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elementary matrices (blocks), for example, an electromechan-
ical system (squirrel cage induction motors) inertia matrix [5] 
may take the form of:
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1. Introduction

Mathematical models of physical objects are formulated using,
among others, the Lagrangian formalism. It can be represented
by the following form of differential equations written in ma-
trix form [1]:

Dq̈+Cq̇+Kq+G = τ (1)

where D - denotes inertial matrix, C - denotes matrix of cen-
trifugal and Coriolis forces, K - denotes stiffness matrix, G
- denotes vector of gravitational forces, τ - denotes vector
of generalized forces, q - denotes vector of generalized dis-
placements. The inertial matrix, present in (1), in predominant
cases, may be regarded as symmetrical, but for mathematical
models of wide set of physical objects its elements are indirect
function of time. The elements of inertial matrix may depend
on angular or linear displacements. It happens very often in
mathematical modelling of advanced mechanical systems such
as robot manipulators [1], [23], [24]. In mathematical mod-
els of electro-mechanical systems matrix parameters of self-
and mutual inductances of stator and rotor windings also de-
pend on angular displacements of the rotor [2]. Similarly, in
mathematical models of head positioning systems of modern
mass storage devices (hard disk drives), elements of inertial
matrices (which are represented by mass moments of inertia or
by masses) depend on temporary spatial configurations of the
links of its kinematic chain and therefore the angular (or linear)
displacement of joints [3, 4]. A thorough analysis of the struc-
tures of the inertia matrix of mechanical systems, electrome-
chanical systems, robot manipulators, head positioning sys-
tems of hard disk drives, and many others, shows that they have
often block structure. The inertia matrices of these systems can
be divided internally into elementary matrices (blocks), for ex-
ample, an electromechanical system (squirrel cage induction
motors) inertia matrix [5] may take the form of:
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D =




Ls Msr . . .

MT
sr Lr . . .
...

...
. . .


 (2)

where Ls, Lr, Msr denotes matrices of self inductances of stator
windings and rotor windings, matrix of mutual stator - rotor in-
ductances respectively. The inertia matrices in electromechan-
ical systems may have structural features allowing them to be
divided into a number of submatrices, for the most elementary
matrices - the blocks have the size of 2×2 [2, 5]. Symmetric
inertia matrices encountered in mathematical models of head
positioning systems of hard disk drives [3, 4], have very dif-
ferent forms, depending on structures of its kinematic chains.
Exemplary forms of these matrices are as follows:

D =




d11 0 0 0 . . . 0
d22 d23 0 . . . 0

d33 0 . . . 0
. . . dk−1,k

sym dk,k




(3)

D =




d11 d12 d13 . . . d1,k

d22 0 . . . 0
d33 . . . 0

. . . 0
sym dk,k




(4)

A square matrices with entries equal zero except for their
main diagonal, one row and one column have many applica-
tions e.g. in wireless communication systems [19], neural-
network models [20] as well as issues related with chemistry
[21] or phisics [22]. In this paper we propose a method of
inversion of symetric matrices containing non-zero blocks in
their main diagonal, one column, one row and zeros in remain-
ing entries. This kind of matrices is significant in modeling

1

� (2)

where Ls, Lr, Msr denote matrices of self inductances of stator 
windings and rotor windings, matrix of mutual stator – rotor 
inductances respectively.

The inertia matrices in electromechanical systems may have 
structural features allowing them to be divided into a number 
of submatrices, for the most elementary matrices – the blocks 
have the size of 2£2 [2, 5]. Symmetric inertia matrices encoun-
tered in mathematical models of head positioning systems of 
hard disk drives [3, 4], have very different forms, depending 
on structures of its kinematic chains. Exemplary forms of these 
matrices are as follows:
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trix form [1]:

Dq̈+Cq̇+Kq+G = τ (1)

where D - denotes inertial matrix, C - denotes matrix of cen-
trifugal and Coriolis forces, K - denotes stiffness matrix, G
- denotes vector of gravitational forces, τ - denotes vector
of generalized forces, q - denotes vector of generalized dis-
placements. The inertial matrix, present in (1), in predominant
cases, may be regarded as symmetrical, but for mathematical
models of wide set of physical objects its elements are indirect
function of time. The elements of inertial matrix may depend
on angular or linear displacements. It happens very often in
mathematical modelling of advanced mechanical systems such
as robot manipulators [1], [23], [24]. In mathematical mod-
els of electro-mechanical systems matrix parameters of self-
and mutual inductances of stator and rotor windings also de-
pend on angular displacements of the rotor [2]. Similarly, in
mathematical models of head positioning systems of modern
mass storage devices (hard disk drives), elements of inertial
matrices (which are represented by mass moments of inertia or
by masses) depend on temporary spatial configurations of the
links of its kinematic chain and therefore the angular (or linear)
displacement of joints [3, 4]. A thorough analysis of the struc-
tures of the inertia matrix of mechanical systems, electrome-
chanical systems, robot manipulators, head positioning sys-
tems of hard disk drives, and many others, shows that they have
often block structure. The inertia matrices of these systems can
be divided internally into elementary matrices (blocks), for ex-
ample, an electromechanical system (squirrel cage induction
motors) inertia matrix [5] may take the form of:
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A square matrices with entries equal zero except for their
main diagonal, one row and one column have many applica-
tions e.g. in wireless communication systems [19], neural-
network models [20] as well as issues related with chemistry
[21] or phisics [22]. In this paper we propose a method of
inversion of symetric matrices containing non-zero blocks in
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1
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1.	 Introduction

Mathematical models of physical objects are formulated using, 
among others, the Lagrangian formalism. It can be represented 
by the following form of differential equations written in matrix 
form [1]:
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1

� (1)

where D denotes inertial matrix, C denotes matrix of centrifugal 
and Coriolis forces, K denotes stiffness matrix, G denotes vector 
of gravitational forces, τ denotes vector of generalized forces, 
q denotes vector of generalized displacements.

The inertial matrix, present in (1), in predominant cases, 
may be regarded as symmetrical, but for mathematical models 
of wide set of physical objects its elements are indirect function 
of time. The elements of inertial matrix may depend on angular 
or linear displacements. It happens very often in mathematical 
modelling of advanced mechanical systems such as robot ma-
nipulators [1, 23, 24]. In mathematical models of electro-me-
chanical systems matrix parameters of self- and mutual induc-
tances of stator and rotor windings also depend on angular dis-
placements of the rotor [2]. Similarly, in mathematical models 
of head positioning systems of modern mass storage devices 
(hard disk drives), elements of inertial matrices (which are rep-
resented by mass moments of inertia or by masses) depend on 
temporary spatial configurations of the links of its kinematic 
chain and therefore the angular (or linear) displacement of joints 
[3, 4]. A thorough analysis of the structures of the inertia ma-
trix of mechanical systems, electromechanical systems, robot 
manipulators, head positioning systems of hard disk drives, and 
many others, shows that they have often block structure. The 
inertia matrices of these systems can be divided internally into 
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Square matrices with entries equal zero except for their 
main diagonal, one row and one column have many applica-
tions e.g. in wireless communication systems [19], neural-net-
work models [20] as well as issues related with chemistry 
[21] or phisics [22]. In this paper we propose a method of 
inversion of symetric matrices containing non-zero blocks 
in their main diagonal, one column, one row and zeros in 
remaining entries. This kind of matrices is significant in 
modeling of mechatronic systems. Considered structures of 
block matrices can be used to describe an inertia matrix in 
mathematical model of a head positioning system of a hard 
disk drive. It seems interesting how fast may a group of 
symmetric inertia matrices, as encountered in models of hard 
disk drive head positioning system, be inverted considering 
their block structure and their reasonable block dimension. 
It is also worth to investigate influence an internal structure 
of block matrices has on inversion time as well as on numer-
ical complexity of inversion process. The above mentioned 
issues motivated the Authors to investigate the problem of 
numerical complexity of inversion of block matrices with 
different structures. Similar problem was investigated in [5], 
where effective method (based on LDLT decomposition) of 
finding the inverse of this kind of matrix was proposed. 
However, approximation of complexity of the algorithm was 
very general. We propose a detailed analysis of the number 
of algebraic operations necessary to implement inversion of 
considered block matrices.

In chapter 2 general information about the internal struc-
ture of block matrices, further considered in the article is 
presented.In this chapter the inverted form of block matrix, 
derived in former works, is presented. In former works, the 
authors have not investigated mutual interactions between 
internal structure of block matrices (consisting more than 
16 elements) and its numerical complexity and resultant 
computation times. In paper [18] the number of algebraic 
operation has been calculated for an inversion process of 
strictly defined matrix (only one type), but under different 
partition of input block matrix, i.e. into 4, 6 and 16 elemen-
tary matrices. Other papers showing the relation between 
block matrix structure and structure of kinematic chains of 
robots (alternatively kinematic chains of head positioning 
systems) [3, 4, 6] and [18] or structure of winding of electric 
machines [2] and [5]. General formulas, describing a relation 
between block matrix's structure and dimension, and the 
number of algebraic operations have not been presented in 
authors's former papers. In chapter 3 of this paper methods 
of accounting the number of algebraic operations, neces-
sary to make during inversion process are described. Three 
different cases of block matrices internal portioning are 
considered. Inversion times for all chosen structures of 
block matrices are compared with times of inversion using 
standard inversion method in Matlab (“inv” function). The 
presented method of block matrix inversion is much more 
effective than the one used in Matlab. Also, in this article 
the number of algebraic operations (necessary to invert the 
matrices) has been calculated and compared with Gaussian 
method of matrix inversion, and it has shown the advantages 

of proposed method which exhibits the smallest increase of 
number of algebraic operation due to block matrix dimension 
increase.

2.	 Inverting the block matrix using  
its internal structure

Suppose that the inertia matrix of a physical object can be rep-
resented in the following block form:
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sitioning system, be inverted considering their block structure
and their reasonable block dimension. It is also worth to in-
vestigate influence an internal structure of block matrices has
on inversion time as well as on numerical complexity of in-
version process. The above mentioned issues motivated the
Authors to investigate the problem of numerical complexity of
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problem was investigated in [5], where effective method (based
on LDLT decomposition) of finding the inverse of this kind of
matrix was proposed. However, approximation of complex-
ity of the algorithm was very general. We propose a detailed
analysis of the number of algebraic operations necessary to im-
plement inversion of considered block matrices. In chapter 2
general information about the internal structure of block matri-
ces, further considered in the article is presented.In this chap-
ter the inverted form of block matrix, derived in former works,
is presented. In former works, the authors have not investi-
gated mutual interactions between internal structure of block
matrices (consisting more than 16 elements) and its numerical
complexity and resultant computation times. In paper [18] the
number of algebraic operation has been calculated for an in-
version process of strictly defined matrix (only one type), but
under different partition of input block matrix, i.e. into 4, 6
and 16 elementary matrices. Other papers showing the rela-
tion between block matrix structure and structure of kinematic
chains of robots (alternatively kinematic chains of head posi-
tioning systems) [3, 4], [6] and [18] or structure of winding of
electric machines [2] and [5]. General formulas, describing a
relation between block matrix’s structure and dimension, and
the number of algebraic operations have not been presented in
authors’s former papers. In chapter 3 of this paper methods
of accounting the number of algebraic operations, necessary
to make during inversion process are described. Three dif-
ferent cases of block matrices internal portioning are consid-
ered. Inversion times for all chosen structures of block matri-
ces are compared with times of inversion using standard inver-
sion method in Matlab (“inv” function). The presented method
of block matrix inversion is much more effective than the one
used in Matlab. Also, in this article the number of algebraic
operations (necessary to invert the matrices) has been calcu-
lated and compared with Gaussian method of matrix inversion,
and it has shown the advantages of proposed method which
exhibits the smallest increase of number of algebraic operation
due to block matrix dimension increase.

2. Inverting the block matrix using its internal
structure

Suppose that the inertia matrix of a physical object can be rep-
resented in the following block form:

D =




a0 b1 b2 . . . bk

bT
1 a1 0 . . . 0

bT
2 0 a2 . . . 0
...

...
...

. . . 0
bT

k 0 0 0 ak




(5)

The division into elementary matrices of the above matrix is
essentially arbitrary, but there may occur practical reasons [6],
which define them. It happens in branched head positioning
systems of hard disk drives [4] and in this case, this division
is correlated with the structure of the kinematic chain of head
positioning system. Due to the ability to give the physical in-
terpretation of the matrices of the structure of an arrow (ar-
rowhead), they became the subject of research. Arrowhead
matrix representation of the inertia matrix describing the equa-
tion of physical object under consideration, may also used in
the description of operation of the wireless links [9]. One of
the problems associated with arrow matrices is effective de-
termination of the eigenvalues of [7], [8], [9]. Additionally,
considered are parallel matrix inversion methods as described
in [10]. In [11] is presented a quick method of solving systems
of linear equations of the arrow matrix of coefficients.

As shown in [6] inverted block matrix (5) can be represented
as:

Dr =




c0 −c0b1a−1
1 −c0b2a−1

2 . . . ξ1
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where c0 = (a0 − ∑k
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−1 for i ∈ {1, . . . ,k}, ξ1 = −c0bka−1
k ,
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The inverted block matrix of inertia (6) consist of (as can

be observed) elementary matrices, which are calculated on the
basis of the block matrix elements (5) before the inversion. It is
possible to calculate chosen elementary submatrix (6) without
the need of calculation of the remaining elements of the blocks
matrix.

3. The number of algebraic operations during
the inversion of the block matrix

For the sake of consequence of further course of the discussion,
definition of block dimension is formulated.

DEF 1. If the symmetric block matrix D has been di-
vided into elementary matrices using k vertical lines (into k+1
columns) and k horizontal lines (into k+1 rows) the block size
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of mechatronic systems. Considered structures of block matri-
ces can be used to describe an inertia matrix in mathematical
model of a head positioning system of a hard disk drive. It
seems interesting how fast may a group of symmetric inertia
matrices, as encountered in models of hard disk drive head po-
sitioning system, be inverted considering their block structure
and their reasonable block dimension. It is also worth to in-
vestigate influence an internal structure of block matrices has
on inversion time as well as on numerical complexity of in-
version process. The above mentioned issues motivated the
Authors to investigate the problem of numerical complexity of
inversion of block matrices with different structures. Similar
problem was investigated in [5], where effective method (based
on LDLT decomposition) of finding the inverse of this kind of
matrix was proposed. However, approximation of complex-
ity of the algorithm was very general. We propose a detailed
analysis of the number of algebraic operations necessary to im-
plement inversion of considered block matrices. In chapter 2
general information about the internal structure of block matri-
ces, further considered in the article is presented.In this chap-
ter the inverted form of block matrix, derived in former works,
is presented. In former works, the authors have not investi-
gated mutual interactions between internal structure of block
matrices (consisting more than 16 elements) and its numerical
complexity and resultant computation times. In paper [18] the
number of algebraic operation has been calculated for an in-
version process of strictly defined matrix (only one type), but
under different partition of input block matrix, i.e. into 4, 6
and 16 elementary matrices. Other papers showing the rela-
tion between block matrix structure and structure of kinematic
chains of robots (alternatively kinematic chains of head posi-
tioning systems) [3, 4], [6] and [18] or structure of winding of
electric machines [2] and [5]. General formulas, describing a
relation between block matrix’s structure and dimension, and
the number of algebraic operations have not been presented in
authors’s former papers. In chapter 3 of this paper methods
of accounting the number of algebraic operations, necessary
to make during inversion process are described. Three dif-
ferent cases of block matrices internal portioning are consid-
ered. Inversion times for all chosen structures of block matri-
ces are compared with times of inversion using standard inver-
sion method in Matlab (“inv” function). The presented method
of block matrix inversion is much more effective than the one
used in Matlab. Also, in this article the number of algebraic
operations (necessary to invert the matrices) has been calcu-
lated and compared with Gaussian method of matrix inversion,
and it has shown the advantages of proposed method which
exhibits the smallest increase of number of algebraic operation
due to block matrix dimension increase.

