
873Bull.  Pol.  Ac.:  Tech.  64(4)  2016

BULLETIN OF THE POLISH ACADEMY OF SCIENCES 
TECHNICAL SCIENCES, Vol. 64, No. 4, 2016
DOI: 10.1515/bpasts-2016-0095

*e-mail: payamb4@gmail.com

Abstract. In this paper, a new approach towards input-output pairing for an unstable system has been proposed. First, it is demonstrated that 
the previous method of input-output pairing for unstable plants cannot find appropriate pairs as it only checks necessary conditions for stability 
and integrity. Then, a new approach using relative error matrix and genetic algorithm for finding appropriate pairs in unstable systems is pro-
posed. As it is shown, this approach takes into consideration both static and dynamic information of plant in measuring interaction. Finally, the 
accuracy of proposed method is demonstrated by an example and closed loop simulation.
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where both pairs met necessary stability and integrity condi-
tions, while the method proposed in this paper can achieve this 
goal.

The remainder of this paper is organized as follows. In 
Section 2, the method suggested in [6] is introduced. Then, 
the genetic algorithm is explained briefly. Section 3 presents 
problems described in [6] through an example. Then, our 
new approach is introduced and its efficiency is shown by an 
example, followed by a conclusion in Section 4.

2.	 Preliminaries

2.1 Input-output pairing approach for an unstable system. 
The introduced approach for input-output pairing for unstable 
systems in [6] is explained in this section.

First, consider plant with n-inputs n-outputs as below:
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For the above system, Niederlinski Index (NI) is defined 
as below:

	  NI G G=  ,� (2)

where j.j is determinant and G͂ is matrix consisting of the diag-
onal elements of G. RGA elements λij in (1) can be computed 
as below:

	  1
ij ij ji

g Gλ − =   ,� (3)

where [G¡1]ji represents the ji th element of G¡1.

1.	 Introduction

Multivariable control systems are of great importance in 
industry. The pairing of input-output variables and the effect 
of the interactions are problems to be solved at the earlier 
stages of the design. For that purpose, various approaches 
have been proposed. Recently, decentralized control has been 
widely used due to its advantages, such as easy tuning and 
robustness. In decentralized control, single input-single output 
(SISO) controllers are designed for SISO loops, thus, the first 
step is finding loops with minimal interaction. This process is 
called control input-output pairing which many methods have 
been introduced for finding appropriate pairs while minimum 
interaction. The most known approach is relative gain array 
(RGA) which is based on the interactions among variables 
[1]. In RGA, for ease of computation, dynamic information 
and interaction in high frequencies is not evaluated. In order 
to compensate this flaw, many other methods have been intro-
duced such as dynamic relative gain array (DRGA) that uses 
transfer function for interaction measuring [2]. Effective rel-
ative gain array (ERGA) [3] takes into account the dynamic 
information on the system, while remaining relatively simple. 
There are also several methods that utilize state space in order 
to find suitable pairs [4, 5].

All mentioned approaches can be applied to stable open-loop 
multivariable plants while most industrial plants are unstable 
open-loop plants. Hence, it seems necessary to introduce a new 
approach to find appropriate pairs in an unstable open-loop 
plant. In [6], Niederlinski index (NI) and RGA are used to 
perform input-output pairing in unstable systems such that cer-
tain conditions for stability and integrity are met. However, the 
method proposed in [6] uses certain conditions for stability, 
and this can be problematic. In this paper, it will be shown that 
the method suggested in [6] cannot find appropriate pairs 
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Theorem 1. Niederlinski Index. Let the number of open-loop 
unstable poles (excluding poles at s = 0) of G(s) and 
G͂ = diagfg11, g22, …, gnng be p and p ̃, respectively. Assume 
that the controller C is such that G͂C has integral action in all 
loops and is stable, and that the transfer functions GC is strictly 
proper. Then if:

	
 P P evenNI

p p odd
< −= 
> −

0
0




,� (4)

at least one of the following instabilities will occur:
a) the overall system is unstable;
b) at least one of the loops is unstable by itself.

Theorem 2. Relative gain array. Let the number of open-
loop unstable poles (excluding poles at s = 0) of G(s) and 
G′

ii(s) = diagfgii(s), Gii(s)g be p and p′
ii, respectively. As-

sume that the decentralized controller C is such that G′
ii(s)C 

has integral action in all channels and is otherwise stable. 
Then, if:
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at least one of the following instabilities will occur:
a) the overall system is unstable;
b) loop i is unstable by itself;
c) the system is unstable as loop i is removed.
In [6], the proofs of proposed theorems are provided and 

their accuracy is demonstrated through an example.

