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Abstract. It has been demonstrated in previous studies that local elastomer coatings covering the end coils of helical springs can efficiently 
reduce the amplitudes of circum-resonant vibrations in such springs. The analysis of the influence that elastic coatings have on the frequencies 
and modes of natural transverse vibrations of springs is presented in this paper. The concept of the equivalent beam of the Timoshenko type is 
utilized in calculations of the frequencies and modes of transverse vibrations. The model developed allows users to determine the frequencies 
and modes of symmetric as well as antisymmetric vibrations of axially loaded springs with elastic coatings of arbitrary length. A comparison 
of the results obtained using FEM analysis, in which the model represented the actual spring geometry, with the results obtained by means of 
the presented model indicates its high accuracy.
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model of a spatially curved rod, the model of an equivalent rod 
or beam, and the model in which a continuous system, such as 
a spring, is substituted by a discrete-periodic system consisting 
of concentrated masses joined by a mass-less stiffness, jointly 
representing one spring coil or its fragment.

Equations of motion are written for an elementary fragment 
of a spring wire in the first model. Such a formulation of the 
problem [12, 13] allows arbitrary modes and frequencies of 
spring vibrations to be determined, however, solving it by an-
alytical methods is very difficult and therefore such a solution 
is not suitable in practical applications. These difficulties mean 
that in several studies concerning the analysis of spring vibra-
tions treated as a spatially curved rod, the authors use numerical 
methods. New finite elements, capable of modeling spring coils 
or their fragments were proposed in [14]. They are suitable 
for application in static problems as well as when looking for 
natural frequencies of helical springs. Mottershead provided, 
in the above-mentioned paper, experimental results later uti-
lized by other authors. A similar approach to the problems of 
helical springs was presented in [15–17]. Pearson expanded – in 
[18] – equations provided by Wittrick [13], taking into account 
the influence of a static axial force. For determining natural 
vibrations, he applied the transfer matrix method. The same 
method was used in [19], concerning the analysis of parameters 
influencing natural frequencies of helical springs (utilizing the 
Cayley-Hamilton theorem), and in [20]. In this last paper, the 
authors compared their results with the results obtained on the 
basis of the Haringx model [21]. They pointed out that, in the 
case of helical springs with geometrical parameters, typical 
of springs used in machine buildings, the conformity between 
the results obtained by them and the results obtained using the 
Haringx model is high. In the numerical example quoted by 
them, for which the first 16 natural frequencies were deter-
mined, the maximum difference between their results and the 
ones from the Haringx model did not exceed 1.3%. In the case 

1.	 Introduction

Helical springs, widely used in machine building [1–4], are often 
exposed to operations under the influence of dynamic forces of 
a wide range of frequencies. Work under circum-resonant con-
ditions, due to the negligible damping properties of steel, can 
cause spring vibrations of high amplitudes. Dynamic stresses 
formed then constitute threats for the work safety of springs. In 
order to limit the amplitudes of vibrations, methods based on 
increasing the energy scattering of spring vibrations are applied. 
Such a scattering effect can be obtained by means of external 
friction between a spring wire and cooperating elements [5] or 
by applying an elastic washer – made of a highly damping ma-
terial – under a spring [6]. The drawback of the first solution 
is that it wipes off an external layer of a spring wire, which 
can negatively influence its fatigue strength, since the state of 
the spring wire surface is essential for its fatigue strength [7]. 
Meanwhile, the second solution increases the spring flexibility 
to its elastic stability, which was analyzed in [8]. Another solu-
tion increasing the scattering of spring vibration energy is to 
cover the spring wire with coatings made of a highly damping 
material, presented e.g. [9]. This method’s efficiency in relation 
to longitudinal vibrations was investigated in [10]. It was shown 
in [11] that, with the application of the same amount of damping 
materials, better damping efficiency of longitudinal vibrations 
can be obtained by applying local elastomeric coatings. The 
influence of these coatings on the frequencies and modes of 
longitudinal vibrations was investigated in the same paper.

The analysis of problems related to the dynamic character-
istics of springs can be carried out on three model types: the 
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of springs of large helix angles and a high slenderness ratio 
(not generally applied in practice due to their tendency to lose 
elastic stability), the authors proved that in order to achieve 
high conformity between natural frequencies obtained by them 
and the results from the standard Haringx model, it is enough 
to multiply the last ones by the cosine of the helix angle. In the 
numerical example quoted by them, in which they determined 
the first 10 natural frequencies of the spring – with the helix 
angle at 23° – after multiplication of the natural frequencies 
obtained from the Haringx model by the cosine of this angle, 
the differences between the results obtained from both models 
did not exceed 1%. The authors noticed that more accurate de-
pendencies, describing equivalent bending and shear stiffness, 
and applied in relation to the Haringx concept, would be able 
to explain this effect. Such dependencies, taking into account, 
among others, the non-zero and variable (together with an axial 
load–) values of the helix angle, in relation to the elastic sta-
bility problem of helical springs, were derived in [22]. A new 
numerical method of determining natural frequencies of helical 
springs by means of the stiffness method was proposed in [23]. 
The dynamic stiffness method involving the Wittrick-Williams 
algorithm [24] was applied for the accurate solution of the nat-
ural frequencies problem, in [25]. The authors of that study 
treated the spring wire as the Euler-Bernoulli beam. The same 
method was applied in [26] for the determination of natural 
frequencies of a spring whose wire was treated as the Timos-
henko beam, taking into account the effects related to wire 
shearing and rotational inertia of its cross-sections. The authors 
compared the results thus obtained with the results given by 
Pearson in [18] and with the FEM results. The pseudospectral 
method was applied in [27] for natural frequencies determina-
tion. The authors of [28] presented models allowing the natural 
frequencies of springs made of wires of non-circular cross-sec-
tions to be determined, taking into consideration the influence 
of the warping effect (related to twisting of the spring wire) on 
natural frequency values. They showed that this influence was 
larger in the case of non-cylindrical springs than in the case of 
cylindrical ones.