2. Inverting the block matrix using its internal
structure

Suppose that the inertia matrix of a physical object can be rep-
resented in the following block form:

D =
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be observed) elementary matrices, which are calculated on the
basis of the block matrix elements (5) before the inversion. It is
possible to calculate chosen elementary submatrix (6) without
the need of calculation of the remaining elements of the blocks
matrix.

3. The number of algebraic operations during
the inversion of the block matrix

For the sake of consequence of further course of the discussion,
definition of block dimension is formulated.

DEF 1. If the symmetric block matrix D has been di-
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model of a head positioning system of a hard disk drive. It
seems interesting how fast may a group of symmetric inertia
matrices, as encountered in models of hard disk drive head po-
sitioning system, be inverted considering their block structure
and their reasonable block dimension. It is also worth to in-
vestigate influence an internal structure of block matrices has
on inversion time as well as on numerical complexity of in-
version process. The above mentioned issues motivated the
Authors to investigate the problem of numerical complexity of
inversion of block matrices with different structures. Similar
problem was investigated in [5], where effective method (based
on LDLT decomposition) of finding the inverse of this kind of
matrix was proposed. However, approximation of complex-
ity of the algorithm was very general. We propose a detailed
analysis of the number of algebraic operations necessary to im-
plement inversion of considered block matrices. In chapter 2
general information about the internal structure of block matri-
ces, further considered in the article is presented.In this chap-
ter the inverted form of block matrix, derived in former works,
is presented. In former works, the authors have not investi-
gated mutual interactions between internal structure of block
matrices (consisting more than 16 elements) and its numerical
complexity and resultant computation times. In paper [18] the
number of algebraic operation has been calculated for an in-
version process of strictly defined matrix (only one type), but
under different partition of input block matrix, i.e. into 4, 6
and 16 elementary matrices. Other papers showing the rela-
tion between block matrix structure and structure of kinematic
chains of robots (alternatively kinematic chains of head posi-
tioning systems) [3, 4], [6] and [18] or structure of winding of
electric machines [2] and [5]. General formulas, describing a
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authors’s former papers. In chapter 3 of this paper methods
of accounting the number of algebraic operations, necessary
to make during inversion process are described. Three dif-
ferent cases of block matrices internal portioning are consid-
ered. Inversion times for all chosen structures of block matri-
ces are compared with times of inversion using standard inver-
sion method in Matlab (“inv” function). The presented method
of block matrix inversion is much more effective than the one
used in Matlab. Also, in this article the number of algebraic
operations (necessary to invert the matrices) has been calcu-
lated and compared with Gaussian method of matrix inversion,
and it has shown the advantages of proposed method which
exhibits the smallest increase of number of algebraic operation
due to block matrix dimension increase.
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The division into elementary matrices of the above matrix is
essentially arbitrary, but there may occur practical reasons [6],
which define them. It happens in branched head positioning
systems of hard disk drives [4] and in this case, this division
is correlated with the structure of the kinematic chain of head
positioning system. Due to the ability to give the physical in-
terpretation of the matrices of the structure of an arrow (ar-
rowhead), they became the subject of research. Arrowhead
matrix representation of the inertia matrix describing the equa-
tion of physical object under consideration, may also used in
the description of operation of the wireless links [9]. One of
the problems associated with arrow matrices is effective de-
termination of the eigenvalues of [7], [8], [9]. Additionally,
considered are parallel matrix inversion methods as described
in [10]. In [11] is presented a quick method of solving systems
of linear equations of the arrow matrix of coefficients.
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as:
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The inverted block matrix of inertia (6) consist of (as can

be observed) elementary matrices, which are calculated on the
basis of the block matrix elements (5) before the inversion. It is
possible to calculate chosen elementary submatrix (6) without
the need of calculation of the remaining elements of the blocks
matrix.

3. The number of algebraic operations during
the inversion of the block matrix

For the sake of consequence of further course of the discussion,
definition of block dimension is formulated.

DEF 1. If the symmetric block matrix D has been di-
vided into elementary matrices using k vertical lines (into k+1
columns) and k horizontal lines (into k+1 rows) the block size
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The inverted block matrix of inertia (6) consist of (as can 
be observed) elementary matrices, which are calculated on the 
basis of the block matrix elements (5) before the inversion. It is 
possible to calculate chosen elementary submatrix (6) without 
the need of calculation of the remaining elements of the blocks 
matrix.
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3.	 The number of algebraic operations during 
the inversion of the block matrix

For the sake of consequence of further course of the discussion, 
definition of block dimension is formulated.

Definition 1. If the symmetric block matrix D has been divided 
into elementary matrices using k vertical lines (into k+1 col-
umns) and k horizontal lines (into k+1 rows) the block size 
n of the block matrix is defined as an ordered pair of num-
bers (k+1, k+1). Block size of the block matrix is written as: 
n = (k+1)£(k+1), or briefly by n = (k+1).

In order to demonstrate effectiveness of the computing al-
gorithm of matrix inversion, the number of algebraic operations 
needed to be performed will be calculated for block matrices 
with different internal divisions into elementary blocks – sub-
matrices. All of the analyzed cases of the block matrix will 
have a structure such as matrix (5), it will differ only in size of 
elementary matrices. As mentioned above, each of the inverse 
elementary matrices (6) can be calculated individually. A de-
tailed analysis of the structure of the matrix (6) reveals that 
there are four different types of items – elementary submatrices 
of inverted block matrix requiring the calculation. These are 
as follows:
1.	 first elementary matrix, which later will be called the leading 

element, has the following form:
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n of the block matrix is defined as an ordered pair of num-
bers (k+1, k+1). Block size of the block matrix is written as:
n=(k+1)×(k+1), or briefly by n=(k+1).

In order to demonstrate effectiveness of the computing algo-
rithm of matrix inversion, the number of algebraic operations
needed to be performed will be calculated for block matrices
with different internal divisions into elementary blocks - sub-
matrices. All of the analyzed cases of the block matrix will
have a structure such as matrix (5), it will differ only in size
of elementary matrices. As mentioned above, each of the in-
verse elementary matrices (6) can be calculated individually. A
detailed analysis of the structure of the matrix (6) reveals that
there are four different types of items - elementary submatrices
of inverted block matrix requiring the calculation. These are as
follows:

1. first elementary matrix, which later will be called the leading
element, has the following form:

c0 = (a0 −
k

∑
j

b ja−1
j bT

j )
−1 (7)

2. elementary matrices, that in physical interpretation can be
responsible for negative feedback, have following forms:

di =−c0bia−1
i (8)

for i ∈ {1, . . . ,k}, auxiliary matrices having forms:

ei =−a−1
i bT

i (9)

for i ∈ {1, . . . ,k−1}.
3. elementary matrices, which in physical interpretation can be

responsible for positive couplings, are forms of the products
of the matrices (8) and (9)

eid j (10)

for i ∈ {1, . . . ,k−1}, j ∈ {1, . . . ,k}.
4. block matrices, which can be called in physical interpreta-

tion as self inertia matrices, have following forms:

ci = (ai −bT
i (c

−1
0 +bia−1

j bT
j )

−1bi)
−1 (11)

for i ∈ {1, . . . ,k}.

By introducing the above indications of elementary matri-
ces, inverted block matrix (6) takes the following form:

Dr =




c0 d1 d2 . . . dk

c1 e1d2 . . . e1dk

c2 . . . e2dk
. . .

...
sym ck




(12)

Later in this article the number of algebraic operations required
to implement in order to calculate the inverted block matrix
(5) for three different cases of the internal structure of input
matrices will be calculated.

Table 1
Number of algebraic operations necessary to calculate the leading element c0.

Block dimension n 2 3 4 5
Sum of algebraic operations loI 4 7 10 13

Table 2
Number of algebraic operations necessary to calculate the negative feedback

matrix di.

Block dimension n 2 3 4 5
Sum of algebraic operations loII 3 6 9 12

3.1. Case 1 - one-piece elementary matrices - a partition
in the 1-1-1-1 order If the block matrix can be divided into
one-piece elementary matrices (it will take the form of a ma-
trix (5)), then the number of algebraic operations related to
the calculation of the leading element c0 (7) is determined by:
block size n of the block matrix, the inversion process, opera-
tions of addition (subtraction) in triples of matrices b ja−1

j bT
j ,

multiplication in triples of matrices b ja−1
j bT

j , and a j matrix in-
version. By convention, such division of the block matrix for
one-piece elementary matrices will be referred as division in
1-1-1-1 order. Calculated number of algebraic operations for
various dimensions of the block matrices is shown in Table 1.

General relationship between the dimension of the block
matrix block dimension n and the number of algebraic opera-
tions that are needed for the calculation of the leading element
c0 (7), is as follows:

loI = 3(n−1)+1 (13)

The calculations effort necessary to perform the designation
of negative feedback matrix di (8), is associated with the im-
plementation of algebraic operations necessary to: calculate
the matrix product c0 and bi, calculate the inverse form of the
matrix ai (in present case - dividing by an element of the ma-
trix). Calculated numbers of algebraic operations for different
block dimension n of the block matrix, the negative feedback
matrix di (8), are shown in Table 2. It should be noted, that in-
creasing size of the block matrix by one, results in occurrence
of an additional negative feedback matrix di - in the first row
and first column of the inverted block matrix.

General relationship between block dimension of the block
matrix and the number of algebraic operations that are needed
for the calculation of the negative feedback matrix di (8) is as
follows:

loII = 3(n−1) (14)

for n = 2,3, . . . .
The number of algebraic operations needed in order to deter-

mine the matrix of positive feedback eid j (10), is related with
the calculation of the auxiliary matrix ei, and its product with
negative feedback matrix d j. It should be emphasized that this
type of matrices occurs for block dimension n ≥ 3. These cal-
culations require: inversion of the matrix ai, multiplication of
matrices a−1

i bT
i , multiplication by (−1) and multiplication by
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responsible for negative feedback, have following forms:
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one-piece elementary matrices will be referred as division in
1-1-1-1 order. Calculated number of algebraic operations for
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tions that are needed for the calculation of the leading element
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the matrix product c0 and bi, calculate the inverse form of the
matrix ai (in present case - dividing by an element of the ma-
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c1 e1d2 . . . e1dk

c2 . . . e2dk
. . .

...
sym ck




(12)

Later in this article the number of algebraic operations required
to implement in order to calculate the inverted block matrix
(5) for three different cases of the internal structure of input
matrices will be calculated.

Table 1
Number of algebraic operations necessary to calculate the leading element c0.

Block dimension n 2 3 4 5
Sum of algebraic operations loI 4 7 10 13

Table 2
Number of algebraic operations necessary to calculate the negative feedback

matrix di.

Block dimension n 2 3 4 5
Sum of algebraic operations loII 3 6 9 12

3.1. Case 1 - one-piece elementary matrices - a partition
in the 1-1-1-1 order If the block matrix can be divided into
one-piece elementary matrices (it will take the form of a ma-
trix (5)), then the number of algebraic operations related to
the calculation of the leading element c0 (7) is determined by:
block size n of the block matrix, the inversion process, opera-
tions of addition (subtraction) in triples of matrices b ja−1

j bT
j ,

multiplication in triples of matrices b ja−1
j bT

j , and a j matrix in-
version. By convention, such division of the block matrix for
one-piece elementary matrices will be referred as division in
1-1-1-1 order. Calculated number of algebraic operations for
various dimensions of the block matrices is shown in Table 1.

General relationship between the dimension of the block
matrix block dimension n and the number of algebraic opera-
tions that are needed for the calculation of the leading element
c0 (7), is as follows:

loI = 3(n−1)+1 (13)

The calculations effort necessary to perform the designation
of negative feedback matrix di (8), is associated with the im-
plementation of algebraic operations necessary to: calculate
the matrix product c0 and bi, calculate the inverse form of the
matrix ai (in present case - dividing by an element of the ma-
trix). Calculated numbers of algebraic operations for different
block dimension n of the block matrix, the negative feedback
matrix di (8), are shown in Table 2. It should be noted, that in-
creasing size of the block matrix by one, results in occurrence
of an additional negative feedback matrix di - in the first row
and first column of the inverted block matrix.

General relationship between block dimension of the block
matrix and the number of algebraic operations that are needed
for the calculation of the negative feedback matrix di (8) is as
follows:

loII = 3(n−1) (14)

for n = 2,3, . . . .
The number of algebraic operations needed in order to deter-

mine the matrix of positive feedback eid j (10), is related with
the calculation of the auxiliary matrix ei, and its product with
negative feedback matrix d j. It should be emphasized that this
type of matrices occurs for block dimension n ≥ 3. These cal-
culations require: inversion of the matrix ai, multiplication of
matrices a−1

i bT
i , multiplication by (−1) and multiplication by
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3.	 elementary matrices, which in physical interpretation can be 
responsible for positive couplings, are forms of the products 
of the matrices (8) and (9)

	

Inversion of selected structures...

n of the block matrix is defined as an ordered pair of num-
bers (k+1, k+1). Block size of the block matrix is written as:
n=(k+1)×(k+1), or briefly by n=(k+1).

In order to demonstrate effectiveness of the computing algo-
rithm of matrix inversion, the number of algebraic operations
needed to be performed will be calculated for block matrices
with different internal divisions into elementary blocks - sub-
matrices. All of the analyzed cases of the block matrix will
have a structure such as matrix (5), it will differ only in size
of elementary matrices. As mentioned above, each of the in-
verse elementary matrices (6) can be calculated individually. A
detailed analysis of the structure of the matrix (6) reveals that
there are four different types of items - elementary submatrices
of inverted block matrix requiring the calculation. These are as
follows:

1. first elementary matrix, which later will be called the leading
element, has the following form:

c0 = (a0 −
k

∑
j

b ja−1
j bT

j )
−1 (7)

2. elementary matrices, that in physical interpretation can be
responsible for negative feedback, have following forms:

di =−c0bia−1
i (8)

for i ∈ {1, . . . ,k}, auxiliary matrices having forms:

ei =−a−1
i bT

i (9)

for i ∈ {1, . . . ,k−1}.
3. elementary matrices, which in physical interpretation can be

responsible for positive couplings, are forms of the products
of the matrices (8) and (9)

eid j (10)

for i ∈ {1, . . . ,k−1}, j ∈ {1, . . . ,k}.
4. block matrices, which can be called in physical interpreta-

tion as self inertia matrices, have following forms:

ci = (ai −bT
i (c

−1
0 +bia−1

j bT
j )

−1bi)
−1 (11)

for i ∈ {1, . . . ,k}.