2.2. Genetic algorithm. Genetic algorithm differs from other 
search techniques as it utilizes natural genetics in an opti-
mization procedure. A genetic algorithm works with a popu-
lation of strings, and each string is called an individual. By 
exchanging information between individuals, new individuals 
with more desirable properties are produced, just like in nature. 
Furthermore, mutation also occurs in individuals and thus the 
value of one chromosome changes randomly. There are more 
comprehensive explanations of genetic algorithm parameters 
available in [7, 8].

The genetic algorithm used in this paper has real value 
strings. In each population, 8 individuals are used. We used 
uniform crossover. Thus, given two parents, a random binary 
vector is created. Uniform crossover then selects the genes in 
which the vector from the first parent is 1, and the genes in 
which the vector from the second parent is 0, and combines the 
genes to form the child. The crossover fraction – the fraction 
of individuals in the next generation – other than elite children 
that are created by crossover is 0.8. The elite account, number 
of current individuals that survive to form the next genera-
tion is established at 2. For mutation, the Gaussian function 
is used, adding a random number to each vector entry of an 
individual. This number is taken from a Gaussian distribution 
centered on zero.

3.	 Introduction of a new criterion

In this section, the deficiency of approach in [6] is illustrated 
by an example. Then a new approach is proposed.

3.1. Example 1. Consider system as below:

	  0.8 0.61G(s)
0.8 0.6s 1

 
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,� (6)

First of all, RGA in (6) is as follows:
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The above system has two unstable poles at s = 1. Hence, 
in order to find the appropriate pairs in decentralized control, 
only the scheme proposed in [6] can be used. There are two 
possible pairings for plant in Eq. (6), which are diagonal pairing 
and off-diagonal pairing. Here, conditions in Eq. (4) and Eq. (5) 
will be checked in the system (6) to discard pairings which do 
not met those conditions.

First, consider diagonal pairing. In this situation, by using 
Eq. (2), we get NI = 2, which is positive. As P = 2 and P̃ = 2, 
thus P̃ ¡ P = 2 which is even, and based on Theorem 1 and 
Eq. (4), this pairing cannot be discarded as this pairing met 
conditions of stability and integrity.

Off-diagonal pairing is another option. Like diagonal 
pairing, we have NI = 2, which is positive. As P = 2 and P̃ = 2, 
P̃ ¡ P = 2, which is even, and based on Theorem 2 and Eq. (5), 
this pairing is acceptable as it fulfills the requirements.

This example shows that since proposed method in [6] only 
considers certain stability conditions, it cannot find appropriate 
pairs; in the above example, both pairs meet conditions and con-
sequently, none of them will be discarded. Therefore, it seems 
necessary to propose a new criterion for input-output pairing 
in unstable systems.

3.2. New input-output pairing approach based on genetic 
algorithm. In our new approach, as genetic algorithm will 
be used, first we have to define cost function which has to be 
minimized. We use Relative Error Matrix in [9] as our cost 
function:

	  1 1E GC(I GC) GC(I GC)− −= + − +  ,� (8)

where G is gained after putting selected loops on main diagonal 
and G͂ is the main diagonal of G.

As can be seen in (8), the relative error matrix is the differ-
ence between closed loop system while other loops are open and 
close, respectively. Thus, less magnitude of this matrix means 
less interaction and vice versa. This matrix has been previously 
used in [9] for interaction measurement in open-loop stable 
system. In this paper, we use it as interaction measuring for 
unstable system. Maximum singular value will be used as a tool 
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for measuring size of matrix. As (8) depends on the controller, 
first the controller should be designed and genetic algorithm 
should be used to gain the optimal value of controllers. Through 
this procedure, a controller is designed such that the magnitude 
of relative error matrix is minimal, which leads to minimal 
interaction.

The proposed scheme can be summarized as follows:
1.	 Check stability and integrity conditions based on [6].
2.	 For each pairing that fulfills stability and integrity con-

ditions, find optimal coefficients of the controller by 
using genetic algorithm.