A model treating the spring as an equivalent rod was given 
by Timoshenko [29]. Using this model, Timoshenko analyzed 
the problem of elastic stability of helical springs, assuming that 
the helix angle was constant and equaled zero, regardless of the 
axial load. Haringx used this model in his study concerning 
the elastic stability of helical springs [30] as well as in later 
works concerning vibrations of helical springs [21]. The results 
presented in this last study, concerning springs of various slen-
derness ratios and various relative deflections, link the zeroing 
of the first natural transverse frequency with the moment of 
losing static elastic stability (cf. [21], p. 80). This model was 
used and developed by Wittrick [13], who took into account 
couplings between longitudinal and torsional spring vibrations. 
He directed his attention to different wave propagation veloci-
ties along the helix line related to the wire twisting and bending. 
The authors of [31] expanded the studies of Haringx to higher 
frequencies of transverse vibrations of helix springs, relating 
their values to the value of the first longitudinal natural fre-
quency and verifying the results obtained experimentally. They 

mentioned in this study that for certain values of relative spring 
shortening caused by its axial loading, equalizing of various 
mode frequencies of natural vibrations can occur. The authors 
of [32] analyzed the compatibility of results for frequencies of 
natural longitudinal and torsional vibrations obtained from the 
Haringx model, the Wittrick model and the equivalent discrete 
model with experimental results. They pointed out that, in rela-
tion to longitudinal forms of vibrations, a divergence between 
the results obtained from the Wittrick and the Haringx models 
becomes significant only for the mode of vibrations in which the 
wave length is smaller than approximately four coils. They also 
proved that for longitudinal and torsional vibrations the equiv-
alent discrete-periodic model provides highly accurate results 
even for the form of the wave length that equals two coils. This 
model is used in engineering practice in the automotive industry 
for modeling dynamics of valve systems in internal combustion 
engines, and presented e.g. [33]. The Haringx model was also 
used in study [34] to determine the natural frequencies of trans-
verse vibrations of a simply supported spring. It was pointed 
out, in [35], that the above-mentioned equivalent rod concept, 
proposed in [22] for the analysis of elastic stability of helical 
springs, can also be applied in the analysis of natural transverse 
vibrations of helical springs. Its application, after modification 
resulting from different boundary conditions, provides results 
nearer to FEM results and the results obtained by other authors 
[18, 26] (treating the spring as a spatially curved rod) than the 
standard concept of Timoshenko. A method that allows users to 
determine – before starting computations – the form of the solu-
tion for the wave equation of motion, depending on the spring 
slenderness ratio and its relative static deflection, was presented 
in this paper. This form, as it is known, depends on whether 
the investigated natural frequency of transverse vibrations is 
smaller or larger than the cut-off frequency. This problem was 
analyzed in relation to stocky beams in [36, 37].

The aim of this paper is to develop a model enabling users 
to determine the influence of the parameters of elastic coatings 
of arbitrary length, made of materials such as rubber or macro-
molecular polymers, on the frequencies and modes of natural 
transverse vibrations in springs loaded by a static axial force.

2.	 Motion equations

As it was shown in study [10] with reference to longitudinal 
vibrations of helical spring with damping coating covering 
the spring wire on its whole length, the influence of damping, 
which can be possible to obtain in practice by means of using 
coating materials such as rubber or typical macromolecular 
polymers, on natural frequencies is negligible. On the other 
hand, internal material damping – modeled on equivalent in-
ternal linear damping – has no influence on the shapes of nat-
ural modes of transversal vibrations. Thus, analysis of natural 
transversal vibrations of a helical spring with coatings made 
of elastic materials exhibiting damping properties can be con-
ducted using a model of undamped vibrations without making 
significant mistakes. Further considerations are conducted 
under this assumption.
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The first form of transverse vibrations of a helical spring 
with local coatings loaded by force P is presented in Fig. 1. 
A fragment of the equivalent beam, of the Timoshenko type, 
has been superimposed onto the spring image.

For each of the three segments of the equivalent beam of 
lengths L1, L2, L3, the following equations of motion can be 
written [21]:
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The angles i are angles caused only by bending, 
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The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
spring coils is either total or half, can be presented in the 
following form: 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 

  00 sin/1arcsin  ii P=  i = 1,2 (5) 
where: 0 – helix angle of an unloaded spring (P = 0), 
while compression stiffness 0i (i = 1,2) is expressed as the 
dependencies: 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 

	 i = 1, 2, 3� (1a)

	

3 

 

2. Motion equations 

As it was shown in study [10] with reference to 
longitudinal vibrations of helical spring with damping 
coating covering the spring wire on its whole length, the 
influence of damping, which can be practically possible to 
obtain by using such coating materials like rubber or 
typical macromolecular polymers on natural frequencies 
is negligible. On the other hand, internal material damping 
– modeled by an equivalent internal linear damping has no 
influence on shapes of natural modes of transversal 
vibrations. Thus, analysis of natural transversal vibrations 
of helical spring with coatings made of elastic materials 
exhibiting damping properties can be conducted using 
model of undamped vibrations without making significant 
mistakes. Further considerations are conducted under this 
assumption.  

The first form of transverse vibrations of a helical 
spring with local coatings loaded by a force P is presented 
in Fig.1. On the spring image a fragment of the equivalent 
beam, of the Timoshenko type, has been placed.  

Fig. 1. Model of the equivalent rod for the analysis of transverse 
vibrations of a helical spring with local damping coatings. 

