.6 Se 0.3 
1.00 0.20 Se 0.100 0.500 Se 0.250 0.8 Se 0.4 

 
3.3 Examples. The areas of dynamic instability are 
determined based on (45) and (60). These areas are 
contained within the lines representing a pair of values  
or  (and or St/So, where is the frequency of 
the beam and So is a static component of periodic force. 
Table 2 shows values of the pulsation ratio dependent on 
the values of the static component and amplitude of the 
periodic force. 

The examples show the effects of shear deformation 
and rotatory inertia on the instability areas of the frame 
structures. The calculations are performed in the 
Mathematica environment.  
 
Example 1. The main resonance area of instability for a 
simply supported steel column with battens (Fig. 5) is 
determined in this example. Three cases of static 
component values of periodic force: So=0.2Se, So=0.5Se 
and So=0.8Se are taken into account. The following 
mechanical and geometric properties are chosen for the 
analysis: 

 branches column IPE 300 (1): Iy=604x10-8 m4, 
A=53.8 x10-4 m2, L=2.40 m, 

 battens (2): I p=533.33x10-8 m4, Ap=32x10-4 m2, 
a=0.6 m, b=0.3 m, h=0.2 m, g=0.08 m, 

 the effective cross section: I=25418x10-8 m4, =1.2, 
 Young’s modulus E=2.1x1011Pa, Poisson’s ratio 

. 
The critical force for a column shown in Fig. 5, 

according to [4]  

 

is Se=2.2x107 N. Comparison of (61) with (10)1 defines   
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Condition (59) leads to the following formula
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The equation (52) is true for each form of vibrations, 
consequently the index k will be omitted in next 
investigations. The solutions of (52) and the frequency of 
oscillation (41) are represented as power series with 
respect of the parameter (53) 
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Substituting (54) to (52) and omitting higher order 
terms gives the infinite recursive sequence of differential 
equations with constant coefficients 
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Assuming that the frequency of periodic force is twice 
the frequency of vibration and limiting consideration to the 
first-order approximation, we obtain the correction term 
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Solution of (56) is function 

 SrtΩBtΩAr 101011 sincos   

where 
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is the particular integral. The two first terms of (58) are 
secular terms that determine the unstable nature of the 
solution. If we eliminate one of them, the classic border 
solution, consisting of periodic functions and one secular 
term, is obtained. This elimination is realized by 
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Condition (59) leads to the following formula 

 GΩ   12 0  

where is the first free vibration frequency including 
static component of periodic force. Based on (60), we can 
determine the first area of dynamic instability.  

Table 2 
Values of amplitude of periodic force St and pulsation ratio  depending 

on values of static component of periodic force So. 

St/So
So=0.2 Se So=0.5 Se So=0.8 Se 

St [-] St [-] St [-]

0 0 0 0 0 0 0 
0.25 0.05 Se 0.025 0.125 Se 0.063 0.2 Se 0.1 
0.50 0.10 Se 0.050 0.250 Se 0.125 0.4 Se 0.2 
0.75 0.15 Se 0.075 0.375 Se 0.188 0.6 Se 0.3 
1.00 0.20 Se 0.100 0.500 Se 0.250 0.8 Se 0.4 

 
3.3 Examples. The areas of dynamic instability are 
determined based on (45) and (60). These areas are 
contained within the lines representing a pair of values  
or  (and or St/So, where is the frequency of 
the beam and So is a static component of periodic force. 
Table 2 shows values of the pulsation ratio dependent on 
the values of the static component and amplitude of the 
periodic force. 

The examples show the effects of shear deformation 
and rotatory inertia on the instability areas of the frame 
structures. The calculations are performed in the 
Mathematica environment.  
 
Example 1. The main resonance area of instability for a 
simply supported steel column with battens (Fig. 5) is 
determined in this example. Three cases of static 
component values of periodic force: So=0.2Se, So=0.5Se 
and So=0.8Se are taken into account. The following 
mechanical and geometric properties are chosen for the 
analysis: 

 branches column IPE 300 (1): Iy=604x10-8 m4, 
A=53.8 x10-4 m2, L=2.40 m, 

 battens (2): I p=533.33x10-8 m4, Ap=32x10-4 m2, 
a=0.6 m, b=0.3 m, h=0.2 m, g=0.08 m, 

 the effective cross section: I=25418x10-8 m4, =1.2, 
 Young’s modulus E=2.1x1011Pa, Poisson’s ratio 

. 
The critical force for a column shown in Fig. 5, 

according to [4]  

 

is Se=2.2x107 N. Comparison of (61) with (10)1 defines   
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where Ω0 is the first free vibration frequency including static 
component of periodic force. Based on (60), we can determine 
the first area of dynamic instability.