By introducing the above indications of elementary matri-
ces, inverted block matrix (6) takes the following form:

Dr =




c0 d1 d2 . . . dk

c1 e1d2 . . . e1dk

c2 . . . e2dk
. . .

...
sym ck




(12)

Later in this article the number of algebraic operations required
to implement in order to calculate the inverted block matrix
(5) for three different cases of the internal structure of input
matrices will be calculated.

Table 1
Number of algebraic operations necessary to calculate the leading element c0.

Block dimension n 2 3 4 5
Sum of algebraic operations loI 4 7 10 13

Table 2
Number of algebraic operations necessary to calculate the negative feedback

matrix di.

Block dimension n 2 3 4 5
Sum of algebraic operations loII 3 6 9 12

3.1. Case 1 - one-piece elementary matrices - a partition
in the 1-1-1-1 order If the block matrix can be divided into
one-piece elementary matrices (it will take the form of a ma-
trix (5)), then the number of algebraic operations related to
the calculation of the leading element c0 (7) is determined by:
block size n of the block matrix, the inversion process, opera-
tions of addition (subtraction) in triples of matrices b ja−1

j bT
j ,

multiplication in triples of matrices b ja−1
j bT

j , and a j matrix in-
version. By convention, such division of the block matrix for
one-piece elementary matrices will be referred as division in
1-1-1-1 order. Calculated number of algebraic operations for
various dimensions of the block matrices is shown in Table 1.

General relationship between the dimension of the block
matrix block dimension n and the number of algebraic opera-
tions that are needed for the calculation of the leading element
c0 (7), is as follows:

loI = 3(n−1)+1 (13)

The calculations effort necessary to perform the designation
of negative feedback matrix di (8), is associated with the im-
plementation of algebraic operations necessary to: calculate
the matrix product c0 and bi, calculate the inverse form of the
matrix ai (in present case - dividing by an element of the ma-
trix). Calculated numbers of algebraic operations for different
block dimension n of the block matrix, the negative feedback
matrix di (8), are shown in Table 2. It should be noted, that in-
creasing size of the block matrix by one, results in occurrence
of an additional negative feedback matrix di - in the first row
and first column of the inverted block matrix.

General relationship between block dimension of the block
matrix and the number of algebraic operations that are needed
for the calculation of the negative feedback matrix di (8) is as
follows:

loII = 3(n−1) (14)

for n = 2,3, . . . .
The number of algebraic operations needed in order to deter-

mine the matrix of positive feedback eid j (10), is related with
the calculation of the auxiliary matrix ei, and its product with
negative feedback matrix d j. It should be emphasized that this
type of matrices occurs for block dimension n ≥ 3. These cal-
culations require: inversion of the matrix ai, multiplication of
matrices a−1

i bT
i , multiplication by (−1) and multiplication by
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4.	 block matrices, which can be called in physical interpretation 
as self inertia matrices, have following forms:
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n of the block matrix is defined as an ordered pair of num-
bers (k+1, k+1). Block size of the block matrix is written as:
n=(k+1)×(k+1), or briefly by n=(k+1).

In order to demonstrate effectiveness of the computing algo-
rithm of matrix inversion, the number of algebraic operations
needed to be performed will be calculated for block matrices
with different internal divisions into elementary blocks - sub-
matrices. All of the analyzed cases of the block matrix will
have a structure such as matrix (5), it will differ only in size
of elementary matrices. As mentioned above, each of the in-
verse elementary matrices (6) can be calculated individually. A
detailed analysis of the structure of the matrix (6) reveals that
there are four different types of items - elementary submatrices
of inverted block matrix requiring the calculation. These are as
follows:

1. first elementary matrix, which later will be called the leading
element, has the following form:

c0 = (a0 −
k

∑
j

b ja−1
j bT

j )
−1 (7)

2. elementary matrices, that in physical interpretation can be
responsible for negative feedback, have following forms:

di =−c0bia−1
i (8)

for i ∈ {1, . . . ,k}, auxiliary matrices having forms:

ei =−a−1
i bT

i (9)

for i ∈ {1, . . . ,k−1}.
3. elementary matrices, which in physical interpretation can be

responsible for positive couplings, are forms of the products
of the matrices (8) and (9)

eid j (10)

for i ∈ {1, . . . ,k−1}, j ∈ {1, . . . ,k}.
4. block matrices, which can be called in physical interpreta-

tion as self inertia matrices, have following forms:

ci = (ai −bT
i (c

−1
0 +bia−1

j bT
j )

−1bi)
−1 (11)

for i ∈ {1, . . . ,k}.

By introducing the above indications of elementary matri-
ces, inverted block matrix (6) takes the following form:

Dr =




c0 d1 d2 . . . dk

c1 e1d2 . . . e1dk

c2 . . . e2dk
. . .

...
sym ck




(12)

Later in this article the number of algebraic operations required
to implement in order to calculate the inverted block matrix
(5) for three different cases of the internal structure of input
matrices will be calculated.

Table 1
Number of algebraic operations necessary to calculate the leading element c0.

Block dimension n 2 3 4 5
Sum of algebraic operations loI 4 7 10 13

Table 2
Number of algebraic operations necessary to calculate the negative feedback

matrix di.

Block dimension n 2 3 4 5
Sum of algebraic operations loII 3 6 9 12

3.1. Case 1 - one-piece elementary matrices - a partition
in the 1-1-1-1 order If the block matrix can be divided into
one-piece elementary matrices (it will take the form of a ma-
trix (5)), then the number of algebraic operations related to
the calculation of the leading element c0 (7) is determined by:
block size n of the block matrix, the inversion process, opera-
tions of addition (subtraction) in triples of matrices b ja−1

j bT
j ,

multiplication in triples of matrices b ja−1
j bT

j , and a j matrix in-
version. By convention, such division of the block matrix for
one-piece elementary matrices will be referred as division in
1-1-1-1 order. Calculated number of algebraic operations for
various dimensions of the block matrices is shown in Table 1.

General relationship between the dimension of the block
matrix block dimension n and the number of algebraic opera-
tions that are needed for the calculation of the leading element
c0 (7), is as follows:

loI = 3(n−1)+1 (13)

The calculations effort necessary to perform the designation
of negative feedback matrix di (8), is associated with the im-
plementation of algebraic operations necessary to: calculate
the matrix product c0 and bi, calculate the inverse form of the
matrix ai (in present case - dividing by an element of the ma-
trix). Calculated numbers of algebraic operations for different
block dimension n of the block matrix, the negative feedback
matrix di (8), are shown in Table 2. It should be noted, that in-
creasing size of the block matrix by one, results in occurrence
of an additional negative feedback matrix di - in the first row
and first column of the inverted block matrix.

General relationship between block dimension of the block
matrix and the number of algebraic operations that are needed
for the calculation of the negative feedback matrix di (8) is as
follows:

loII = 3(n−1) (14)

for n = 2,3, . . . .
The number of algebraic operations needed in order to deter-

mine the matrix of positive feedback eid j (10), is related with
the calculation of the auxiliary matrix ei, and its product with
negative feedback matrix d j. It should be emphasized that this
type of matrices occurs for block dimension n ≥ 3. These cal-
culations require: inversion of the matrix ai, multiplication of
matrices a−1

i bT
i , multiplication by (−1) and multiplication by
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for i 2 f1, …, kg.

By introducing the above indications of elementary ma-
trices, inverted block matrix (6) takes the following form:
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n of the block matrix is defined as an ordered pair of num-
bers (k+1, k+1). Block size of the block matrix is written as:
n=(k+1)×(k+1), or briefly by n=(k+1).

In order to demonstrate effectiveness of the computing algo-
rithm of matrix inversion, the number of algebraic operations
needed to be performed will be calculated for block matrices
with different internal divisions into elementary blocks - sub-
matrices. All of the analyzed cases of the block matrix will
have a structure such as matrix (5), it will differ only in size
of elementary matrices. As mentioned above, each of the in-
verse elementary matrices (6) can be calculated individually. A
detailed analysis of the structure of the matrix (6) reveals that
there are four different types of items - elementary submatrices
of inverted block matrix requiring the calculation. These are as
follows:

1. first elementary matrix, which later will be called the leading
element, has the following form:

c0 = (a0 −
k

∑
j

b ja−1
j bT

j )
−1 (7)

2. elementary matrices, that in physical interpretation can be
responsible for negative feedback, have following forms:

di =−c0bia−1
i (8)

for i ∈ {1, . . . ,k}, auxiliary matrices having forms:

ei =−a−1
i bT

i (9)

for i ∈ {1, . . . ,k−1}.
3. elementary matrices, which in physical interpretation can be

responsible for positive couplings, are forms of the products
of the matrices (8) and (9)

eid j (10)

for i ∈ {1, . . . ,k−1}, j ∈ {1, . . . ,k}.
4. block matrices, which can be called in physical interpreta-

tion as self inertia matrices, have following forms:

ci = (ai −bT
i (c

−1
0 +bia−1

j bT
j )

−1bi)
−1 (11)

for i ∈ {1, . . . ,k}.

By introducing the above indications of elementary matri-
ces, inverted block matrix (6) takes the following form:

Dr =




c0 d1 d2 . . . dk

c1 e1d2 . . . e1dk

c2 . . . e2dk
. . .

...
sym ck




(12)

Later in this article the number of algebraic operations required
to implement in order to calculate the inverted block matrix
(5) for three different cases of the internal structure of input
matrices will be calculated.

Table 1
Number of algebraic operations necessary to calculate the leading element c0.

Block dimension n 2 3 4 5
Sum of algebraic operations loI 4 7 10 13

Table 2
Number of algebraic operations necessary to calculate the negative feedback

matrix di.

Block dimension n 2 3 4 5
Sum of algebraic operations loII 3 6 9 12

3.1. Case 1 - one-piece elementary matrices - a partition
in the 1-1-1-1 order If the block matrix can be divided into
one-piece elementary matrices (it will take the form of a ma-
trix (5)), then the number of algebraic operations related to
the calculation of the leading element c0 (7) is determined by:
block size n of the block matrix, the inversion process, opera-
tions of addition (subtraction) in triples of matrices b ja−1

j bT
j ,

multiplication in triples of matrices b ja−1
j bT

j , and a j matrix in-
version. By convention, such division of the block matrix for
one-piece elementary matrices will be referred as division in
1-1-1-1 order. Calculated number of algebraic operations for
various dimensions of the block matrices is shown in Table 1.

General relationship between the dimension of the block
matrix block dimension n and the number of algebraic opera-
tions that are needed for the calculation of the leading element
c0 (7), is as follows:

loI = 3(n−1)+1 (13)

The calculations effort necessary to perform the designation
of negative feedback matrix di (8), is associated with the im-
plementation of algebraic operations necessary to: calculate
the matrix product c0 and bi, calculate the inverse form of the
matrix ai (in present case - dividing by an element of the ma-
trix). Calculated numbers of algebraic operations for different
block dimension n of the block matrix, the negative feedback
matrix di (8), are shown in Table 2. It should be noted, that in-
creasing size of the block matrix by one, results in occurrence
of an additional negative feedback matrix di - in the first row
and first column of the inverted block matrix.

General relationship between block dimension of the block
matrix and the number of algebraic operations that are needed
for the calculation of the negative feedback matrix di (8) is as
follows:

loII = 3(n−1) (14)

for n = 2,3, . . . .
The number of algebraic operations needed in order to deter-

mine the matrix of positive feedback eid j (10), is related with
the calculation of the auxiliary matrix ei, and its product with
negative feedback matrix d j. It should be emphasized that this
type of matrices occurs for block dimension n ≥ 3. These cal-
culations require: inversion of the matrix ai, multiplication of
matrices a−1

i bT
i , multiplication by (−1) and multiplication by
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Later in this article the number of algebraic operations required 
to implement in order to calculate the inverted block matrix 
(5) for three different cases of the internal structure of input 
matrices will be calculated.

3.1. Case 1 – one-piece elementary matrices – a partition 
in the 1‒1‒1‒1 order. If the block matrix can be divided into 
one-piece elementary matrices (it will take the form of a matrix 
(5)), then the number of algebraic operations related to the cal-
culation of the leading element c0 (7) is determined by: block 
size n of the block matrix, the inversion process, operations of 
addition (subtraction) in triples of matrices bjaj

–1bj
T, multipli-

cation in triples of matrices bjaj
–1bj

T, and aj matrix inversion. 
By convention, such division of the block m atrix for one-piece 
elementary matrices will be referred as division in 1‒1–1‒1 
order. Calculated number of algebraic operations for various 
dimensions of the block matrices is shown in Table 1.

Table 1 
Number of algebraic operations necessary to calculate the leading 

element c0

Block dimension n 2 3 4 5

Sum of algebraic operations loI 4 7 10 13

General relationship between the dimension of the block 
matrix block dimension n and the number of algebraic opera-
tions that are needed for the calculation of the leading element 
c0 (7), is as follows:
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n of the block matrix is defined as an ordered pair of num-
bers (k+1, k+1). Block size of the block matrix is written as:
n=(k+1)×(k+1), or briefly by n=(k+1).

In order to demonstrate effectiveness of the computing algo-
rithm of matrix inversion, the number of algebraic operations
needed to be performed will be calculated for block matrices
with different internal divisions into elementary blocks - sub-
matrices. All of the analyzed cases of the block matrix will
have a structure such as matrix (5), it will differ only in size
of elementary matrices. As mentioned above, each of the in-
verse elementary matrices (6) can be calculated individually. A
detailed analysis of the structure of the matrix (6) reveals that
there are four different types of items - elementary submatrices
of inverted block matrix requiring the calculation. These are as
follows:

1. first elementary matrix, which later will be called the leading
element, has the following form:

c0 = (a0 −
k

∑
j

b ja−1
j bT

j )
−1 (7)

2. elementary matrices, that in physical interpretation can be
responsible for negative feedback, have following forms:

di =−c0bia−1
i (8)

for i ∈ {1, . . . ,k}, auxiliary matrices having forms:

ei =−a−1
i bT

i (9)

for i ∈ {1, . . . ,k−1}.
3. elementary matrices, which in physical interpretation can be

responsible for positive couplings, are forms of the products
of the matrices (8) and (9)

eid j (10)

for i ∈ {1, . . . ,k−1}, j ∈ {1, . . . ,k}.
4. block matrices, which can be called in physical interpreta-

tion as self inertia matrices, have following forms:

ci = (ai −bT
i (c

−1
0 +bia−1

j bT
j )

−1bi)
−1 (11)

for i ∈ {1, . . . ,k}.

By introducing the above indications of elementary matri-
ces, inverted block matrix (6) takes the following form:

Dr =




c0 d1 d2 . . . dk

c1 e1d2 . . . e1dk

c2 . . . e2dk
. . .

...
sym ck




(12)

Later in this article the number of algebraic operations required
to implement in order to calculate the inverted block matrix
(5) for three different cases of the internal structure of input
matrices will be calculated.

Table 1
Number of algebraic operations necessary to calculate the leading element c0.