For each of the three segments of the equivalent beam 
of lengths L1, L2, L3 the following equations of motion can 
be written [21]: 

 0=Q+
N

i
i

i




 i = 1,2,3   (1a) 

x
Q

x
N=

t
ym ii

i
i

i 









2

2

  i = 1,2,3  (1b) 

x
M

+Q+N=
t

rm i
iii

i
gi 






2

2
2     i = 1,2,3 (1c)  

The angles i are angles caused only by bending, 
while the angles i are angles resulting only from shearing 
appropriate segments of the equivalent beam, which are 
described by the following equations:  

x
y=+ i

ii 


  
x

y
= i

i 


   

x
y

= i
i 


 

 

i

ii M
=

x 


 
i

i
i

Q
=


  i = 1,2,3  (2) 

The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
spring coils is either total or half, can be presented in the 
following form: 

 
   

   

2
2

2
2

1
2

1
1

cos2
sin2

cos1
11
11

2

sin2
























s

ss

scccss

csccss

ccss

+
JE

=

JEJE
JEJE

JEJE
=

 (3) 

 
   

   

 2
22
2

2

1
2

2
1

1

sin1
sin2

sin1
11
111

/sin2
























s

ss

scccss

csccss

ccss

+R
JE=

JEJE
JEJE

RJEJE=

   (4) 

where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 

  00 sin/1arcsin  ii P=  i = 1,2 (5) 
where: 0 – helix angle of an unloaded spring (P = 0), 
while compression stiffness 0i (i = 1,2) is expressed as the 
dependencies: 

 
   

   

 0
22
0

02

0
2

2
0

01

cos1
sin

cos1
11
111

/sin
























s

ss

scccss

csccss

ccss

+R
JE=

JEJE
JEJE

RJEJE=

  (6) 

The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 

	 i = 1, 2, 3� (1b)

	

3 

 

2. Motion equations 

As it was shown in study [10] with reference to 
longitudinal vibrations of helical spring with damping 
coating covering the spring wire on its whole length, the 
influence of damping, which can be practically possible to 
obtain by using such coating materials like rubber or 
typical macromolecular polymers on natural frequencies 
is negligible. On the other hand, internal material damping 
– modeled by an equivalent internal linear damping has no 
influence on shapes of natural modes of transversal 
vibrations. Thus, analysis of natural transversal vibrations 
of helical spring with coatings made of elastic materials 
exhibiting damping properties can be conducted using 
model of undamped vibrations without making significant 
mistakes. Further considerations are conducted under this 
assumption.  

The first form of transverse vibrations of a helical 
spring with local coatings loaded by a force P is presented 
in Fig.1. On the spring image a fragment of the equivalent 
beam, of the Timoshenko type, has been placed.  

Fig. 1. Model of the equivalent rod for the analysis of transverse 
vibrations of a helical spring with local damping coatings. 

For each of the three segments of the equivalent beam 
of lengths L1, L2, L3 the following equations of motion can 
be written [21]: 

 0=Q+
N

i
i

i




 i = 1,2,3   (1a) 

x
Q

x
N=

t
ym ii

i
i

i 









2

2

  i = 1,2,3  (1b) 

x
M

+Q+N=
t

rm i
iii

i
gi 






2

2
2     i = 1,2,3 (1c)  

The angles i are angles caused only by bending, 
while the angles i are angles resulting only from shearing 
appropriate segments of the equivalent beam, which are 
described by the following equations:  

x
y=+ i

ii 


  
x

y
= i

i 


   

x
y

= i
i 


 

 

i

ii M
=

x 


 
i

i
i

Q
=


  i = 1,2,3  (2) 

The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
spring coils is either total or half, can be presented in the 
following form: 

 
   

   

2
2

2
2

1
2

1
1

cos2
sin2

cos1
11
11

2

sin2
























s

ss

scccss

csccss

ccss

+
JE

=

JEJE
JEJE

JEJE
=

 (3) 

 
   

   

 2
22
2

2

1
2

2
1

1

sin1
sin2

sin1
11
111

/sin2
























s

ss

scccss

csccss

ccss

+R
JE=

JEJE
JEJE

RJEJE=

   (4) 

where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 
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where: 0 – helix angle of an unloaded spring (P = 0), 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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The ψi angles are angles caused only by bending, while 
the φi angles are angles resulting only from shearing relevant 
segments of the equivalent beam, which are described by the 
following equations:
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2. Motion equations 

As it was shown in study [10] with reference to 
longitudinal vibrations of helical spring with damping 
coating covering the spring wire on its whole length, the 
influence of damping, which can be practically possible to 
obtain by using such coating materials like rubber or 
typical macromolecular polymers on natural frequencies 
is negligible. On the other hand, internal material damping 
– modeled by an equivalent internal linear damping has no 
influence on shapes of natural modes of transversal 
vibrations. Thus, analysis of natural transversal vibrations 
of helical spring with coatings made of elastic materials 
exhibiting damping properties can be conducted using 
model of undamped vibrations without making significant 
mistakes. Further considerations are conducted under this 
assumption.  

The first form of transverse vibrations of a helical 
spring with local coatings loaded by a force P is presented 
in Fig.1. On the spring image a fragment of the equivalent 
beam, of the Timoshenko type, has been placed.  

Fig. 1. Model of the equivalent rod for the analysis of transverse 
vibrations of a helical spring with local damping coatings. 