3.	 Compute relative error matrix in (8) and maximum sin-
gular value at each frequency. Then, find the maximum 
value among maximum singular values in the desired 
frequency range as follows:

	

 

m max( (E( j )))= σ ω
ω

.� (9)

4.	 Select pairing with the maximum value of m.

By using the above procedure, the final pairing not only 
met stability and integrity conditions but also showed min-
imal interaction among selected loops, which led to a better 
performance in decentralized control. The advantage of the 
proposed method over the one in [6] is taking interaction 
among loops into account. Thus, in cases in which certain 
conditions cannot determine final pairing, the proposed 
method can be used in order to determine the most suitable 
pair. In the following subsection, the proposed method will 
be applied to Example 1, in which method in [6] cannot find 
an appropriate pair.

3.3. Example 2. Consider plant as below:

	
 0.8 0.61
G(s)

0.8 0.6s 1
=

−−

 
  

.� (10)

We apply the proposed approach to the plant in (10). The steps 
described in the previous section are applied as follows:

1.	 Check the stability and integrity of both pairings. As we 
discussed in Example 1, both pairings met stability and 
integrity conditions, hence, [6] cannot determine suitable 
pair.

2.	 For both pairs, find optimal coefficient of controller such 
that the relative error matrix is minimal. This procedure is 
done by genetic algorithm. In this example, proportional 
integral (PI) controllers are used as below:

	  p iPI k k s= + ,� (11)

since
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And as each SISO closed loop system must be stable, all 
coefficients in the denominator of (12) must be positive. The 
following constraints must be held in genetic algorithm opti-
mization:

	  ii i ii pg k 1 & g k 1 1> − > .� (13)

Genetic algorithm optimization for diagonal pairing loops   
(y1, u1) and (y2, u2) can be seen in (14) and (15), respectively:

	  11C 5.7 1.2 s= + ,� (14)

	  22C 5.4 1.6 s= + .� (15)

In frequency range 0‒5 rad/sec and by computing maximum 
singular value of relative error matrix of controllers in (14) and 
(15), we have:

	

 

max( (E( j ))) 1.3σ ω =

ω
� (16)

For off-diagonal pairing, the PI controllers optimized by 
genetic algorithm for loops (y1, u1) and (y2, u2) are as follows:

	  12C 20.3 18.6 s= + ,� (17)

	  21C 17.7 12.6 s= − − .� (18)

And (9) for off-diagonal pairing takes the form:

	

 

max( (E( j ))) 0.37σ ω =
ω

.� (19)

Comparing (16) to (17) leads to the conclusion that interac-
tion in off-diagonal pairing must be lower in order to achieve 
better performance than in diagonal pairing.

To compare diagonal and off-diagonal pairing, close loop 
simulation with controllers in (14) and (16) has been carried 
out, and one criterion is utilized in order to settle time for com-
paring these configurations.

If set point y1 for is applied at t = 0 (sec) and set point for 
y2 is applied at t = 30 (sec), then closed loop simulation for y1 
and y2 with PI controllers in (14) and (16) are shown in Fig. 1 
and Fig. 2, respectively.

For comparing performances in diagonal and off-diagonal 
pairing, settling time is considered. Closed loop performance 
at t = (sec) is shown in Table 1.

This table demonstrates that off-diagonal pairing shows 
better performance than diagonal pairing.
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Closed loop performance at t = 30 (sec) is shown in Table 2.

Table 2  
Settling times in closed loop system at t = 30 sec

pairing outputs settling time (sec) 

diagonal
y1 101

y2 19.5

off-diagonal
y1 13.5

y2 131

As the result shows, off-diagonal pairings has less settling 
time and reaches steady state sooner than diagonal pairing.

4.	 Conclusion

This paper has introduced and evaluated a novel approach for 
determining appropriate input-output pairs in unstable sys-
tems. First, certain conditions for stability and integrity are 
considered, and through an example, it is demonstrated that 
using certain conditions may not be useful for determining 
final pairs. On the other hand, in the proposed scheme optimal 

value of controllers are designed by genetic algorithm such that 
the relative error matrix is minimized. Since the relative error 
matrix is a measure of interaction in multivariable system, 
its maximum singular value, as the measuring magnitude of 
matrix, can be utilized for interaction measurement. Finally, 
it is demonstrated that there is a case in which the method 
presented in [6] cannot find suitable pairs, while the method 
proposed in this paper leads to pairs with less interaction. The 
accuracy of the proposed approach is demonstrated through 
closed loop simulation.
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Fig. 1. Closed loop responses for y1 in diagonal and off-diagonal 
pairings

Fig. 2. Closed loop responses for y2 in diagonal and off-diagonal 
pairings

Table 1 
Settling times in closed loop system at t = 0 sec

pairing outputs settling time (sec) 

diagonal
y1 121

y2 19.5

off-diagonal
y1 13.5

y2 161