3.3 Examples. The areas of dynamic instability are determined 
based on (45) and (60). These areas are contained within the 
lines representing a pair of values θ or η (η = θ/ω) and υ or 
St/So, where ω is the frequency of the beam and So is a static 
component of periodic force. Table 2 shows values of the pul-
sation ratio dependent on the values of the static component 
and amplitude of the periodic force.

Table 2 
Values of amplitude of periodic force St and pulsation ratio υ 
depending on values of static component of periodic force So

St/So
So = 0.2 Se So = 0.5 Se So = 0.8 Se

St υ [–] St υ [–] St υ [–]

0 0 0 0 0 0 0

0.25 0.05 Se 0.025 0.125 Se 0.063 0.2 Se 0.1

0.50 0.10 Se 0.050 0.250 Se 0.125 0.4 Se 0.2

0.75 0.15 Se 0.075 0.375 Se 0.188 0.6 Se 0.3

1.00 0.20 Se 0.100 0.500 Se 0.250 0.8 Se 0.4

The examples show the effects of shear deformation and ro-
tatory inertia on the instability areas of the frame structures. The 
calculations are performed in the Mathematica environment.

Example 1. The main resonance area of instability for a simply 
supported steel column with battens (Fig. 5) is determined in 
this example. Three cases of static component values of peri-
odic force: So = 0.2Se, So = 0.5Se and So = 0.8Se are taken into 
account. The following mechanical and geometric properties 
are chosen for the analysis:

●	 branches column IPE 300 (1): Iy = 604£10‒8 m4, 
A = 53.8 £10‒4 m2, L = 2.40 m,

●	 battens (2): Ip = 533.33£10‒8 m4, Ap = 32£10‒4 m2, 
a = 0.6 m, b = 0.3 m, h = 0.2 m, g = 0.08 m,

●	 the effective cross section: I = 25418£10‒8 m4, κ = 1.2,
●	 Young’s modulus E = 2.1£1011 Pa, Poisson’s ratio 

ν = 0.3.

The critical force for a column shown in Fig. 5, according 
to [4] 
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The equation (52) is true for each form of vibrations, 
consequently the index k will be omitted in next 
investigations. The solutions of (52) and the frequency of 
oscillation (41) are represented as power series with 
respect of the parameter (53) 
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Substituting (54) to (52) and omitting higher order 
terms gives the infinite recursive sequence of differential 
equations with constant coefficients 
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Assuming that the frequency of periodic force is twice 
the frequency of vibration and limiting consideration to the 
first-order approximation, we obtain the correction term 
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Solution of (56) is function 

 SrtΩBtΩAr 101011 sincos   

where 

   

tΩBtΩA

tΩt
Ω
ΩΩBtΩt

Ω
ΩΩAr S

0
0

0
0

0
0

2
1

2
00

0
0

2
1

2
00

1

3sin
8

3cos
8

cos
2

sin
2










 

is the particular integral. The two first terms of (58) are 
secular terms that determine the unstable nature of the 
solution. If we eliminate one of them, the classic border 
solution, consisting of periodic functions and one secular 
term, is obtained. This elimination is realized by 
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Condition (59) leads to the following formula 

 GΩ   12 0  

where is the first free vibration frequency including 
static component of periodic force. Based on (60), we can 
determine the first area of dynamic instability.  

Table 2 
Values of amplitude of periodic force St and pulsation ratio  depending 

on values of static component of periodic force So. 

St/So
So=0.2 Se So=0.5 Se So=0.8 Se 

St [-] St [-] St [-]

0 0 0 0 0 0 0 
0.25 0.05 Se 0.025 0.125 Se 0.063 0.2 Se 0.1 
0.50 0.10 Se 0.050 0.250 Se 0.125 0.4 Se 0.2 
0.75 0.15 Se 0.075 0.375 Se 0.188 0.6 Se 0.3 
1.00 0.20 Se 0.100 0.500 Se 0.250 0.8 Se 0.4 

 
3.3 Examples. The areas of dynamic instability are 
determined based on (45) and (60). These areas are 
contained within the lines representing a pair of values  
or  (and or St/So, where is the frequency of 
the beam and So is a static component of periodic force. 
Table 2 shows values of the pulsation ratio dependent on 
the values of the static component and amplitude of the 
periodic force. 

The examples show the effects of shear deformation 
and rotatory inertia on the instability areas of the frame 
structures. The calculations are performed in the 
Mathematica environment.  
 