For each of the three segments of the equivalent beam 
of lengths L1, L2, L3 the following equations of motion can 
be written [21]: 
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The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
spring coils is either total or half, can be presented in the 
following form: 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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while the angles i are angles resulting only from shearing 
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The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
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dependencies, with the assumption that the number of 
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following form: 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 
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while compression stiffness 0i (i = 1,2) is expressed as the 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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The angles i are angles caused only by bending, 
while the angles i are angles resulting only from shearing 
appropriate segments of the equivalent beam, which are 
described by the following equations:  
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The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
spring coils is either total or half, can be presented in the 
following form: 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 

  00 sin/1arcsin  ii P=  i = 1,2 (5) 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
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following form: 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
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coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 

i = 1, 2, 3.
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Coefficients αi and βi constitute the actual equivalent stiff-
ness of the selected beam segment for bending and shearing, 
respectively. These coefficients can be expressed by means of 
the equations proposed in [22] and applied and modified in 
paper [35]. These dependencies, with the assumption that the 
number of spring coils is either total or half, can be presented 
in the following form:
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2. Motion equations 

As it was shown in study [10] with reference to 
longitudinal vibrations of helical spring with damping 
coating covering the spring wire on its whole length, the 
influence of damping, which can be practically possible to 
obtain by using such coating materials like rubber or 
typical macromolecular polymers on natural frequencies 
is negligible. On the other hand, internal material damping 
– modeled by an equivalent internal linear damping has no 
influence on shapes of natural modes of transversal 
vibrations. Thus, analysis of natural transversal vibrations 
of helical spring with coatings made of elastic materials 
exhibiting damping properties can be conducted using 
model of undamped vibrations without making significant 
mistakes. Further considerations are conducted under this 
assumption.  

The first form of transverse vibrations of a helical 
spring with local coatings loaded by a force P is presented 
in Fig.1. On the spring image a fragment of the equivalent 
beam, of the Timoshenko type, has been placed.  

Fig. 1. Model of the equivalent rod for the analysis of transverse 
vibrations of a helical spring with local damping coatings. 

For each of the three segments of the equivalent beam 
of lengths L1, L2, L3 the following equations of motion can 
be written [21]: 
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The coefficients i and i  are the actual equivalent 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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The coefficients i and i  are the actual equivalent 
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shearing, respectively. These coefficients can be 
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spring coils is either total or half, can be presented in the 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 

  00 sin/1arcsin  ii P=  i = 1,2 (5) 
where: 0 – helix angle of an unloaded spring (P = 0), 
while compression stiffness 0i (i = 1,2) is expressed as the 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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The angles i are angles caused only by bending, 
while the angles i are angles resulting only from shearing 
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The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
spring coils is either total or half, can be presented in the 
following form: 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 

  00 sin/1arcsin  ii P=  i = 1,2 (5) 
where: 0 – helix angle of an unloaded spring (P = 0), 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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The coefficients i and i  are the actual equivalent 
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shearing, respectively. These coefficients can be 
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dependencies, with the assumption that the number of 
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following form: 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
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radius (it was assumed that changes in its value during 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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2. Motion equations 

As it was shown in study [10] with reference to 
longitudinal vibrations of helical spring with damping 
coating covering the spring wire on its whole length, the 
influence of damping, which can be practically possible to 
obtain by using such coating materials like rubber or 
typical macromolecular polymers on natural frequencies 
is negligible. On the other hand, internal material damping 
– modeled by an equivalent internal linear damping has no 
influence on shapes of natural modes of transversal 
vibrations. Thus, analysis of natural transversal vibrations 
of helical spring with coatings made of elastic materials 
exhibiting damping properties can be conducted using 
model of undamped vibrations without making significant 
mistakes. Further considerations are conducted under this 
assumption.  

The first form of transverse vibrations of a helical 
spring with local coatings loaded by a force P is presented 
in Fig.1. On the spring image a fragment of the equivalent 
beam, of the Timoshenko type, has been placed.  

Fig. 1. Model of the equivalent rod for the analysis of transverse 
vibrations of a helical spring with local damping coatings. 

For each of the three segments of the equivalent beam 
of lengths L1, L2, L3 the following equations of motion can 
be written [21]: 
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The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
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coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
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dependencies, with the assumption that the number of 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 

  00 sin/1arcsin  ii P=  i = 1,2 (5) 
where: 0 – helix angle of an unloaded spring (P = 0), 
while compression stiffness 0i (i = 1,2) is expressed as the 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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2. Motion equations 

As it was shown in study [10] with reference to 
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coating covering the spring wire on its whole length, the 
influence of damping, which can be practically possible to 
obtain by using such coating materials like rubber or 
typical macromolecular polymers on natural frequencies 
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The angles i are angles caused only by bending, 
while the angles i are angles resulting only from shearing 
appropriate segments of the equivalent beam, which are 
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The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
spring coils is either total or half, can be presented in the 
following form: 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 

  00 sin/1arcsin  ii P=  i = 1,2 (5) 
where: 0 – helix angle of an unloaded spring (P = 0), 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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The coefficients i and i  are the actual equivalent 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
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radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
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segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 

3 

 

2. Motion equations 

As it was shown in study [10] with reference to 
longitudinal vibrations of helical spring with damping 
coating covering the spring wire on its whole length, the 
influence of damping, which can be practically possible to 
obtain by using such coating materials like rubber or 
typical macromolecular polymers on natural frequencies 
is negligible. On the other hand, internal material damping 
– modeled by an equivalent internal linear damping has no 
influence on shapes of natural modes of transversal 
vibrations. Thus, analysis of natural transversal vibrations 
of helical spring with coatings made of elastic materials 
exhibiting damping properties can be conducted using 
model of undamped vibrations without making significant 
mistakes. Further considerations are conducted under this 
assumption.  

The first form of transverse vibrations of a helical 
spring with local coatings loaded by a force P is presented 
in Fig.1. On the spring image a fragment of the equivalent 
beam, of the Timoshenko type, has been placed.  

Fig. 1. Model of the equivalent rod for the analysis of transverse 
vibrations of a helical spring with local damping coatings. 