Block dimension n 2 3 4 5
Sum of algebraic operations loI 4 7 10 13

Table 2
Number of algebraic operations necessary to calculate the negative feedback

matrix di.

Block dimension n 2 3 4 5
Sum of algebraic operations loII 3 6 9 12

3.1. Case 1 - one-piece elementary matrices - a partition
in the 1-1-1-1 order If the block matrix can be divided into
one-piece elementary matrices (it will take the form of a ma-
trix (5)), then the number of algebraic operations related to
the calculation of the leading element c0 (7) is determined by:
block size n of the block matrix, the inversion process, opera-
tions of addition (subtraction) in triples of matrices b ja−1

j bT
j ,

multiplication in triples of matrices b ja−1
j bT

j , and a j matrix in-
version. By convention, such division of the block matrix for
one-piece elementary matrices will be referred as division in
1-1-1-1 order. Calculated number of algebraic operations for
various dimensions of the block matrices is shown in Table 1.

General relationship between the dimension of the block
matrix block dimension n and the number of algebraic opera-
tions that are needed for the calculation of the leading element
c0 (7), is as follows:

loI = 3(n−1)+1 (13)

The calculations effort necessary to perform the designation
of negative feedback matrix di (8), is associated with the im-
plementation of algebraic operations necessary to: calculate
the matrix product c0 and bi, calculate the inverse form of the
matrix ai (in present case - dividing by an element of the ma-
trix). Calculated numbers of algebraic operations for different
block dimension n of the block matrix, the negative feedback
matrix di (8), are shown in Table 2. It should be noted, that in-
creasing size of the block matrix by one, results in occurrence
of an additional negative feedback matrix di - in the first row
and first column of the inverted block matrix.

General relationship between block dimension of the block
matrix and the number of algebraic operations that are needed
for the calculation of the negative feedback matrix di (8) is as
follows:

loII = 3(n−1) (14)

for n = 2,3, . . . .
The number of algebraic operations needed in order to deter-

mine the matrix of positive feedback eid j (10), is related with
the calculation of the auxiliary matrix ei, and its product with
negative feedback matrix d j. It should be emphasized that this
type of matrices occurs for block dimension n ≥ 3. These cal-
culations require: inversion of the matrix ai, multiplication of
matrices a−1

i bT
i , multiplication by (−1) and multiplication by
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The calculations effort necessary to perform the designa-
tion of negative feedback matrix di (8), is associated with the 
implementation of algebraic operations necessary to: calculate 
the matrix product c0 and bi, calculate the inverse form of the 
matrix ai (in present case – dividing by an element of the ma-
trix). Calculated numbers of algebraic operations for different 
block dimension n of the block matrix, the negative feedback 
matrix di (8), are shown in Table 2. It should be noted, that in-

Table 2 
Number of algebraic operations necessary to calculate the negative 

feedback matrix di

Block dimension n 2 3 4 5

Sum of algebraic operations loII 3 6 9 12
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creasing size of the block matrix by one, results in occurrence 
of an additional negative feedback matrix di – in the first row 
and first column of the inverted block matrix.

General relationship between block dimension of the block 
matrix and the number of algebraic operations that are needed 
for the calculation of the negative feedback matrix di (8) is as 
follows:
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n of the block matrix is defined as an ordered pair of num-
bers (k+1, k+1). Block size of the block matrix is written as:
n=(k+1)×(k+1), or briefly by n=(k+1).

In order to demonstrate effectiveness of the computing algo-
rithm of matrix inversion, the number of algebraic operations
needed to be performed will be calculated for block matrices
with different internal divisions into elementary blocks - sub-
matrices. All of the analyzed cases of the block matrix will
have a structure such as matrix (5), it will differ only in size
of elementary matrices. As mentioned above, each of the in-
verse elementary matrices (6) can be calculated individually. A
detailed analysis of the structure of the matrix (6) reveals that
there are four different types of items - elementary submatrices
of inverted block matrix requiring the calculation. These are as
follows:

1. first elementary matrix, which later will be called the leading
element, has the following form:

c0 = (a0 −
k

∑
j

b ja−1
j bT

j )
−1 (7)

2. elementary matrices, that in physical interpretation can be
responsible for negative feedback, have following forms:

di =−c0bia−1
i (8)

for i ∈ {1, . . . ,k}, auxiliary matrices having forms:

ei =−a−1
i bT

i (9)

for i ∈ {1, . . . ,k−1}.
3. elementary matrices, which in physical interpretation can be

responsible for positive couplings, are forms of the products
of the matrices (8) and (9)

eid j (10)

for i ∈ {1, . . . ,k−1}, j ∈ {1, . . . ,k}.
4. block matrices, which can be called in physical interpreta-

tion as self inertia matrices, have following forms:

ci = (ai −bT
i (c

−1
0 +bia−1

j bT
j )

−1bi)
−1 (11)

for i ∈ {1, . . . ,k}.

By introducing the above indications of elementary matri-
ces, inverted block matrix (6) takes the following form:

Dr =




c0 d1 d2 . . . dk

c1 e1d2 . . . e1dk

c2 . . . e2dk
. . .

...
sym ck




(12)

Later in this article the number of algebraic operations required
to implement in order to calculate the inverted block matrix
(5) for three different cases of the internal structure of input
matrices will be calculated.

Table 1
Number of algebraic operations necessary to calculate the leading element c0.

Block dimension n 2 3 4 5
Sum of algebraic operations loI 4 7 10 13

Table 2
Number of algebraic operations necessary to calculate the negative feedback

matrix di.

Block dimension n 2 3 4 5
Sum of algebraic operations loII 3 6 9 12

3.1. Case 1 - one-piece elementary matrices - a partition
in the 1-1-1-1 order If the block matrix can be divided into
one-piece elementary matrices (it will take the form of a ma-
trix (5)), then the number of algebraic operations related to
the calculation of the leading element c0 (7) is determined by:
block size n of the block matrix, the inversion process, opera-
tions of addition (subtraction) in triples of matrices b ja−1

j bT
j ,

multiplication in triples of matrices b ja−1
j bT

j , and a j matrix in-
version. By convention, such division of the block matrix for
one-piece elementary matrices will be referred as division in
1-1-1-1 order. Calculated number of algebraic operations for
various dimensions of the block matrices is shown in Table 1.

General relationship between the dimension of the block
matrix block dimension n and the number of algebraic opera-
tions that are needed for the calculation of the leading element
c0 (7), is as follows:

loI = 3(n−1)+1 (13)

The calculations effort necessary to perform the designation
of negative feedback matrix di (8), is associated with the im-
plementation of algebraic operations necessary to: calculate
the matrix product c0 and bi, calculate the inverse form of the
matrix ai (in present case - dividing by an element of the ma-
trix). Calculated numbers of algebraic operations for different
block dimension n of the block matrix, the negative feedback
matrix di (8), are shown in Table 2. It should be noted, that in-
creasing size of the block matrix by one, results in occurrence
of an additional negative feedback matrix di - in the first row
and first column of the inverted block matrix.

General relationship between block dimension of the block
matrix and the number of algebraic operations that are needed
for the calculation of the negative feedback matrix di (8) is as
follows:

loII = 3(n−1) (14)

for n = 2,3, . . . .
The number of algebraic operations needed in order to deter-

mine the matrix of positive feedback eid j (10), is related with
the calculation of the auxiliary matrix ei, and its product with
negative feedback matrix d j. It should be emphasized that this
type of matrices occurs for block dimension n ≥ 3. These cal-
culations require: inversion of the matrix ai, multiplication of
matrices a−1

i bT
i , multiplication by (−1) and multiplication by
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for n = 2, 3, …
The number of algebraic operations needed in order to de-

termine the matrix of positive feedback ei dj  (10), is related 
with the calculation of the auxiliary matrix ei, and its product 
with negative feedback matrix dj. It should be emphasized that 
this type of matrices occurs for block dimension n ¸ 3. These 
calculations require: inversion of the matrix ai, multiplication 
of matrices ai

–1bi
T, multiplication by (¡1) and multiplication by 

matrix dj. Calculated numbers of algebraic operations for var-
ious dimensions of the block matrix, for the positive feedback 
matrix eidj are shown in Table 3.

Table 3 
Number of algebraic operations necessary to calculate the positive 

feedback matrix eidj

Block dimension n 3 4 5 6

Sum of algebraic operations loIII 3 9 18 30

General relationship between block dimension of the block 
matrix and the number of algebraic operations that are needed 
for the calculation of the positive feedback matrix eidj (10) is 
as follows (assuming that matrix di was calculated in previous 
step):
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Table 3
Number of algebraic operations necessary to calculate the positive feedback

matrix eid j .

Block dimension n 3 4 5 6
Sum of algebraic operations loIII 3 9 18 30

Table 4
Number of algebraic operations necessary to calculate the self inertia

matrices ci.

Block dimension n 2 3 4 5
Sum of algebraic operations loIV 8 16 24 32

matrix d j. Calculated numbers of algebraic operations for var-
ious dimensions of the block matrix, for the positive feedback
matrix eid j are shown in Table 3.

General relationship between block dimension of the block
matrix and the number of algebraic operations that are needed
for the calculation of the positive feedback matrix eid j (10) is
as follows (assuming that matrix di was calculated in previous
step):

loIII = 3
(n−2)(n−1)

2
(15)

for n = 3,4, . . ..
The number of algebraic operations needed in order to de-

termine self inertia matrices (11) is associated with following
calculations: the product of matrices bia−1

i bT
i ; matrix ai inver-

sion (in this case by division by the element of this matrix);
the summation in the inner brackets; inversion of the internal
expression (in parentheses) and multiplying it by the matri-
ces bi and aT

i , subtraction of expressions contained in exter-
nal parentheses and its inversions. Calculated numbers of al-
gebraic operations for different block dimensions n of block
matrix, necessary for calculation of self inertia matrices, are
shown in Table 4.

General relationship between block dimension of the block
matrix and the number of algebraic operations that are needed
for the calculation of the self inertia matrices ci (11) is as fol-
lows:

loIV = 8(n−1) (16)

for n = 1,2, . . . .
The total amount of algebraic operations needed to calculate

the inverted form of block matrix of the block dimension n
and assuming that all matrices are one-piece, is given by the
following formula:

lo = 3
n2

2
+19

n
2
−10 (17)

for n = 1,2, . . . .
Relationship showing the number of algebraic operations

needed to be done to calculate the elementary matrices (with
the block dimension growth of the block matrix), can be repre-
sented graphically in Figure 1.

3.2. Case 2 - elementary matrices in partition in the 1-2-
2-2 order Assume that the block matrix can be divided into

Fig. 1. The number of algebraic operations required to be imple-
mented in order to calculate the matrix inverse: a) - for a single-
element matrix (special case) the number of operations - 1, b) - for
block matrices with block dimension 2 the number of operations - 15,
c) - for matrices with block dimension 3 the number of operations -
32, d) - for matrices with block dimension 4 the number of operations
- 52

Fig. 2. Matrix partitioning into an 1-2-2-2 order: a) - block dimen-
sions of submatrices, b) - signs assignment to the submatrices

Table 5
Number of algebraic operations necessary to calculate the leading element c0.

Block dimension n 2 3 4 5
Inversion of 4-elementary submatrices a−1

j 15 30 45 60

Multiplication of triple matrices b ja−1
j bT

j 9 18 27 36

Additions / Subtractions 1 2 3 4
Inversions / Divisions 1 1 1 1

Sum of algebraic operations loI 26 51 76 101

elementary matrices, so could be present at the block main di-
agonal as to: one-piece matrix, 2× 2 dimensional square and
symmetric matrices. The effect of such division of input ma-
trix into elementary matrices, is that in the first line rectangular
matrices (1×2 dimensional) and in the first column rectangu-
lar matrices (with dimension 2× 1) are located. Such a divi-
sion of the block matrix into one-piece elementary and 2 by 2
dimensional symmetric matrices will be called the division in
the 1-2-2-2 order. The block matrix (3) fulfils the above men-
tioned conditions, and its partition into elementary matrices in
1-2-2-2 order is shown in Figure 2.

The number of algebraic operation necessary to calculate
the leading element c0 (7) is determined by block dimension n
of input matrices, but also by dimensions of matrices in triple
b ja−1

j bT
j . The number of algebraic operations necessary to cal-

culate matrices b ja−1
j bT

j results from two rectangular matrices
multiplications (with dimensions 1×2 and 2×1) with square
matrix (with dimension 2× 2). Furthermore it is necessary to
calculate the inverse form of 4 elementary a−1

j matrix. The
calculation effort which should be carried out for leading ele-
ments c0 calculations is summarized in Table 5.

Generally, relationship between block dimension n of block
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for n = 3, 4, …
The number of algebraic operations needed in order to de-

termine self inertia matrices (11) is associated with following 
calculations: the product of matrices biai

–1bi
T; matrix ai inversion 

(in this case by division by the element of this matrix); the sum-
mation in the inner brackets; inversion of the internal expression 
(in parentheses) and multiplying it by the matrices bi and ai

T, 
subtraction of expressions contained in external parentheses 
and its inversions. Calculated numbers of algebraic operations 
for different block dimensions n of block matrix, necessary for 
calculation of self inertia matrices, are shown in Table 4.

Table 4 
Number of algebraic operations necessary to calculate the self 

inertia matrices ci

Block dimension n 2 3 4 5

Sum of algebraic operations loIII 8 16 24 32

General relationship between block dimension of the block 
matrix and the number of algebraic operations that are needed 

for the calculation of the self inertia matrices ci (11) is as fol-
lows:
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Table 3
Number of algebraic operations necessary to calculate the positive feedback

matrix eid j .

Block dimension n 3 4 5 6
Sum of algebraic operations loIII 3 9 18 30

Table 4
Number of algebraic operations necessary to calculate the self inertia

matrices ci.

Block dimension n 2 3 4 5
Sum of algebraic operations loIV 8 16 24 32

matrix d j. Calculated numbers of algebraic operations for var-
ious dimensions of the block matrix, for the positive feedback
matrix eid j are shown in Table 3.

General relationship between block dimension of the block
matrix and the number of algebraic operations that are needed
for the calculation of the positive feedback matrix eid j (10) is
as follows (assuming that matrix di was calculated in previous
step):

loIII = 3
(n−2)(n−1)

2
(15)

for n = 3,4, . . ..
The number of algebraic operations needed in order to de-

termine self inertia matrices (11) is associated with following
calculations: the product of matrices bia−1

i bT
i ; matrix ai inver-

sion (in this case by division by the element of this matrix);
the summation in the inner brackets; inversion of the internal
expression (in parentheses) and multiplying it by the matri-
ces bi and aT

i , subtraction of expressions contained in exter-
nal parentheses and its inversions. Calculated numbers of al-
gebraic operations for different block dimensions n of block
matrix, necessary for calculation of self inertia matrices, are
shown in Table 4.