Example 1. The main resonance area of instability for a 
simply supported steel column with battens (Fig. 5) is 
determined in this example. Three cases of static 
component values of periodic force: So=0.2Se, So=0.5Se 
and So=0.8Se are taken into account. The following 
mechanical and geometric properties are chosen for the 
analysis: 

 branches column IPE 300 (1): Iy=604x10-8 m4, 
A=53.8 x10-4 m2, L=2.40 m, 

 battens (2): I p=533.33x10-8 m4, Ap=32x10-4 m2, 
a=0.6 m, b=0.3 m, h=0.2 m, g=0.08 m, 

 the effective cross section: I=25418x10-8 m4, =1.2, 
 Young’s modulus E=2.1x1011Pa, Poisson’s ratio 

. 
The critical force for a column shown in Fig. 5, 

according to [4]  

 

is Se=2.2x107 N. Comparison of (61) with (10)1 defines   
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is Se = 2.2£107 N. Comparison of (61) with (10)1 defines 
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  

which for the adopted data is =0.3198. 
 

 
Fig. 5. Column with battens. 

The introduction of the effective parameter (62) allows 
defining the resonance areas for the column with battens. 
The results are shown in Fig. 6.  

The field of the first instability area is largely 
dependent on the values of static component of periodic 
force. For So=0.8Se the range of resonance area is more 
than three times larger than for So=0.2Se. 

 
Fig. 6. First areas of instability for column showed in Fig. 5; So=0.2Se    

( ), So=0.5Se (—), and So=0.8Se (- - -). 

Example 2. In the second example, boundaries of the 
main area of instability for beams with different support 
conditions (Fig. 7) are determined. The mechanical and 
geometric properties of the analyzed beams are the same 
as in chapter 2.3. Six kinds of end conditions, i.e., (a) 
clamped-clamped, (b) clamped-hinged, (c) simply 

supported, (d) clamped-partly clamped, (e) cantilever 
beam and (f) hinged-partly clamped, are considered in this 
study. Calculations are carried out with beams divided into 
15 finite elements. The critical forces and frequency for 
analyzed beams are shown in Table 3. It is assumed that 
So=0.5Se. The results of the Timoshenko and Bernoulli-
Euler beam theories are shown in Fig. 8.  

 

 
Fig. 7. Cases of analyzed beams. 

The greatest impact of shear deformation and rotatory 
inertia on the instability areas occurs for the clamped-
clamped beam and the lowest – for the cantilever beam 
and the hinged-partly clamped beam. The maximum 
relative error between the Timoshenko theory and the 
Bernoulli-Euler theory, in comparison to the first one, for 
the clamped-clamped beam is 22%, for the clamped-
hinged beam is 13.5%, for the simply supported beam is 
6%, for the clamped-partly clamped beam is 5.9%, for the 
cantilever beam is 2.7% and for the hinged-partly clamped 
beam is 1.6%. For these two last kinds of supports the 
Bernoulli-Euler beam theory is sufficient to determine an 
instability areas. 

 

 
Fig. 8. First areas of instability for different beams: clamped-clamped 

(●), clamped-hinged (), simply supported (■), hinged-partly 
clamped (), cantilever beam  (▲) and clamped-partly clamped (x); 
Bernoulli-Euler beam theory (---), Timoshenko beam theory (—). 
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which for the adopted data is ξ = 0.3198.
The introduction of the effective parameter (62) allows de-

fining the resonance areas for the column with battens. The 
results are shown in Fig. 6.

Fig. 5. Column with battens

Fig. 6. First areas of instability for column showed in Fig. 5; So = 0.2 Se  
(— ¢ —), So = 0.5 Se (—), and So = 0.8 Se (- - -)
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is 1.6%. For these two last kinds of supports the Bernoulli-Euler 
beam theory is sufficient to determine an instability areas.

Example 3. In the third example resonance areas for reinforced 
concrete frames are determined. Four cases of frames (Fig. 9) 
are analyzed. The following mechanical and geometric prop-
erties are chosen for the analysis: L1 = 8.96 m, L2 = 5.6 m, 
rectangular cross-section with the width b = 0.5 m and height h 
= 1.6, shear factor κ = 1.2, Young’s modulus E = 2.7 £ 1010 Pa, 
Poisson’s ratio ν = 0.2 and mass density ρ = 2400 kgm-3. 
The non-dimensional parameters (6) for the adopted data are 

Fig. 9. Cases of analyzed frames

Fig. 8. First areas of instability for different beams: clamped-clamped 
(●), clamped-hinged (□), simply supported (■), hinged-partly clamped 
(), cantilever beam (▲) and clamped-partly clamped (£); Bernoulli- 

-Euler beam theory (---), Timoshenko beam theory (—)

Fig. 7. Cases of analyzed beams

The field of the first instability area is largely dependent on 
the values of static component of periodic force. For So = 0.8Se 
the range of resonance area is more than three times larger than 
for So = 0.2Se.