For each of the three segments of the equivalent beam 
of lengths L1, L2, L3 the following equations of motion can 
be written [21]: 

 0=Q+N
i

i

i




 i = 1,2,3   (1a) 

x
Q

x
N=

t
ym ii

i
i

i 









2

2

  i = 1,2,3  (1b) 

x
M

+Q+N=
t

rm i
iii

i
gi 






2

2
2     i = 1,2,3 (1c)  

The angles i are angles caused only by bending, 
while the angles i are angles resulting only from shearing 
appropriate segments of the equivalent beam, which are 
described by the following equations:  

x
y=+ i

ii 


  
x

y
= i

i 


   

x
y

= i
i 


 

 

i

ii M
=

x 


 
i

i
i

Q
=


  i = 1,2,3  (2) 

The coefficients i and i  are the actual equivalent 
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shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
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where:  Es,c – the Young modulus of steel (index “s”) and 
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coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
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– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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while the angles i are angles resulting only from shearing 
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The coefficients i and i  are the actual equivalent 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 

  00 sin/1arcsin  ii P=  i = 1,2 (5) 
where: 0 – helix angle of an unloaded spring (P = 0), 
while compression stiffness 0i (i = 1,2) is expressed as the 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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The angles i are angles caused only by bending, 
while the angles i are angles resulting only from shearing 
appropriate segments of the equivalent beam, which are 
described by the following equations:  
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The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
spring coils is either total or half, can be presented in the 
following form: 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 

  00 sin/1arcsin  ii P=  i = 1,2 (5) 
where: 0 – helix angle of an unloaded spring (P = 0), 
while compression stiffness 0i (i = 1,2) is expressed as the 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
spring coils is either total or half, can be presented in the 
following form: 

 
   

   

2
2

2
2

1
2

1
1

cos2
sin2

cos1
11
11

2

sin2
























s

ss

scccss

csccss

ccss

+
JE

=

JEJE
JEJE

JEJE
=

 (3) 

 
   

   

 2
22
2

2

1
2

2
1

1

sin1
sin2

sin1
11
111

/sin2
























s

ss

scccss

csccss

ccss

+R
JE=

JEJE
JEJE

RJEJE=

   (4) 

where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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2. Motion equations 

As it was shown in study [10] with reference to 
longitudinal vibrations of helical spring with damping 
coating covering the spring wire on its whole length, the 
influence of damping, which can be practically possible to 
obtain by using such coating materials like rubber or 
typical macromolecular polymers on natural frequencies 
is negligible. On the other hand, internal material damping 
– modeled by an equivalent internal linear damping has no 
influence on shapes of natural modes of transversal 
vibrations. Thus, analysis of natural transversal vibrations 
of helical spring with coatings made of elastic materials 
exhibiting damping properties can be conducted using 
model of undamped vibrations without making significant 
mistakes. Further considerations are conducted under this 
assumption.  

The first form of transverse vibrations of a helical 
spring with local coatings loaded by a force P is presented 
in Fig.1. On the spring image a fragment of the equivalent 
beam, of the Timoshenko type, has been placed.  

Fig. 1. Model of the equivalent rod for the analysis of transverse 
vibrations of a helical spring with local damping coatings. 

For each of the three segments of the equivalent beam 
of lengths L1, L2, L3 the following equations of motion can 
be written [21]: 
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The angles i are angles caused only by bending, 
while the angles i are angles resulting only from shearing 
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The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
spring coils is either total or half, can be presented in the 
following form: 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 

  00 sin/1arcsin  ii P=  i = 1,2 (5) 
where: 0 – helix angle of an unloaded spring (P = 0), 
while compression stiffness 0i (i = 1,2) is expressed as the 
dependencies: 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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mistakes. Further considerations are conducted under this 
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beam, of the Timoshenko type, has been placed.  
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For each of the three segments of the equivalent beam 
of lengths L1, L2, L3 the following equations of motion can 
be written [21]: 
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The angles i are angles caused only by bending, 
while the angles i are angles resulting only from shearing 
appropriate segments of the equivalent beam, which are 
described by the following equations:  
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The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
spring coils is either total or half, can be presented in the 
following form: 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 

  00 sin/1arcsin  ii P=  i = 1,2 (5) 
where: 0 – helix angle of an unloaded spring (P = 0), 
while compression stiffness 0i (i = 1,2) is expressed as the 
dependencies: 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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where: Es, c – Young’s modulus of steel (index “s”) and of 
coating material (index “c”), Js, c – moment of inertia of 
the cross-section of the spring wire (index “s”) and coating 

(index “c”), respectively, νs, c – Poisson’s ratio (indexes as in 
Young’s modulus), R – nominal spring radius (it was assumed 
that changes in its value during compression are negligible), δ1, 
δ2 – actual helix angles of the spring segment with coating and 
the spring segment without coating, respectively. These angles, 
due to the static force P’s operation, can differ on account of 
different stiffness of each segment and will be expressed as:
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compression stiffness γ0i(i = 1, 2) is expressed as the following 
dependencies:
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2. Motion equations 

As it was shown in study [10] with reference to 
longitudinal vibrations of helical spring with damping 
coating covering the spring wire on its whole length, the 
influence of damping, which can be practically possible to 
obtain by using such coating materials like rubber or 
typical macromolecular polymers on natural frequencies 
is negligible. On the other hand, internal material damping 
– modeled by an equivalent internal linear damping has no 
influence on shapes of natural modes of transversal 
vibrations. Thus, analysis of natural transversal vibrations 
of helical spring with coatings made of elastic materials 
exhibiting damping properties can be conducted using 
model of undamped vibrations without making significant 
mistakes. Further considerations are conducted under this 
assumption.  

The first form of transverse vibrations of a helical 
spring with local coatings loaded by a force P is presented 
in Fig.1. On the spring image a fragment of the equivalent 
beam, of the Timoshenko type, has been placed.  