General relationship between block dimension of the block
matrix and the number of algebraic operations that are needed
for the calculation of the self inertia matrices ci (11) is as fol-
lows:

loIV = 8(n−1) (16)

for n = 1,2, . . . .
The total amount of algebraic operations needed to calculate

the inverted form of block matrix of the block dimension n
and assuming that all matrices are one-piece, is given by the
following formula:

lo = 3
n2

2
+19

n
2
−10 (17)

for n = 1,2, . . . .
Relationship showing the number of algebraic operations

needed to be done to calculate the elementary matrices (with
the block dimension growth of the block matrix), can be repre-
sented graphically in Figure 1.

3.2. Case 2 - elementary matrices in partition in the 1-2-
2-2 order Assume that the block matrix can be divided into

Fig. 1. The number of algebraic operations required to be imple-
mented in order to calculate the matrix inverse: a) - for a single-
element matrix (special case) the number of operations - 1, b) - for
block matrices with block dimension 2 the number of operations - 15,
c) - for matrices with block dimension 3 the number of operations -
32, d) - for matrices with block dimension 4 the number of operations
- 52

Fig. 2. Matrix partitioning into an 1-2-2-2 order: a) - block dimen-
sions of submatrices, b) - signs assignment to the submatrices

Table 5
Number of algebraic operations necessary to calculate the leading element c0.

Block dimension n 2 3 4 5
Inversion of 4-elementary submatrices a−1

j 15 30 45 60

Multiplication of triple matrices b ja−1
j bT

j 9 18 27 36

Additions / Subtractions 1 2 3 4
Inversions / Divisions 1 1 1 1

Sum of algebraic operations loI 26 51 76 101

elementary matrices, so could be present at the block main di-
agonal as to: one-piece matrix, 2× 2 dimensional square and
symmetric matrices. The effect of such division of input ma-
trix into elementary matrices, is that in the first line rectangular
matrices (1×2 dimensional) and in the first column rectangu-
lar matrices (with dimension 2× 1) are located. Such a divi-
sion of the block matrix into one-piece elementary and 2 by 2
dimensional symmetric matrices will be called the division in
the 1-2-2-2 order. The block matrix (3) fulfils the above men-
tioned conditions, and its partition into elementary matrices in
1-2-2-2 order is shown in Figure 2.

The number of algebraic operation necessary to calculate
the leading element c0 (7) is determined by block dimension n
of input matrices, but also by dimensions of matrices in triple
b ja−1

j bT
j . The number of algebraic operations necessary to cal-

culate matrices b ja−1
j bT

j results from two rectangular matrices
multiplications (with dimensions 1×2 and 2×1) with square
matrix (with dimension 2× 2). Furthermore it is necessary to
calculate the inverse form of 4 elementary a−1

j matrix. The
calculation effort which should be carried out for leading ele-
ments c0 calculations is summarized in Table 5.

Generally, relationship between block dimension n of block
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for n = 1, 2, …
The total amount of algebraic operations needed to calcu-

late the inverted form of block matrix of the block dimension 
n and assuming that all matrices are one-piece, is given by the 
following formula:
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Sum of algebraic operations loIII 3 9 18 30
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Number of algebraic operations necessary to calculate the self inertia
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Block dimension n 2 3 4 5
Sum of algebraic operations loIV 8 16 24 32

matrix d j. Calculated numbers of algebraic operations for var-
ious dimensions of the block matrix, for the positive feedback
matrix eid j are shown in Table 3.

General relationship between block dimension of the block
matrix and the number of algebraic operations that are needed
for the calculation of the positive feedback matrix eid j (10) is
as follows (assuming that matrix di was calculated in previous
step):

loIII = 3
(n−2)(n−1)

2
(15)

for n = 3,4, . . ..
The number of algebraic operations needed in order to de-

termine self inertia matrices (11) is associated with following
calculations: the product of matrices bia−1

i bT
i ; matrix ai inver-

sion (in this case by division by the element of this matrix);
the summation in the inner brackets; inversion of the internal
expression (in parentheses) and multiplying it by the matri-
ces bi and aT

i , subtraction of expressions contained in exter-
nal parentheses and its inversions. Calculated numbers of al-
gebraic operations for different block dimensions n of block
matrix, necessary for calculation of self inertia matrices, are
shown in Table 4.

General relationship between block dimension of the block
matrix and the number of algebraic operations that are needed
for the calculation of the self inertia matrices ci (11) is as fol-
lows:

loIV = 8(n−1) (16)

for n = 1,2, . . . .
The total amount of algebraic operations needed to calculate

the inverted form of block matrix of the block dimension n
and assuming that all matrices are one-piece, is given by the
following formula:

lo = 3
n2

2
+19

n
2
−10 (17)

for n = 1,2, . . . .
Relationship showing the number of algebraic operations

needed to be done to calculate the elementary matrices (with
the block dimension growth of the block matrix), can be repre-
sented graphically in Figure 1.

3.2. Case 2 - elementary matrices in partition in the 1-2-
2-2 order Assume that the block matrix can be divided into

Fig. 1. The number of algebraic operations required to be imple-
mented in order to calculate the matrix inverse: a) - for a single-
element matrix (special case) the number of operations - 1, b) - for
block matrices with block dimension 2 the number of operations - 15,
c) - for matrices with block dimension 3 the number of operations -
32, d) - for matrices with block dimension 4 the number of operations
- 52

Fig. 2. Matrix partitioning into an 1-2-2-2 order: a) - block dimen-
sions of submatrices, b) - signs assignment to the submatrices

Table 5
Number of algebraic operations necessary to calculate the leading element c0.

Block dimension n 2 3 4 5
Inversion of 4-elementary submatrices a−1

j 15 30 45 60

Multiplication of triple matrices b ja−1
j bT

j 9 18 27 36

Additions / Subtractions 1 2 3 4
Inversions / Divisions 1 1 1 1

Sum of algebraic operations loI 26 51 76 101

elementary matrices, so could be present at the block main di-
agonal as to: one-piece matrix, 2× 2 dimensional square and
symmetric matrices. The effect of such division of input ma-
trix into elementary matrices, is that in the first line rectangular
matrices (1×2 dimensional) and in the first column rectangu-
lar matrices (with dimension 2× 1) are located. Such a divi-
sion of the block matrix into one-piece elementary and 2 by 2
dimensional symmetric matrices will be called the division in
the 1-2-2-2 order. The block matrix (3) fulfils the above men-
tioned conditions, and its partition into elementary matrices in
1-2-2-2 order is shown in Figure 2.

The number of algebraic operation necessary to calculate
the leading element c0 (7) is determined by block dimension n
of input matrices, but also by dimensions of matrices in triple
b ja−1

j bT
j . The number of algebraic operations necessary to cal-

culate matrices b ja−1
j bT

j results from two rectangular matrices
multiplications (with dimensions 1×2 and 2×1) with square
matrix (with dimension 2× 2). Furthermore it is necessary to
calculate the inverse form of 4 elementary a−1

j matrix. The
calculation effort which should be carried out for leading ele-
ments c0 calculations is summarized in Table 5.

Generally, relationship between block dimension n of block
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for n = 1, 2, …
Relationship showing the number of algebraic operations 

needed to be done to calculate the elementary matrices (with 
the block dimension growth of the block matrix), can be repre-
sented graphically in Fig. 1.

Fig. 1. The number of algebraic operations required to be implemented 
in order to calculate the matrix inverse: a) – for a single-element matrix 
(special case) the number of operations – 1, b) – for block matrices 
with block dimension 2 the number of operations – 15, c) – for ma-
trices with block dimension 3 the number of operations – 32, d) – for 

matrices with block dimension 4 the number of operations – 52

3.2. Case 2 – elementary matrices in partition in the 1‒2–2‒2 
order. Assume that the block matrix can be divided into elemen-
tary matrices, so could be present at the block main diagonal as 
to: one-piece matrix, 2£2 dimensional square and symmetric ma-
trices. The effect of such division of input matrix into elementary 
matrices, is that in the first line rectangular matrices (1£2 dimen-
sional) and in the first column rectangular matrices (with dimen-
sion 2£1) are located. Such a division of the block matrix into 
one-piece elementary and 2 by 2 dimensional symmetric matrices 
will be called the division in the 1‒2–2‒2 order. The block matrix 
3) fulfils the above mentioned conditions, and its partition into 
elementary matrices in 1‒2–2‒2 order is shown in Fig. 2.

Fig. 2. Matrix partitioning into an 1‒2–2‒2 order: a) – block dimen-
sions of submatrices, b) – signs assignment to the submatrices

a) b)
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The number of algebraic operation necessary to calculate 
the leading element c0 (7) is determined by block dimension n 
of input matrices, but also by dimensions of matrices in triple 
bjaj

–1bj
T. The number of algebraic operations necessary to cal-

culate matrices bjaj
–1bj

T results from two rectangular matrices 
multiplications (with dimensions 1£2 and 2£1) with square 
matrix (with dimension 2£2). Furthermore it is necessary to 
calculate the inverse form of 4 elementary aj

–1 matrix. The cal-
culation effort which should be carried out for leading elements 
c0 calculations is summarized in Table 5.

Table 5 
Number of algebraic operations necessary to calculate the leading 

element c0

Block dimension n 2 3 4 5

Inversion of 4-elementary submatrices aj
–1 15 30 45 60

Multiplication of triple matrices bjaj
–1bj

T 9 18 27 36

Additions / Subtractions 1 2 3 4

Inversions / Divisions 1 1 1 1

Sum of algebraic operations loI 26 51 76 101

Generally, relationship between block dimension n of block 
matrix with its partition into elementary matrices with dimen-
sions according to 1‒2–2‒2 order, and numbers of algebraic 
operations necessary to calculate the leading elements c0 (7), 
is as follows:
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Table 6
Number of algebraic operations necessary to calculate the negative feedback

matrix di.

Block dimension n 2 3 4 5
Inversion of 4-elementary submatrices a−1

j 15 30 45 60

Multiplication of triple matrices −c0bia−1
i 9 18 27 36

Sum of algebraic operations loII 23 46 69 92

Table 7
Number of algebraic operations necessary to calculate the positive feedback

matrix eid j .

Block dimension n 3 4 5 6
Inversion of 4-elementary submatrices a−1

j 15 45 90 150

Matrix multiplication −a−1
i bT

i 8 24 48 80
Matrix multiplication eid j 4 12 24 40

Sum of algebraic operations loIII 27 81 162 270

matrix with its partition into elementary matrices with dimen-
sions according to 1-2-2-2 order, and numbers of algebraic op-
erations necessary to calculate the leading elements c0 (7), is
as follows:

loI = 25(n−1)+1 (18)

for n = 1,2, . . . .
Calculated numbers of algebraic operations needed for a de-

termination of the negative feedback matrix di (8), in relation
to different block dimensions of input matrices is presented in
Table 6. It is worth to underline, that increase of block dimen-
sion by one results in appearing of additional negative feed-
back matrices di (1×2 and 2×1 dimensional) in the first row
and first column of the inverted block matrix.

The overall relationship between the block dimension n of a
block matrix (partitioned into submatrices in the 1-2-2-2 order)
and the number of algebraic operations needed to calculate the
negative feedback matrix di (8), is as follows:

loII = 23(n−1) (19)

for n = 2,3, . . . .
The calculated number of algebraic operations needed to ob-

tain the positive couplings matrices eid j (10), upon different
block dimensions of input block matrix, is shown in Table 7.

Overall relationship between dimension of a block matrix
(partitioned into following 1-2-2-2 order) and the number of
algebraic operations needed to calculate the submatrices eid j
(10), is as follows:

loIII = 27
(n−2)(n−1)

2
(20)

for n = 3,4, . . . .
The number of algebraic operations for different block di-

mensions n of block matrix (resulting from the partitioning in
1-2-2-2 order) of the self inertia matrices ci (11), are shown in
Table 8.

The overall relationship between the block dimension n of
the block matrix (partitioned in the following 1-2-2-2 order)

Table 8
Number of algebraic operations necessary to calculate the self inertia

matrices ci.

Block dimension n 2 3 4 5
Multiplication of triple matrices bia−1

i bT
i 24 48 72 96

Addition with c−1
0 1 2 3 4

Inverting of matrix (c−1
0 +bia−1

i bT
i ) 1 2 3 4

Calculation of matrix bT
i (c

−1
0 +bia−1

i bT
i )

−1bi 8 16 24 32
Subtractions 4 8 12 16

Inversion of 4-elementary submatrices 15 30 45 60
Sum of algebraic operations loIV 53 106 159 212

Fig. 3. The number of algebraic operations required to calculate the
inverse matrix: a) - for a single-element matrix (special case) the num-
ber of operations - 1, b) - for block matrices with block dimension 2
the number of operations - 102, c) - for matrices with block dimen-
sion 3 the number of operations - 230, d) - for matrices with block
dimension 4 the number of operations - 385

and the number of algebraic operations needed to calculate ci
matrices (11), is as follows:

loIV = 53(n−1) (21)

for n = 1,2, . . . .
The sum of algebraic operations needed to calculate an in-

verse block matrix with block dimension n (partitioned in 1-2-
2-2 order) can be obtained by the following expression:

lo = 27
n2

2
+121

n
2
−73 (22)

Relations showing the number of algebraic operations
needed to be done to calculate the elementary matrices of in-
verted block matrix (with an increase of block dimension n of
the input block matrix) can be represented graphically, as pre-
sented in Figure 3. It should be considered that the input block
matrix has been partitioned into elementary matrices with di-
mensions resulting from following 1-2-2-2 order.

3.3. Case 3 - elementary matrices in partition in the 1-2-1-2
order Assume that the block matrix can be divided into ele-
mentary matrices in such a way that 1-element matrices (1×1)
and square matrices (2×2)occur alternately on the main diag-
onal. All matrices appearing on the main diagonal are symmet-
rical. The result of this partition is that the elementary matrices
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for n = 1, 2, …
Calculated numbers of algebraic operations needed for a de-

termination of the negative feedback matrix di (8), in relation 
to different block dimensions of input matrices is presented in 
Table 6. It is worth to underline, that increase of block dimen-
sion by one results in appearing of additional negative feedback 
matrices di (1£2 and 2£1 dimensional) in the first row and first 
column of the inverted block matrix.

Table 6 
Number of algebraic operations necessary to calculate the negative 

feedback matrix di

Block dimension n 2 3 4 5

Inversion of 4-elementary submatrices aj
–1 15 30 45 60

Multiplication of triple matrices ¡c0biai
–1 9 18 27 36

Sum of algebraic operations loII 23 46 69 92

The overall relationship between the block dimension n of 
a block matrix (partitioned into submatrices in the 1‒2–2‒2 
order) and the number of algebraic operations needed to calcu-
late the negative feedback matrix di (8), is as follows:
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Table 6
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Block dimension n 2 3 4 5
Inversion of 4-elementary submatrices a−1

j 15 30 45 60

Multiplication of triple matrices −c0bia−1
i 9 18 27 36

Sum of algebraic operations loII 23 46 69 92

Table 7
Number of algebraic operations necessary to calculate the positive feedback

matrix eid j .