Example 2. In the second example, boundaries of the main 
area of instability for beams with different support conditions 
(Fig. 7) are determined. The mechanical and geometric proper-
ties of the analyzed beams are the same as in chapter 2.3. Six 
kinds of end conditions, i.e., (a) clamped-clamped, (b) clamped-
hinged, (c) simply supported, (d) clamped-partly clamped, (e) 
cantilever beam and (f) hinged-partly clamped, are considered 
in this study. Calculations are carried out with beams divided 
into 15 finite elements. The critical forces and frequency 
for analyzed beams are shown in Table 3. It is assumed that 
So = 0.5Se. The results of the Timoshenko and Bernoulli-Euler 
beam theories are shown in Fig. 8.

Table 3 
Values of critical force and frequency for beams in Fig. 7

beam

Timoshenko theory Bernoulli-Euler theory

Se 
[108 N]

ω1 
[rad/s]

ω1 (So)
[rad/s]

Se 
[108 N]

ω1 
[rad/s]

ω1 (So)
[rad/s]

a 26.46 441.49 318.23 36.38 541.57 386.12

b 15.36 328.06 234.25 18.60 373.22 265.55

c 08.31 228.33 159.31 09.09 238.91 168.94

d 08.31 127.47 091.27 09.08 135.39 096.53

e 02.22 082.68 059.83 02.27 085.11 061.35

f 2.22 58.80 41.58 2.27 59.73 42.23

The greatest impact of shear deformation and rotatory inertia 
on the instability areas occurs for the clamped-clamped beam 
and the lowest – for the cantilever beam and the hinged-partly 
clamped beam. The maximum relative error between the Timos-
henko theory and the Bernoulli-Euler theory, in comparison to 
the first one, for the clamped-clamped beam is 22%, for the 
clamped-hinged beam is 13.5%, for the simply supported beam 
is 6%, for the clamped-partly clamped beam is 5.9%, for the 
cantilever beam is 2.7% and for the hinged-partly clamped beam 
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ξ1 = 0.0076, ξ2 = 0.0196 and n = 2.88. Calculations are carried 
out with columns and beam divided into 5 finite elements. The 
critical forces and frequency for the analyzed frames are shown 
in Table 4. It is assumed that So = 0.5Se. The results are shown 
in Tables 5‒8.

Table 4 
Values of critical force and frequency for frames in Fig. 9

frame Timoshenko theory Bernoulli-Euler theory

Se
[108 N]

ω1
[rad/s]

ω1 (So)
[rad/s]

Se
[108 N]

ω1
[rad/s]

ω1 (So)
[rad/s]

a 2.714 55.31 39.13 2.89 57.31 39.24

b 5.33 55.31 39.31 5.68 57.31 38.01

c 10.46 116.57 83.07 12.04 126.43 76.62

d 19.67 116.57 84.70 22.91 126.43 77.66

Table 5 
Values of resonance frequency of periodic force for frame (a)

υ [–]

Timoshenko 
with rotatory 

inertia

Timoshenko 
without 

rotatory inertia
Bernoulli-Euler

θ1 
[rad/s]

θ2 
[rad/s]

θ1 
[rad/s]

θ2 
[rad/s]

θ1 
[rad/s]

θ2 
[rad/s]

0.000 78.26 78.26 78.48 78.48 81.09 81.09

0.063 73.21 83.00 73.42 83.24 76.19 85.71

0.125 67.78 87.48 67.98 87.74 70.95 90.09

0.188 61.88 91.75 62.06 92.01 65.29 94.27

Table 6 
Values of resonance frequency of periodic force for frame (b)

υ [–]

Timoshenko 
with rotatory 

inertia

Timoshenko 
without 

rotatory inertia
Bernoulli-Euler

θ1 
[rad/s]

θ2 
[rad/s]

θ1 
[rad/s]

θ2 
[rad/s]

θ1 
[rad/s]

θ2 
[rad/s]

0.000 78.62 78.62 78.85 78.85 81.45 81.45

0.063 73.60 83.34 73.81 83.58 76.58 86.05

0.125 68.19 87.78 68.38 88.04 71.35 90.40

0.188 62.29 92.01 62.47 92.27 65.70 94.54

The influence of the rotatory inertia on the first instability 
area for analyzed frames is minor because the resonance fre-
quency is about 0.3% lower than that given without considering 
the rotatory inertia.