Fig. 1. Model of the equivalent rod for the analysis of transverse 
vibrations of a helical spring with local damping coatings. 

For each of the three segments of the equivalent beam 
of lengths L1, L2, L3 the following equations of motion can 
be written [21]: 
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The angles i are angles caused only by bending, 
while the angles i are angles resulting only from shearing 
appropriate segments of the equivalent beam, which are 
described by the following equations:  
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The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
spring coils is either total or half, can be presented in the 
following form: 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 

  00 sin/1arcsin  ii P=  i = 1,2 (5) 
where: 0 – helix angle of an unloaded spring (P = 0), 
while compression stiffness 0i (i = 1,2) is expressed as the 
dependencies: 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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coating covering the spring wire on its whole length, the 
influence of damping, which can be practically possible to 
obtain by using such coating materials like rubber or 
typical macromolecular polymers on natural frequencies 
is negligible. On the other hand, internal material damping 
– modeled by an equivalent internal linear damping has no 
influence on shapes of natural modes of transversal 
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of helical spring with coatings made of elastic materials 
exhibiting damping properties can be conducted using 
model of undamped vibrations without making significant 
mistakes. Further considerations are conducted under this 
assumption.  

The first form of transverse vibrations of a helical 
spring with local coatings loaded by a force P is presented 
in Fig.1. On the spring image a fragment of the equivalent 
beam, of the Timoshenko type, has been placed.  

Fig. 1. Model of the equivalent rod for the analysis of transverse 
vibrations of a helical spring with local damping coatings. 

For each of the three segments of the equivalent beam 
of lengths L1, L2, L3 the following equations of motion can 
be written [21]: 
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The angles i are angles caused only by bending, 
while the angles i are angles resulting only from shearing 
appropriate segments of the equivalent beam, which are 
described by the following equations:  
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The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
spring coils is either total or half, can be presented in the 
following form: 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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2. Motion equations 

As it was shown in study [10] with reference to 
longitudinal vibrations of helical spring with damping 
coating covering the spring wire on its whole length, the 
influence of damping, which can be practically possible to 
obtain by using such coating materials like rubber or 
typical macromolecular polymers on natural frequencies 
is negligible. On the other hand, internal material damping 
– modeled by an equivalent internal linear damping has no 
influence on shapes of natural modes of transversal 
vibrations. Thus, analysis of natural transversal vibrations 
of helical spring with coatings made of elastic materials 
exhibiting damping properties can be conducted using 
model of undamped vibrations without making significant 
mistakes. Further considerations are conducted under this 
assumption.  

The first form of transverse vibrations of a helical 
spring with local coatings loaded by a force P is presented 
in Fig.1. On the spring image a fragment of the equivalent 
beam, of the Timoshenko type, has been placed.  

Fig. 1. Model of the equivalent rod for the analysis of transverse 
vibrations of a helical spring with local damping coatings. 

For each of the three segments of the equivalent beam 
of lengths L1, L2, L3 the following equations of motion can 
be written [21]: 
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The coefficients i and i  are the actual equivalent 
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shearing, respectively. These coefficients can be 
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coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
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due to the static force P operation, can differ on account 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
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– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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The coefficients i and i  are the actual equivalent 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 

  00 sin/1arcsin  ii P=  i = 1,2 (5) 
where: 0 – helix angle of an unloaded spring (P = 0), 
while compression stiffness 0i (i = 1,2) is expressed as the 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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The angles i are angles caused only by bending, 
while the angles i are angles resulting only from shearing 
appropriate segments of the equivalent beam, which are 
described by the following equations:  
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The coefficients i and i  are the actual equivalent 
stiffness of the selected beam segment for bending and 
shearing, respectively. These coefficients can be 
expressed by means of the equations proposed in [22] and 
applied and modified in the paper [35]. These 
dependencies, with the assumption that the number of 
spring coils is either total or half, can be presented in the 
following form: 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 

  00 sin/1arcsin  ii P=  i = 1,2 (5) 
where: 0 – helix angle of an unloaded spring (P = 0), 
while compression stiffness 0i (i = 1,2) is expressed as the 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 
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where:  Es,c – the Young modulus of steel (index “s”) and 
of coating material (index “c”), Js,c – moment of inertia of 
the cross-section of the spring wire (index “s”) and 
coating (index “c”) - respectively, s,c – Poisson’s ratio 
(indexes as in the Young modulus), R – nominal spring 
radius (it was assumed that changes in its value during 
compression are negligible), 1, 2 – actual helix angles of 
the spring segment with the coating and the spring 
segment without the coating, respectively. These angles, 
due to the static force P operation, can differ on account 
of the different stiffness of each segment and will be 
expressed as: 

  00 sin/1arcsin  ii P=  i = 1,2 (5) 
where: 0 – helix angle of an unloaded spring (P = 0), 
while compression stiffness 0i (i = 1,2) is expressed as the 
dependencies: 
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The values yi and yi occurring in (2) are 
displacements resulting only from bending and only from 
shearing, respectively. By mi (i = 1,2,3) the actual linear 
density of the selected spring segment is denoted. 
Considering inertia properties of equivalent beam it is 
assumed that the equivalent beam has a shape of thin-
walled cylinder with mean diameter equal to nominal 
spring diameter, as it satisfactory approximates spring 
mass distribution in plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section  rg 
– is assumed as constant at its whole length and 
independent of its axial loading by the force P 

� (6)