Block dimension n 3 4 5 6
Inversion of 4-elementary submatrices a−1

j 15 45 90 150

Matrix multiplication −a−1
i bT

i 8 24 48 80
Matrix multiplication eid j 4 12 24 40

Sum of algebraic operations loIII 27 81 162 270

matrix with its partition into elementary matrices with dimen-
sions according to 1-2-2-2 order, and numbers of algebraic op-
erations necessary to calculate the leading elements c0 (7), is
as follows:

loI = 25(n−1)+1 (18)

for n = 1,2, . . . .
Calculated numbers of algebraic operations needed for a de-

termination of the negative feedback matrix di (8), in relation
to different block dimensions of input matrices is presented in
Table 6. It is worth to underline, that increase of block dimen-
sion by one results in appearing of additional negative feed-
back matrices di (1×2 and 2×1 dimensional) in the first row
and first column of the inverted block matrix.

The overall relationship between the block dimension n of a
block matrix (partitioned into submatrices in the 1-2-2-2 order)
and the number of algebraic operations needed to calculate the
negative feedback matrix di (8), is as follows:

loII = 23(n−1) (19)

for n = 2,3, . . . .
The calculated number of algebraic operations needed to ob-

tain the positive couplings matrices eid j (10), upon different
block dimensions of input block matrix, is shown in Table 7.

Overall relationship between dimension of a block matrix
(partitioned into following 1-2-2-2 order) and the number of
algebraic operations needed to calculate the submatrices eid j
(10), is as follows:

loIII = 27
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for n = 3,4, . . . .
The number of algebraic operations for different block di-

mensions n of block matrix (resulting from the partitioning in
1-2-2-2 order) of the self inertia matrices ci (11), are shown in
Table 8.

The overall relationship between the block dimension n of
the block matrix (partitioned in the following 1-2-2-2 order)
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Block dimension n 2 3 4 5
Multiplication of triple matrices bia−1
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Addition with c−1
0 1 2 3 4

Inverting of matrix (c−1
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i ) 1 2 3 4

Calculation of matrix bT
i (c

−1
0 +bia−1

i bT
i )

−1bi 8 16 24 32
Subtractions 4 8 12 16

Inversion of 4-elementary submatrices 15 30 45 60
Sum of algebraic operations loIV 53 106 159 212

Fig. 3. The number of algebraic operations required to calculate the
inverse matrix: a) - for a single-element matrix (special case) the num-
ber of operations - 1, b) - for block matrices with block dimension 2
the number of operations - 102, c) - for matrices with block dimen-
sion 3 the number of operations - 230, d) - for matrices with block
dimension 4 the number of operations - 385

and the number of algebraic operations needed to calculate ci
matrices (11), is as follows:

loIV = 53(n−1) (21)

for n = 1,2, . . . .
The sum of algebraic operations needed to calculate an in-

verse block matrix with block dimension n (partitioned in 1-2-
2-2 order) can be obtained by the following expression:

lo = 27
n2

2
+121

n
2
−73 (22)

Relations showing the number of algebraic operations
needed to be done to calculate the elementary matrices of in-
verted block matrix (with an increase of block dimension n of
the input block matrix) can be represented graphically, as pre-
sented in Figure 3. It should be considered that the input block
matrix has been partitioned into elementary matrices with di-
mensions resulting from following 1-2-2-2 order.

3.3. Case 3 - elementary matrices in partition in the 1-2-1-2
order Assume that the block matrix can be divided into ele-
mentary matrices in such a way that 1-element matrices (1×1)
and square matrices (2×2)occur alternately on the main diag-
onal. All matrices appearing on the main diagonal are symmet-
rical. The result of this partition is that the elementary matrices
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The calculated number of algebraic operations needed to 
obtain the positive couplings matrices eidj (10), upon different 
block dimensions of input block matrix, is shown in Table 7.

Table 7 
Number of algebraic operations necessary to calculate the positive 

feedback matrix eidj

Block dimension n 3 4 5 6

Inversion of 4-elementary submatrices aj
–1 15 45 90 150

Matrix multiplication ¡ai
–1bi

T 8 24 48 80

Matrix multiplication eidj 4 12 24 40

Sum of algebraic operations loIII 27 81 162 270

Overall relationship between dimension of a block matrix 
(partitioned into following 1‒2–2‒2 order) and the number of 
algebraic operations needed to calculate the submatrices ei dj 
(10), is as follows:
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Number of algebraic operations necessary to calculate the negative feedback
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Block dimension n 2 3 4 5
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matrix with its partition into elementary matrices with dimen-
sions according to 1-2-2-2 order, and numbers of algebraic op-
erations necessary to calculate the leading elements c0 (7), is
as follows:

loI = 25(n−1)+1 (18)

for n = 1,2, . . . .
Calculated numbers of algebraic operations needed for a de-

termination of the negative feedback matrix di (8), in relation
to different block dimensions of input matrices is presented in
Table 6. It is worth to underline, that increase of block dimen-
sion by one results in appearing of additional negative feed-
back matrices di (1×2 and 2×1 dimensional) in the first row
and first column of the inverted block matrix.

The overall relationship between the block dimension n of a
block matrix (partitioned into submatrices in the 1-2-2-2 order)
and the number of algebraic operations needed to calculate the
negative feedback matrix di (8), is as follows:
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for n = 2,3, . . . .
The calculated number of algebraic operations needed to ob-
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Overall relationship between dimension of a block matrix
(partitioned into following 1-2-2-2 order) and the number of
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The number of algebraic operations for different block di-

mensions n of block matrix (resulting from the partitioning in
1-2-2-2 order) of the self inertia matrices ci (11), are shown in
Table 8.

The overall relationship between the block dimension n of
the block matrix (partitioned in the following 1-2-2-2 order)
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Fig. 3. The number of algebraic operations required to calculate the
inverse matrix: a) - for a single-element matrix (special case) the num-
ber of operations - 1, b) - for block matrices with block dimension 2
the number of operations - 102, c) - for matrices with block dimen-
sion 3 the number of operations - 230, d) - for matrices with block
dimension 4 the number of operations - 385

and the number of algebraic operations needed to calculate ci
matrices (11), is as follows:

loIV = 53(n−1) (21)

for n = 1,2, . . . .
The sum of algebraic operations needed to calculate an in-

verse block matrix with block dimension n (partitioned in 1-2-
2-2 order) can be obtained by the following expression:
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Relations showing the number of algebraic operations
needed to be done to calculate the elementary matrices of in-
verted block matrix (with an increase of block dimension n of
the input block matrix) can be represented graphically, as pre-
sented in Figure 3. It should be considered that the input block
matrix has been partitioned into elementary matrices with di-
mensions resulting from following 1-2-2-2 order.

3.3. Case 3 - elementary matrices in partition in the 1-2-1-2
order Assume that the block matrix can be divided into ele-
mentary matrices in such a way that 1-element matrices (1×1)
and square matrices (2×2)occur alternately on the main diag-
onal. All matrices appearing on the main diagonal are symmet-
rical. The result of this partition is that the elementary matrices

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

� (20)

for n = 3, 4, …
The number of algebraic operations for different block di-

mensions n of block matrix (resulting from the partitioning in 
1‒2–2‒2 order) of the self inertia matrices ci (11), are shown 
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Fig. 3. The number of algebraic operations required to calculate the
inverse matrix: a) - for a single-element matrix (special case) the num-
ber of operations - 1, b) - for block matrices with block dimension 2
the number of operations - 102, c) - for matrices with block dimen-
sion 3 the number of operations - 230, d) - for matrices with block
dimension 4 the number of operations - 385

and the number of algebraic operations needed to calculate ci
matrices (11), is as follows:

loIV = 53(n−1) (21)

for n = 1,2, . . . .
The sum of algebraic operations needed to calculate an in-

verse block matrix with block dimension n (partitioned in 1-2-
2-2 order) can be obtained by the following expression:
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Relations showing the number of algebraic operations
needed to be done to calculate the elementary matrices of in-
verted block matrix (with an increase of block dimension n of
the input block matrix) can be represented graphically, as pre-
sented in Figure 3. It should be considered that the input block
matrix has been partitioned into elementary matrices with di-
mensions resulting from following 1-2-2-2 order.

3.3. Case 3 - elementary matrices in partition in the 1-2-1-2
order Assume that the block matrix can be divided into ele-
mentary matrices in such a way that 1-element matrices (1×1)
and square matrices (2×2)occur alternately on the main diag-
onal. All matrices appearing on the main diagonal are symmet-
rical. The result of this partition is that the elementary matrices
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for n = 1, 2, …
The sum of algebraic operations needed to calculate an 

inverse block matrix with block dimension n (partitioned in 
1‒2–2‒2 order) can be obtained by the following expression:
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Fig. 3. The number of algebraic operations required to calculate the
inverse matrix: a) - for a single-element matrix (special case) the num-
ber of operations - 1, b) - for block matrices with block dimension 2
the number of operations - 102, c) - for matrices with block dimen-
sion 3 the number of operations - 230, d) - for matrices with block
dimension 4 the number of operations - 385

and the number of algebraic operations needed to calculate ci
matrices (11), is as follows:

loIV = 53(n−1) (21)

for n = 1,2, . . . .
The sum of algebraic operations needed to calculate an in-

verse block matrix with block dimension n (partitioned in 1-2-
2-2 order) can be obtained by the following expression:
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Relations showing the number of algebraic operations
needed to be done to calculate the elementary matrices of in-
verted block matrix (with an increase of block dimension n of
the input block matrix) can be represented graphically, as pre-
sented in Figure 3. It should be considered that the input block
matrix has been partitioned into elementary matrices with di-
mensions resulting from following 1-2-2-2 order.

3.3. Case 3 - elementary matrices in partition in the 1-2-1-2
order Assume that the block matrix can be divided into ele-
mentary matrices in such a way that 1-element matrices (1×1)
and square matrices (2×2)occur alternately on the main diag-
onal. All matrices appearing on the main diagonal are symmet-
rical. The result of this partition is that the elementary matrices
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Relations showing the number of algebraic operations 
needed to be done to calculate the elementary matrices of in-
verted block matrix (with an increase of block dimension n 
of the input block matrix) can be represented graphically, as 
presented in Fig. 3. It should be considered that the input block 
matrix has been partitioned into elementary matrices with di-
mensions resulting from following 1‒2–2‒2 order.

3.3. Case 3 – elementary matrices in partition in the 1‒2–1‒2 
order. Assume that the block matrix can be divided into ele-
mentary matrices in such a way that 1-element matrices (1£1) 
and square matrices (2£2) occur alternately on the main di-
agonal. All matrices appearing on the main diagonal are sym-
metrical. The result of this partition is that the elementary 
matrices in the first row are, alternately, rectangular matrices 
(of dimension 1£2) and 1-element matrices (1£1), and the 
first column is the block transposition of the first row. Such 
partitioning of input block matrix will be referred to the par-
tition in the 1‒2–1‒2 order. Such conditions correspond to an 
exemplary block matrix shown in Fig. 4 and the matrix given 
by (3). Number of algebraic operations necessary to be imple-
mented in order to calculate the form of the leading element 
c0 (7), using the partitioning of input matrices into elementary 
matrices in the 1‒2–1‒2 order, depend on the block dimension 
n of input matrix. If a block dimension is n = 2, the input 
block matrix is composed of four matrices (Fig. 4a) and the 
number of algebraic operations necessary to calculate the 
leading element c0 (7) is the same as in the case analyzed in 
Chapter 3.2 – formula (18).

Total algebraic operations will be different for larger block 
dimensions n of the input block matrix, and will depend on the 
number of 1- and 4-element submatrices, lying on the main 
diagonal of the input block matrix. Algebraic computation effort 
associated with the leading element c0 (7) is shown in Table 9.

Table 9 
Number of algebraic operations necessary to calculate the leading 

element c0

Block dimension n 2 3 4 5

Inversion of 4-elementary submatrices ai
–1 15 16 31 32

Multiplication of triple matrices biai
–1bi

T 9 10 19 20

Additions / Subtractions 1 2 3 4

Inversions / Divisions 1 1 1 1

Sum of algebraic operations loI 26 29 54 57

In general, the relationship between the block dimension 
n of the block matrix and the number of algebraic operations, 
needed to calculate the leading element c0, using the parti-
tioning into elementary matrices following the 1‒2–1‒2 order, 
is as follows:
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Fig. 4. Matrix partitioning into 1-2-1-2 order: a) - block dimensions
of submatrices, b) - marks assignment to the submatrices

Table 9
Number of algebraic operations necessary to calculate the leading element c0.

Block dimension n 2 3 4 5
Inversion of 4-elementary submatrices a−1

j 15 16 31 32

Multiplication of triple matrices b ja−1
j bT

j 9 10 19 20

Additions / Subtractions 1 2 3 4
Inversions / Divisions 1 1 1 1

Sum of algebraic operations loI 26 29 54 57

in the first row are, alternately, rectangular matrices (of dimen-
sion 1×2) and 1-element matrices (1×1), and the first column
is the block transposition of the first row. Such partitioning of
input block matrix will be referred to the partition in the 1-2-
1-2 order. Such conditions correspond to an exemplary block
matrix shown in Figure 4 and the matrix given by (3). Number
of algebraic operations necessary to be implemented in order
to calculate the form of the leading element c0 (7), using the
partitioning of input matrices into elementary matrices in the
1-2-1-2 order, depend on the block dimension n of input ma-
trix. If a block dimension is n = 2, the input block matrix is
composed of four matrices (Fig.4.a) and the number of alge-
braic operations necessary to calculate the leading element c0
(7) is the same as in the case analyzed in Chapter 3.2 - formula
(18).

Total algebraic operations will be different for larger block
dimensions n of the input block matrix, and will depend on the
number of 1- and 4-element submatrices, lying on the main di-
agonal of the input block matrix. Algebraic computation effort
associated with the leading element c0 (7) is shown in Table 9.

In general, the relationship between the block dimension n
of the block matrix and the number of algebraic operations,
needed to calculate the leading element c0, using the partition-
ing into elementary matrices following the 1-2-1-2 order, is as
follows:

loI = n+24d +2(n−d −1) (23)

for d < n∧n = 2,3, . . . . where d - numbers of 4-element sub-
matrices on input block matrix diagonal. The calculation ef-
fort necessary to be performed in order to determine the nega-
tive feedback matrices di (8), also in this case will depend on
the block dimension of the input matrix and the number of 1-
and 4-element matrices located on its main diagonal. The cal-

Table 10
Number of algebraic operations necessary to calculate the negative feedback

matrix di.

Block dimension n 2 3 4 5
Inversion of 4-elementary submatrices a−1

j 15 16 31 32

Multiplication of triple matrices −c0bia−1
i 8 10 18 20

Sum of algebraic operations loII 23 26 49 52

Table 11
Relationship between dimensions - numbers of elements of positive feedback

matrices eid j and dimensions of input matrices.

Block dimension n 2 3 4 5
Inversion of 4-elementary submatrices a−1

j 15 16 31 32

Multiplication of triple matrices −c0bia−1
i 8 10 18 20

Sum of algebraic operations loII 23 26 49 52

culated numbers of algebraic operations needed to obtain the
negative feedback matrices di (8), are shown in Table 10.