The greatest impact of the shear deformation on the insta-
bility areas occurs for clamped frames (c, d). The maximum 
relative error between the theories of Timoshenko and Bernoul-
li-Euler for these frames, in comparison to the first one, is about 

10.1%–11% (Table 5 and Table 6). For simply supported frames 
(a, b), the maximum relative error is about 5.2% (Table 7 and 
Table 8). The calculation shows that the impact of shear defor-
mation on instability areas is dependent on the fixing type (as 
in cases of beams). The clamped fixing is more sensitive than 
simply supported fixing.

Table 7 
Values of resonance frequency of periodic force for frame (c)

υ [–]

Timoshenko 
with rotatory 

inertia

Timoshenko 
without 

rotatory inertia
Bernoulli-Euler

θ1 
[rad/s]

θ2 
[rad/s]

θ1 
[rad/s]

θ2 
[rad/s]

θ1 
[rad/s]

θ2 
[rad/s]

0.000 166.14 166.14 166.63 166.63 179.86 179.86

0.063 155.55 176.06 156.01 176.57 169.89 189.28

0.125 144.12 185.40 144.54 185.94 159.27 198.23

0.188 131.63 194.26 132.02 194.82 147.85 206.78

Table 8 
Values of resonance frequency of periodic force for frame (d)

υ [–]

Timoshenko 
with rotatory 

inertia

Timoshenko 
without 

rotatory inertia
Bernoulli-Euler

θ1 
[rad/s]

θ2 
[rad/s]

θ1 
[rad/s]

θ2 
[rad/s]

θ1 
[rad/s]

θ2 
[rad/s]

0 169.40 169.40 169.89 169.89 182.21 182.21

0.063 159.13 178.96 159.60 179.48 172.54 191.32

0.125 147.99 187.93 148.43 188.47 162.21 199.94

0.188 135.74 196.39 136.15 196.96 151.08 208.15

Another conclusion is that the influence of the shear defor-
mation is stronger for the first frequency of periodic force θ1 

than for the second θ2 . For frame (c), the maximum relative 
error for the first frequency is about 11% and for the second 
– 6% (Table 7), for frame (a) – 5.2% and 2.7% (Table 5).

It has to be noted that the number of compression forces 
S(t) (one or two) has a minor influence on the distribution of 
resonance areas. For clamped frames (c, d), the maximum dif-
ference between the first frequencies is 4.11 rad/s and between 
the second – 2.13 rad/s (Table 5 and Table 6). For simply sup-
ported frames (a, b), the difference between the first frequencies 
is 0.41 rad/s and between the second – 0.26 rad/s (Table 7 and 
Table 8).

4.	 Conclusions

The analytical approach applied in this paper to dynamic sta-
bility analysis of a simply supported moderately thick beam 
takes into account the influence of shear deformation and 
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rotatory inertia. To illustrate this influence, Timoshenko and 
Bernoulli-Euler theories are used. The boundaries of the main 
area of instability for the beam are defined with the use of two 
formulas derived based on the harmonic balance method and 
perturbation method. The latter approach (PM) gives a simpler 
formula then the first one (HBM). The analysis is extended to 
cover the damping effect on the first and third resonance areas 
for the beam.

For the dynamic stability analysis of other moderately thick 
beams and frames, the numerical approach based on the finite 
element method is proposed. The matrices used in the FEM 
analysis, developed based on physical shape functions, include 
the effects of the shear deformation and the rotatory inertia. 
To identify the boundaries of the main resonance areas, two 
methods: PM and HBM are proposed.

Additionally, the effective parameter including the effect of 
shear deformation for a simply supported column with battens is 
determined (62). This allows treating these columns as beams. 
To determine the first resonance area, simple formulas (19) or 
(39) can be used.

The conclusions are as follows:
●	 The perturbation method is recommended for deter-

mining the first resonance area of a simply supported 
beam.

●	 The moderate thickness has the greatest effect on the 
third instability area.

●	 The first area is most dangerous because damping moves 
the boundaries of instability away from the axis of the 
resonance frequency of the periodic force.

●	 The effect of rotatory inertia on instability areas of frame 
structures is minor and can be ignored in calculations.

●	 The effect of shear deformation on instability areas de-
pends on the type of fixing used. The clamped fixing is 
more sensitive than simply supported fixing.
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