Values yψi and yφi occurring in (2) are displacements re-
sulting only from bending and only from shearing, respectively. 
The actual linear density of the selected spring segment is de-
noted by mi(i = 1, 2, 3). Considering inertia properties of the 
equivalent beam, it is assumed that the equivalent beam has 
the shape of a thin-walled cylinder with mean diameter equal 
to nominal spring diameter, as it satisfactorily approximates 
spring mass distribution in a plane normal to its axis. The mass 
radius of gyration of the equivalent beam cross-section rg is 
assumed as constant at its whole length and independent of its 
axial loading by force P

	 rg = R 2/2.� (7)

Radius R in (7) equals half of the nominal spring diameter. 
It was assumed in the calculations that its value was constant 
and independent of axial force P. The values of normal force Ni 

Fig. 1. Model of an equivalent rod to be used for the analysis of 
transverse vibrations of a helical spring with local damping coatings
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for individual spring segments are: Ni = Pcosψi. After transfor-
mations made in the same way as in [21] and later in [31] and 
[35], we can obtain three equations (i = 1, 2, 3) of transverse 
vibrations of spring segments:

	

4 

2/2R=rg    (7) 
The radius R in (7) equals half of the nominal spring 

diameter. It was assumed in calculations that its value was 
constant and independent of the axial force P. The values 
of the normal forces Ni for individual spring segments are: 
Ni = Pcosi.  After transformations made in the same way 
as in [21] and later in [31] and [35], we can obtain three 
equations (i = 1,2,3) of transverse vibrations of spring 
segments: 
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Calculations for three spring segments would require 
the solving of twelve equations. However, assuming the 
same parameters of coatings on both spring ends – which 
is fully justified from the point of view of the maximal 
damping efficiency [11] - the same results can be obtained 
when considering only half of the spring (for x belonging 
to the interval: from 0 to LA/2)  and imposing the proper 
boundary conditions, which leads to the necessity of 
solving only eight equations. Since transverse vibrations 
of clamped-clamped springs can have either a 
symmetrical form (forms of odd numbers: 1,3,5,…) or an 
anti-symmetrical form (forms of even numbers: 2,4,6,…), 
it should be remembered that there is a change – 
depending on the number of the desired frequency of 
vibrations – in boundary conditions at the right end of the 
considered spring model (for x = LA/2). These conditions 
will be discussed later in this paper. Thus, further 
considerations are limited to the analysis of the left half of 
the spring presented in Fig.1 (i = 1,2). 

Using Bernoulli-Fourier method, the functions i(x,t), 
i(x,t) and yi(x,t)   can be written  in a form: 

tx=tx, ii  sin)()(  tx=tx, ii  sin)()(  
 txY=tx,y ii sin)()(  i = 1,2  (9) 

where i(x) are amplitudes of angles resulting only from 
bending, i(x) are amplitudes of angles resulting only 
from shearing, Yi(x) are total displacement amplitudes and 
sint is a desired time function. 

Substituting the proper derivatives of (9) to (8) and 
rearranging, we obtain the equations: 

 0=cb+ iiIIiiIVi
    (10) 

where [35]: 
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The form of the solution of (10) depends on whether the 
frequency value  is higher or lower than the values of 

cut-off frequencies ib. Investigations performed in [35] 
shown, that even for relatively stocky springs, the first 
natural frequencies of transverse vibrations are usually 
lower than the cut-off frequency. Therefore this case, the 
one most often met in practice, will be considered in the 
paper. 
Thus, we are looking for solutions of (10) in the form: 
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Using (1), (2), (9) and (12) after proper 
transformations, we obtain total displacement amplitude 
equations for the first and the second element of the 
spring: 
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In a similar way, substituting the proper derivatives of 
(9)1 into (1) and (2) and using  (9)2 and (12), we obtain - 
after rearrangements -  equations of amplitudes of the 
angle of deflection resulting from shearing only: 
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Equations (12), (14) and (16) allow frequencies and 
modes of transverse vibrations of the spring with local 
coatings to be determined, for the given boundary 
conditions.  
Utilizing (9)1,2, (12) and (16) in (2)2,3, we obtain - after 
rearrangements and integrations - equations describing the 
displacement amplitudes resulting only from bending Yi 
and the displacement amplitudes resulting only from 
shearing Yi  the equivalent beam: 
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Equations (18) and (19) allow the influence of shearing 
the equivalent beam (modeling the spring) on the total 
spring displacement amplitude to be determined. The 

.

� (8)

Calculations for three spring segments would require the 
solving of twelve equations. However, assuming the same pa-
rameters of coatings on both spring ends – which is fully jus-
tified from the point of view of maximum damping efficiency 
[11] – the same results can be obtained when considering only 
half of the spring (for x belonging to the interval of 0 to LA/2) 
and imposing proper boundary conditions, which leads to the 
necessity of solving only eight equations. Since transverse vi-
brations of clamped-clamped springs can have either a symmet-
rical form (forms of odd numbers: 1, 3, 5, …) or an anti-sym-
metrical form (forms of even numbers: 2, 4, 6, …), it should be 
remembered that there is a change – depending on the number 
of the desired frequency of vibrations – in boundary conditions 
at the right end of the spring model considered (for x = LA/2). 
These conditions will be discussed later in this paper. Thus, 
further considerations are limited to the analysis of the left half 
of the spring presented in Fig. 1 (i = 1, 2).

Using the Bernoulli-Fourier method, functions ψi(x, t), φi(x, 
t) and yi(x, t) can be written in the following form:

	
ψi(x, t) = Ψi(x)sinωt   φi(x, t) = Φi(x)sinωt
yi(x, t) = Yi(x)sinωt   i = 1, 2

� (9)

where Ψi(x) are amplitudes of angles resulting only from 
bending, Φi(x) are amplitudes of angles resulting only from 
shearing, Yi(x) are total displacement amplitudes and sinωt is 
a desired time function.