The relationship between the dimension of the block matrix
(partitioned into blocks in the following 1-2-1-2 order) and the
number of algebraic operations needed to calculate the nega-
tive feedback matrices di (8), is as follows:

loII = 23d +3(n−d −1) (24)

for d < n∧n = 2,3, . . . . where d - numbers of 4-element sub-
matrices on the input block matrix diagonal. The number of
algebraic operations required to determine the positive feed-
back matrices eid j (10) depend on the block dimension n of
the input block matrix and the numbers of 1- and 4-element
submatrices lying on the main diagonal. As a result, we ob-
tain three types of calculated matrices, namely: 1-element,
2-element (rectangular), 4-element (square and symmetrical)
matrices. Analyzing the relationship (10) and the block matrix
form shown in Figure 4, it can be concluded that in the calcu-
lation of the 1-element matrices only 1-element matrices take
part, while in the calculation of the 2-element matrices two
kind of elementary matrices: 1-element and 4-element subma-
trices are involved. In the calculation of the 4-element matrices
two 4-element submatrices, one 1-element and two 2-element
submatrices are involved. The relationships between the di-
mensions of the matrices creating the positive feedback matri-
ces eid j (10), and a number of its internal elements generated
are shown in Table 11.

The number of algebraic operations, with a different block
dimension n of block matrix (resulting from the partitioning in
following 1-2-1-2 order), are shown in Figure 5.

The sum of all 2-element matrices (in rows and columns,
occurring above the main diagonal of inverted block matrix)
under increasing block dimension n of the input block ma-
trix (partitioning into elementary matrices in the 1-2-1-2 or-
der), increases accordingly with sequence described by the
so-called third diagonal of Lozanic triangle [15]. Successive
numbers which represents block dimension n (of input block
matrix) correspond a number, representing the sum of all 2-
element positive feedback matrices eid j (according to the func-
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for d < n ^ n = 2, 3, …;  where d – numbers of 4-element sub-
matrices on input block matrix diagonal.

The calculation effort necessary to be performed in order 
to determine the negative feedback matrices di (8), also in this 
case will depend on the block dimension of the input matrix and 
the number of 1- and 4-element matrices located on its main di-
agonal. The calculated numbers of algebraic operations needed 
to obtain the negative feedback matrices di (8), are shown in 
Table 10.

Table 10 
Number of algebraic operations necessary to calculate the negative 

feedback matrix di

Block dimension n 2 3 4 5

Inversion of 4-elementary submatrices aj
–1 15 16 31 32

Multiplication of triple matrices ¡c0biai
–1 8 10 18 20

Sum of algebraic operations loII 23 26 49 52

Fig. 3. The number of algebraic operations required to calculate the in-
verse matrix: a) – for a single-element matrix (special case) the number 
of operations – 1, b) – for block matrices with block dimension 2 the 
number of operations – 102, c) – for matrices with block dimension 3 
the number of operations – 230, d) – for matrices with block dimension 

4 the number of operations – 385

Fig. 4. Matrix partitioning into 1‒2–1‒2 order: a) – block dimensions 
of submatrices, b) – marks assignment to the submatrices

a) b)
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The relationship between the dimension of the block matrix 
(partitioned into blocks in the following 1‒2–1‒2 order) and the 
number of algebraic operations needed to calculate the negative 
feedback matrices di (8), is as follows:
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Fig. 4. Matrix partitioning into 1-2-1-2 order: a) - block dimensions
of submatrices, b) - marks assignment to the submatrices

Table 9
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Multiplication of triple matrices b ja−1
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in the first row are, alternately, rectangular matrices (of dimen-
sion 1×2) and 1-element matrices (1×1), and the first column
is the block transposition of the first row. Such partitioning of
input block matrix will be referred to the partition in the 1-2-
1-2 order. Such conditions correspond to an exemplary block
matrix shown in Figure 4 and the matrix given by (3). Number
of algebraic operations necessary to be implemented in order
to calculate the form of the leading element c0 (7), using the
partitioning of input matrices into elementary matrices in the
1-2-1-2 order, depend on the block dimension n of input ma-
trix. If a block dimension is n = 2, the input block matrix is
composed of four matrices (Fig.4.a) and the number of alge-
braic operations necessary to calculate the leading element c0
(7) is the same as in the case analyzed in Chapter 3.2 - formula
(18).

Total algebraic operations will be different for larger block
dimensions n of the input block matrix, and will depend on the
number of 1- and 4-element submatrices, lying on the main di-
agonal of the input block matrix. Algebraic computation effort
associated with the leading element c0 (7) is shown in Table 9.

In general, the relationship between the block dimension n
of the block matrix and the number of algebraic operations,
needed to calculate the leading element c0, using the partition-
ing into elementary matrices following the 1-2-1-2 order, is as
follows:

loI = n+24d +2(n−d −1) (23)

for d < n∧n = 2,3, . . . . where d - numbers of 4-element sub-
matrices on input block matrix diagonal. The calculation ef-
fort necessary to be performed in order to determine the nega-
tive feedback matrices di (8), also in this case will depend on
the block dimension of the input matrix and the number of 1-
and 4-element matrices located on its main diagonal. The cal-

Table 10
Number of algebraic operations necessary to calculate the negative feedback

matrix di.

Block dimension n 2 3 4 5
Inversion of 4-elementary submatrices a−1

j 15 16 31 32

Multiplication of triple matrices −c0bia−1
i 8 10 18 20

Sum of algebraic operations loII 23 26 49 52

Table 11
Relationship between dimensions - numbers of elements of positive feedback

matrices eid j and dimensions of input matrices.

Block dimension n 2 3 4 5
Inversion of 4-elementary submatrices a−1

j 15 16 31 32

Multiplication of triple matrices −c0bia−1
i 8 10 18 20

Sum of algebraic operations loII 23 26 49 52

culated numbers of algebraic operations needed to obtain the
negative feedback matrices di (8), are shown in Table 10.

The relationship between the dimension of the block matrix
(partitioned into blocks in the following 1-2-1-2 order) and the
number of algebraic operations needed to calculate the nega-
tive feedback matrices di (8), is as follows:

loII = 23d +3(n−d −1) (24)

for d < n∧n = 2,3, . . . . where d - numbers of 4-element sub-
matrices on the input block matrix diagonal. The number of
algebraic operations required to determine the positive feed-
back matrices eid j (10) depend on the block dimension n of
the input block matrix and the numbers of 1- and 4-element
submatrices lying on the main diagonal. As a result, we ob-
tain three types of calculated matrices, namely: 1-element,
2-element (rectangular), 4-element (square and symmetrical)
matrices. Analyzing the relationship (10) and the block matrix
form shown in Figure 4, it can be concluded that in the calcu-
lation of the 1-element matrices only 1-element matrices take
part, while in the calculation of the 2-element matrices two
kind of elementary matrices: 1-element and 4-element subma-
trices are involved. In the calculation of the 4-element matrices
two 4-element submatrices, one 1-element and two 2-element
submatrices are involved. The relationships between the di-
mensions of the matrices creating the positive feedback matri-
ces eid j (10), and a number of its internal elements generated
are shown in Table 11.

The number of algebraic operations, with a different block
dimension n of block matrix (resulting from the partitioning in
following 1-2-1-2 order), are shown in Figure 5.

The sum of all 2-element matrices (in rows and columns,
occurring above the main diagonal of inverted block matrix)
under increasing block dimension n of the input block ma-
trix (partitioning into elementary matrices in the 1-2-1-2 or-
der), increases accordingly with sequence described by the
so-called third diagonal of Lozanic triangle [15]. Successive
numbers which represents block dimension n (of input block
matrix) correspond a number, representing the sum of all 2-
element positive feedback matrices eid j (according to the func-
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for d < n ^ n = 2, 3, …;  where d – numbers of 4-element sub-
matrices on the input block matrix diagonal.

The number of algebraic operations required to determine 
the positive feedback matrices ei dj (10) depend on the block 
dimension n of the input block matrix and the numbers of 1- and 
4-element submatrices lying on the main diagonal. As a result, 
we obtain three types of calculated matrices, namely: 1-element, 
2-element (rectangular), 4-element (square and symmetrical) 
matrices. Analyzing the relationship (10) and the block matrix 
form shown in Fig. 4, it can be concluded that in the calculation 
of the 1-element matrices only 1-element matrices take part, 
while in the calculation of the 2-element matrices two kind 
of elementary matrices: 1-element and 4-element submatrices 
are involved. In the calculation of the 4-element matrices two 
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matrices are involved. The relationships between the dimen-
sions of the matrices creating the positive feedback matrices 
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shown in Table 11.

Table 11 
Relationship between dimensions – numbers of elements of positive 

feedback matrices eidj and dimensions of input matrices

Block dimension n 2 3 4 5

Inversion of 4-elementary submatrices aj
–1 15 16 31 32

Multiplication of triple matrices ¡c0biai
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The number of algebraic operations, with a different block 
dimension n of block matrix (resulting from the partitioning in 
following 1‒2–1‒2 order), are shown in Fig. 5.

The sum of all 2-element matrices (in rows and columns, 
occurring above the main diagonal of inverted block matrix) 

under increasing block dimension n of the input block matrix 
(partitioning into elementary matrices in the 1‒2–1‒2 order), 
increases accordingly with sequence described by the so-called 
third diagonal of Lozanic triangle [15]. Successive numbers 
which represents block dimension n (of input block matrix) 
correspond a number, representing the sum of all 2-element 
positive feedback matrices eidj (according to the function f2(n)) 
are shown in Table 12.

Table 12 
Number of algebraic operations necessary to calculate the positive 

feedback matrix eidj

Block dimension n 3 4 5 6

Fig. 5, case 1 (1-element) ai
–1bi

Tc0bjaj
–1 0 0 6 6

Fig. 5, case 2 or 3 (2-element) ai
–1bi

Tc0bjaj
–1 27 54 108 162

Fig. 5, case 4 (4-element) ai
–1bi
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–1 0 51 51 153

Sum of algebraic operations loIII 27 105 165 321

The sum of all 2-element matrices (in rows and columns, 
occurring above the main diagonal of inverted block matrix) 
under increasing block dimension n of the input block matrix 
(partitioning into elementary matrices in the 1‒2–1‒2 order), 
increases accordingly with sequence described by the so-called 
third diagonal of Lozanic triangle [15]. Successive numbers 
which represents block dimension n (of input block matrix) 
correspond to a number representing the sum of all 2-element 
positive feedback matrices eidj (according to the function f2(n)) 
are shown in Table 13.

Table 13 
Number of 2-element positive feedback matrices eidj

n 3 4 5 6 7 8 9 10 11 12 13 …

f2(n) 1 2 4 6 9 12 16 20 25 30 36 …

The sum of all 4-element submatrices (lying above the main 
diagonal) due to a increase of the block dimension n of the input 
block matrix (partitioning in 1-2-1-2 order), increases following 
a numerical sequence described by repeated triangular numbers 
[12-14]. Successive numbers which represents block dimension 
n corresponds a number, representing the sum of all 4-element 
positive feedback matrices ei dj , according to function f4(n) 
shown in Table 14. 

Table 14 
Number of 4-element positive feedback matrices eidj

n 3 4 5 6 7 8 9 10 11 12 13 …

f4(n) 0 1 1 3 3 6 6 10 10 15 15 …

The sum of all 1-element matrices due to increase of the 
block dimension n of the input block matrix (partitioning in 

Fig. 5. Relationship between dimensions and number of elements of 
positive feedback matrices eidj and dimensions of input matrices



860 Bull.  Pol.  Ac.:  Tech.  64(4)  2016

T. Trawiński, A. Kochan, P. Kielan, and D. Kurzyk

1‒2–1‒2 order), increases accordingly with a numerical se-
quence described by repeated triangular numbers [12‒14]. 
Successive numbers representing the block dimension n corre-
sponds a number, representing the sum of all 1-element positive 
feedback matrices eidj, according to function f1(n) are shown 
in Table 15.

Table 15 
Number of 1-element positive feedback matrices eidj

n 3 4 5 6 7 8 9 10 11 12 13 …

f4(n) 0 0 1 1 3 3 6 6 10 10 15 …

The overall relationship between the block dimension n of 
the input block matrix (partitioning in 1‒2–1‒2 order) and the 
number of algebraic operations needed to calculate the positive 
feedback matrices eidj (10), is as follows:
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tion f2(n)) are shown in Table 12.
The sum of all 2-element matrices (in rows and columns,

occurring above the main diagonal of inverted block matrix)
under increasing block dimension n of the input block ma-
trix (partitioning into elementary matrices in the 1-2-1-2 or-
der), increases accordingly with sequence described by the
so-called third diagonal of Lozanic triangle [15]. Successive
numbers which represents block dimension n (of input block
matrix) correspond to a number representing the sum of all 2-
element positive feedback matrices eid j (according to the func-
tion f2(n)) are shown in Table 13.

The sum of all 4-element submatrices (lying above the main
diagonal) due to a increase of the block dimension n of the in-
put block matrix (partitioning in 1-2-1-2 order), increases fol-
lowing a numerical sequence described by repeated triangular
numbers [12-14]. Successive numbers which represents block
dimension n corresponds a number, representing the sum of all
4-element positive feedback matrices eid j, according to func-
tion f4(n) shown in Table 14.

The sum of all 1-element matrices due to increase of the
block dimension n of the input block matrix (partitioning in 1-
2-1-2 order), increases accordingly with a numerical sequence
described by repeated triangular numbers [12-14]. Succes-

Table 15
Number of 1-element positive feedback matrices eid j .

n 3 4 5 6 7 8 9 10 11 12 13 . . .
f1(n) 0 0 1 1 3 3 6 6 10 10 15 . . .

Table 16
Number of algebraic operations necessary to calculate the self inertia

matrices ci.

Block dimension n 2 3 4 5 6 7
4-element matrices 53 53 106 106 159 159
1-element matrices - 8 8 16 16 24

Sum of algebraic operations loIV 53 61 114 122 175 183

sive numbers representing the block dimension n corresponds
a number, representing the sum of all 1-element positive feed-
back matrices eid j, according to function f1(n) are shown in
Table 15.

The overall relationship between the block dimension n of
the input block matrix (partitioning in 1-2-1-2 order) and the
number of algebraic operations needed to calculate the positive
feedback matrices eid j (10), is as follows:

loIII = 51 f4(n)+27 f2(n)+6 f1(n) (25)

for n = 3,4, . . . .
Calculated number of algebraic operations for different

block dimensions n of input block matrix (partitioning in 1-2-
1-2 order), required to obtain the self inertia matrices ci (11),
are shown in Table 16.

The overall relationship between the block dimension n of
the input block matrix (partitioned in 1-2-1-2 order) and the
number of algebraic operations needed to calculate self inertia
matrices ci (11), is as follows:

loIV =

{
53 n

2 +8( n
2 −1) for n = 2,4,6,8,. . .

53 n−1
2 +8 n−1

2 for n = 1,3,5,7,. . .
(26)

The sum of algebraic operations needed to calculate the in-
verse input block matrix (partitioned in 1-2-1-2 order) may be
given by the following expression:

lo =




102 for n = 2
53 n

2 +8( n
2 −1)+ loIII + loII + loI for n = 2,6. . .

53 n−1
2 +8 n−1

2 + loIII + loII + loI for n = 1,3. . .
(27)

Relationships showing the number of algebraic operations
needed to be done to calculate the elementary matrices of in-
verted input block matrix (according to the growth of block di-
mension) can be represented graphically in Figure 6. It should
be considered that the input block matrix is partitioned into el-
ementary matrices with dimensions consistent with the result
of 1-2-1-2 partition order.

4. The number of algebraic operations and com-
putation times

Numerical experiment was carried out in two stages. The
Gauss method is well known and described in the literature,
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Relationships showing the number of algebraic operations
needed to be done to calculate the elementary matrices of in-
verted input block matrix (according to the growth of block di-
mension) can be represented graphically in Figure 6. It should
be considered that the input block matrix is partitioned into el-
ementary matrices with dimensions consistent with the result
of 1-2-1-2 partition order.
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putation times

Numerical experiment was carried out in two stages. The
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The sum of algebraic operations needed to calculate the 
inverse input block matrix (partitioned in 1‒2–1‒2 order) may 
be given by the following expression:
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Fig.5, case 2 or 3 (2-element) a−1
i bT

i c0b ja−1
j 27 54 108 162

Fig.5, case 4 (4-element) a−1
i bT

i c0b ja−1
j 0 51 51 153

Sum of algebraic operations loIII 27 105 165 321

Table 13
Number of 2-element positive feedback matrices eid j .

n 3 4 5 6 7 8 9 10 11 12 13 . . .
f2(n) 1 2 4 6 9 12 16 20 25 30 36 . . .

Table 14
Number of 4-element positive feedback matrices eid j .

n 3 4 5 6 7 8 9 10 11 12 13 . . .
f4(n) 0 1 1 3 3 6 6 10 10 15 15 . . .

tion f2(n)) are shown in Table 12.
The sum of all 2-element matrices (in rows and columns,

occurring above the main diagonal of inverted block matrix)
under increasing block dimension n of the input block ma-
trix (partitioning into elementary matrices in the 1-2-1-2 or-
der), increases accordingly with sequence described by the
so-called third diagonal of Lozanic triangle [15]. Successive
numbers which represents block dimension n (of input block
matrix) correspond to a number representing the sum of all 2-
element positive feedback matrices eid j (according to the func-
tion f2(n)) are shown in Table 13.

The sum of all 4-element submatrices (lying above the main
diagonal) due to a increase of the block dimension n of the in-
put block matrix (partitioning in 1-2-1-2 order), increases fol-
lowing a numerical sequence described by repeated triangular
numbers [12-14]. Successive numbers which represents block
dimension n corresponds a number, representing the sum of all
4-element positive feedback matrices eid j, according to func-
tion f4(n) shown in Table 14.

The sum of all 1-element matrices due to increase of the
block dimension n of the input block matrix (partitioning in 1-
2-1-2 order), increases accordingly with a numerical sequence
described by repeated triangular numbers [12-14]. Succes-

Table 15
Number of 1-element positive feedback matrices eid j .

n 3 4 5 6 7 8 9 10 11 12 13 . . .
f1(n) 0 0 1 1 3 3 6 6 10 10 15 . . .

Table 16
Number of algebraic operations necessary to calculate the self inertia

matrices ci.

Block dimension n 2 3 4 5 6 7
4-element matrices 53 53 106 106 159 159
1-element matrices - 8 8 16 16 24

Sum of algebraic operations loIV 53 61 114 122 175 183

sive numbers representing the block dimension n corresponds
a number, representing the sum of all 1-element positive feed-
back matrices eid j, according to function f1(n) are shown in
Table 15.

The overall relationship between the block dimension n of
the input block matrix (partitioning in 1-2-1-2 order) and the
number of algebraic operations needed to calculate the positive
feedback matrices eid j (10), is as follows:

loIII = 51 f4(n)+27 f2(n)+6 f1(n) (25)

for n = 3,4, . . . .
Calculated number of algebraic operations for different

block dimensions n of input block matrix (partitioning in 1-2-
1-2 order), required to obtain the self inertia matrices ci (11),
are shown in Table 16.

The overall relationship between the block dimension n of
the input block matrix (partitioned in 1-2-1-2 order) and the
number of algebraic operations needed to calculate self inertia
matrices ci (11), is as follows:

loIV =

{
53 n

2 +8( n
2 −1) for n = 2,4,6,8,. . .

53 n−1
2 +8 n−1

2 for n = 1,3,5,7,. . .
(26)

The sum of algebraic operations needed to calculate the in-
verse input block matrix (partitioned in 1-2-1-2 order) may be
given by the following expression:

lo =




102 for n = 2
53 n

2 +8( n
2 −1)+ loIII + loII + loI for n = 2,6. . .

53 n−1
2 +8 n−1

2 + loIII + loII + loI for n = 1,3. . .
(27)

Relationships showing the number of algebraic operations
needed to be done to calculate the elementary matrices of in-
verted input block matrix (according to the growth of block di-
mension) can be represented graphically in Figure 6. It should
be considered that the input block matrix is partitioned into el-
ementary matrices with dimensions consistent with the result
of 1-2-1-2 partition order.

4. The number of algebraic operations and com-
putation times

Numerical experiment was carried out in two stages. The
Gauss method is well known and described in the literature,
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Relationships showing the number of algebraic operations 
needed to be done to calculate the elementary matrices of in-

verted input block matrix (according to the growth of block 
dimension) can be represented graphically in Fig. 6. It should 
be considered that the input block matrix is partitioned into 
elementary matrices with dimensions consistent with the result 
of 1‒2–1‒2 partition order.

4.	 The number of algebraic operations  
and computation times

Numerical experiment was carried out in two stages. The Gauss 
method is well known and described in the literature, it is also 
known for its computational complexity, but there is no in-
formation on the method "inv" (Matlab function) in terms of 
the computational complexity. So it was decided to present the 
effectiveness of shown algorithms in the light of the compu-
tational complexity compared to Gasuss method, and in the 
light of time consumed during the direct calculation using "inv" 
method and block inversion method.

The number of algebraic operations that must be per-
formed in order to calculate the inverse of an input block ma-
trix using its partitioning into blocks, has been compared with 
the number of algebraic operations performed using standard 
Gauss methods. The number of algebraic operations performed 
by Gauss method, can be represented as a formula [16]:
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Fig. 6. The number of algebraic operations required to calculate the
inverted matrix: a) - for an input block matrix with block dimension
n= 2 the number of algebraic operations - 102, b) - for block matrices
with n = 3 the number of operations - 143, c) - for matrices with n = 4
the number of operations - 322, d) - for matrices n = 5 the number of
operations - 396

it is also known for its computational complexity, but there
is no information on the method "inv" (Matlab function) in
terms of the computational complexity. So it was decided to
present the effectiveness of shown algorithms in the light of the
computational complexity compared to Gasuss method, and in
the light of time consumed during the direct calculation using
"inv" method and block inversion method.

The number of algebraic operations that must be performed
in order to calculate the inverse of an input block matrix using
its partitioning into blocks, has been compared with the num-
ber of algebraic operations performed using standard Gauss
methods. The number of algebraic operations performed by
Gauss method, can be represented as a formula [16]:

lo =
2
3

n3 +
3
2

n2 − 7
6

n (28)

where n - block dimension of the input matrix.
Results of algebraic calculation, showing the comparison

between the methods employing the Gauss methods and of the
inversion using block matrices, are shown in Figures 7-9.

In order to compare the calculation times of matrix inversion
performed by block inversion methods and the methods used
in commercial software, the implementation of above men-
tioned algorithm using MATLAB software has been done. In
the programming environment the comparison with the "inv"
a standard function of the matrix inversion in MATLAB (un-
der the following conditions: forced CPU affinity for MAT-
LAB with single core processor) has been made. The priority
of performed tasks had been set to high. Calculations were
made on computer equipped with CPU AMD Phenom (tm) II
X4 850 3.30 GHz frequency on operating system Windows 7
Professional 64-bit. Calculations has been performed in two
loops: an internal loop performing 10,000 times the calcula-
tion of matrix inversion and calculating the average time value
of single pass through the loop; and outer loop repeated 1000
times and calculating the total computation time. This way of

Table 17
Inversion of the matrices of block dimension n = 3.

Block inversion method - "inv"
time of internal loop [s] 0.0416(37) 0.0791(86)

time of outer loop [s] 41.637 79.186

Table 18
Inversion of the matrices of block dimension n = 5.

Block inversion method - "inv"
time of internal loop [s] 0.0663(32) 0.131(38)

time of outer loop [s] 66.332 131.38

Table 19
Inversion of the matrices of block dimension n = 7.

Block inversion method - "inv"
time of internal loop [s] 0.0932(57) 0.1648(0)

time of outer loop [s] 93.257 164.8

Table 20
Inversion of the matrices of block dimension n = 10.

Block inversion method - "inv"
time of internal loop [s] 0.1621(6) 0.2317(4)

time of outer loop [s] 162.16 231.74

carrying out numerical experiment, using a double loop, alows
to determine if indeed calculations are carried out in a single
stream of processor unit. Linear relationship between the num-
ber of passes the internal loop and the outer loop and the times
of performed calculation indicates properly conducted numeri-
cal experiment. In other words, in the course of the experiment
no events inside the operating system does not interfere with
the calculations. For the block inversion we have used matrix
partitioned in the 1-1-1-1 order.

The calculation results of the matrix inversion times of the
procedures are summarized in Tables 17-20, linear increase
of calculation time indicates properly conducted experiments.
The results presented times of calculations testify in favor of
the method of the block matrix inversion compared to the
method of "inv" used in Matlab. Computation times are shorter
than 1.5 to 2 times.

5. Summary
Number of elementary operations required to determine the
inverse matrix using the described algorithm depend on the
structure of the matrix and block size of block matrix. The
described algorithm is most effective for matrices with large
block size and divided into blocks of small size. This is partic-
ularly noticeable if you compare arrays block divided in the
order 1-1-1-1 and 1-2-2-2 in order, the computational com-
plexity of the array divided into blocks of one-piece require
a minimum number of algebraic operations during the matrix
inversion. Computational complexity in the above two cases,
which is obvious, is of the order O(n2). The computational
complexity of matrix inversion divided in order 1-2-1-2 may at
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where n – block dimension of the input matrix.

Fig. 6. The number of algebraic operations required to calculate the 
inverted matrix: a) – for an input block matrix with block dimension 
n = 2 the number of algebraic operations – 102, b) – for block matrices 
with n = 3 the number of operations – 143, c) – for matrices with n = 4 
the number of operations – 322, d) – for matrices n = 5 the number 

of operations – 396

a) b) c)

d)
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Results of algebraic calculation, showing the comparison 
between the methods employing the Gauss methods and of the 
inversion using block matrices, are shown in Figs. 7‒9.

In order to compare the calculation times of matrix inver-
sion performed by block inversion methods and the methods 
used in commercial software, the implementation of above 
mentioned algorithm using MATLAB software has been done. 
In the programming environment the comparison with the "inv" 
a standard function of the matrix inversion in MATLAB (under 
the following conditions: forced CPU affinity for MATLAB 
with single core processor) has been made. The priority of 
performed tasks had been set to high.Calculations were made 
on computer equipped with CPU AMD Phenom (tm) II X4 850 
3.30 GHz frequency on operating system Windows 7 Profes-
sional 64-bit. Calculations has been performed in two loops: an 
internal loop performing 10,000 times the calculation of ma-
trix inversion and calculating the average time value of single 
pass through the loop; and outer loop repeated 1000 times and 
calculating the total computation time. This way of carrying 
out numerical experiment, using a double loop, alows to deter-
mine if indeed calculations are carried out in a single stream 
of processor unit. Linear relationship between the number of 
passes the internal loop and the outer loop and the times of 
performed calculation indicates properly conducted numerical 
experiment. In other words, in the course of the experiment 
no events inside the operating system does not interfere with 
the calculations. For the block inversion we have used matrix 
partitioned in the 1‒1–1‒1 order.

The calculation results of the matrix inversion times of the 
procedures are summarized in Tables 17‒20, linear increase 
of calculation time indicates properly conducted experiments.

Fig. 7. Number of algebraic operations performed during matrix 
inversion versus block dimensions: squares – numbers of algebraic 
operations for Gauss method, circles – numbers of algebraic operations 

for inversion using block matrices (partitioned in 1‒1–1‒1 order)

Fig. 9. Number of algebraic operations performed during matrix 
inversion versus block dimensions: squares – numbers of algebraic 
operations for Gauss method, circles – numbers of algebraic operations 

for inversion using block matrices (partitioned in 1‒2–1‒2 order)

Fig. 8. Number of algebraic operations performed during matrix 
inversion versus block dimensions: squares – numbers of algebraic 
operations for Gauss method, circles – numbers of algebraic operations 

for inversion using block matrices (partitioned in 1‒2–2‒2 order)



862 Bull.  Pol.  Ac.:  Tech.  64(4)  2016

T. Trawiński, A. Kochan, P. Kielan, and D. Kurzyk

The results presented times of calculations testify in favor 
of the method of the block matrix inversion compared to the 
method of “inv” used in Matlab. Computation times are shorter 
than 1.5 to 2 times.

5.	 Summary

Number of elementary operations required to determine the 
inverse matrix using the described algorithm depend on the 
structure of the matrix and block size of block matrix. The 
described algorithm is most effective for matrices with large 
block size and divided into blocks of small size. This is par-
ticularly noticeable if you compare arrays block divided in the 
order 1‒1–1‒1 and 1‒2–2‒2 in order, the computational com-
plexity of the array divided into blocks of one-piece require 
a minimum number of algebraic operations during the matrix 
inversion. Computational complexity in the above two cases, 
which is obvious, is of the order O(n2). The computational 
complexity of matrix inversion divided in order 1‒2–1‒2 may 
at first glance appear to be O(n), but if we make a thorough 
analysis of the increase in the complexity of the component 
ei dj , see Table 12, it turns out that it grows as well O(n2). 

However, in the case of matrix inversion divided in order 
1‒2–1‒2 computational complexity is between 1‒1‒1‒1 and 
1‒2‒2‒2. In all of the analyzed cases, the elements causing 
the most demanding calculations are the positive feedback 
matrices eidj, here the complexity is of the order of O(n2). As 
shown by formulas (15), (20) and in Table 12, the computa-
tional complexity O(n) are linked with the other elements of 
the matrix like ci, c0 and di. Interesting results were obtained 
by juxtaposing formulas describing the computational com-
plexity of the block matrix inversion and the computational 
complexity resulting from the Gauss method. Inverting block 
matrix of small size block near n = 5 (and in this case smaller 
then 4, 5 or 7) have a slightly more complex computation than 
the Gauss method. However, the block matrix size greater 
than three (in the case of partitioning in the order 1‒1–1‒1) 
for presented method is more effective, as well in the case 
of the matrix partitioned in order 1‒2–2‒2, this method is 
more effective for matrices with greater block dimension then 
n = 7. The calculation of the matrix inverse, divided in the 
order 1‒2–1‒2 become more efficient than the Gauss method 
on the block dimension greater then n = 5. The exact values of 
computational complexity of the algorithm for block matrices 
of the presented structures are given by formulae (17, 22) and 
(27). Presented method is also characterized by shorter cal-
culation times compared to the standard method of inverting 
used in MATLAB/Simulink, computation times are shorter 
than 1.5 to 2 times.
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