By substituting the relevant derivatives of (9) to (8) and 
rearranging, we obtain the following equation:

	 Ψ
i IV + biΨi II ¡ ciΨi = 0� (10)

where [35]:

	

4 

2/2R=rg    (7) 
The radius R in (7) equals half of the nominal spring 

diameter. It was assumed in calculations that its value was 
constant and independent of the axial force P. The values 
of the normal forces Ni for individual spring segments are: 
Ni = Pcosi.  After transformations made in the same way 
as in [21] and later in [31] and [35], we can obtain three 
equations (i = 1,2,3) of transverse vibrations of spring 
segments: 
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Calculations for three spring segments would require 
the solving of twelve equations. However, assuming the 
same parameters of coatings on both spring ends – which 
is fully justified from the point of view of the maximal 
damping efficiency [11] - the same results can be obtained 
when considering only half of the spring (for x belonging 
to the interval: from 0 to LA/2)  and imposing the proper 
boundary conditions, which leads to the necessity of 
solving only eight equations. Since transverse vibrations 
of clamped-clamped springs can have either a 
symmetrical form (forms of odd numbers: 1,3,5,…) or an 
anti-symmetrical form (forms of even numbers: 2,4,6,…), 
it should be remembered that there is a change – 
depending on the number of the desired frequency of 
vibrations – in boundary conditions at the right end of the 
considered spring model (for x = LA/2). These conditions 
will be discussed later in this paper. Thus, further 
considerations are limited to the analysis of the left half of 
the spring presented in Fig.1 (i = 1,2). 

Using Bernoulli-Fourier method, the functions i(x,t), 
i(x,t) and yi(x,t)   can be written  in a form: 

tx=tx, ii  sin)()(  tx=tx, ii  sin)()(  
 txY=tx,y ii sin)()(  i = 1,2  (9) 

where i(x) are amplitudes of angles resulting only from 
bending, i(x) are amplitudes of angles resulting only 
from shearing, Yi(x) are total displacement amplitudes and 
sint is a desired time function. 

Substituting the proper derivatives of (9) to (8) and 
rearranging, we obtain the equations: 

 0=cb+ iiIIiiIVi
    (10) 

where [35]: 
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The form of the solution of (10) depends on whether the 
frequency value  is higher or lower than the values of 

cut-off frequencies ib. Investigations performed in [35] 
shown, that even for relatively stocky springs, the first 
natural frequencies of transverse vibrations are usually 
lower than the cut-off frequency. Therefore this case, the 
one most often met in practice, will be considered in the 
paper. 
Thus, we are looking for solutions of (10) in the form: 
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Using (1), (2), (9) and (12) after proper 
transformations, we obtain total displacement amplitude 
equations for the first and the second element of the 
spring: 
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In a similar way, substituting the proper derivatives of 
(9)1 into (1) and (2) and using  (9)2 and (12), we obtain - 
after rearrangements -  equations of amplitudes of the 
angle of deflection resulting from shearing only: 
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Equations (12), (14) and (16) allow frequencies and 
modes of transverse vibrations of the spring with local 
coatings to be determined, for the given boundary 
conditions.  
Utilizing (9)1,2, (12) and (16) in (2)2,3, we obtain - after 
rearrangements and integrations - equations describing the 
displacement amplitudes resulting only from bending Yi 
and the displacement amplitudes resulting only from 
shearing Yi  the equivalent beam: 

 
  iiiiii

iiiiii

C+kxkC+xkC
kxkCxkC=xY








11211

22324

/coshsinh
/sincos)(

  i = 1,2 (18) 

iiiiiii

iiiiiii

C+kxkC+xkCA
kxkCxkCA=xY








112113

223244

/)coshsinh(
/)sincos()(

 i = 1,2 (19) 

Equations (18) and (19) allow the influence of shearing 
the equivalent beam (modeling the spring) on the total 
spring displacement amplitude to be determined. The 

    i = 1, 2.� (11)

The form of the solution of (10) depends on whether the fre-
quency value ω is higher or lower than the values of cut-off 

frequencies ωib. Investigations performed in [35] have shown 
that even for relatively stocky springs, the first natural frequen-
cies of transverse vibrations are usually lower than the cut-off 
frequency. Therefore this case, i.e. the one most often met in 
practice, will be considered in the paper.

Thus, we are looking for solutions of (10) in the following 
form:

Ψi(x) = C1icosh(k1i x) + C2isinh(k1i x) +
Ψi(x) + C3icos(k2i x) + C4isin(k2i x)

  i = 1, 2� (12)

where:

	

4 

Pcosi. After transformations made in the same way as in 
[21] and later in [31] and [35], we can obtain three 
equations (i = 1,2,3) of transverse vibrations of spring 
segments: 
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Calculations for three spring segments would require 
the solving of twelve equations. However, assuming the 
same parameters of coatings on both spring ends – which 
is fully justified from the point of view of maximum 
damping efficiency [11] – the same results can be 
obtained when considering only half of the spring (for x 
belonging to the interval of 0 to LA/2) and imposing 
proper boundary conditions, which leads to the necessity 
of solving only eight equations. Since transverse 
vibrations of clamped-clamped springs can have either a 
symmetrical form (forms of odd numbers: 1,3,5,…) or an 
anti-symmetrical form (forms of even numbers: 2,4,6,…), 
it should be remembered that there is a change – 
depending on the number of the desired frequency of 
vibrations – in boundary conditions at the right end of the 
spring model considered (for x = LA/2). These conditions 
will be discussed later in this paper. Thus, further 
considerations are limited to the analysis of the left half of 
the spring presented in Fig. 1 (i = 1,2). 

Using the Bernoulli-Fourier method, functions i(x,t), 
i(x,t) and yi(x,t)  can be written in the following form: 

tx=tx, ii  sin)()(  tx=tx, ii  sin)()(  

 txY=tx,y ii sin)()(  i = 1,2  (9) 
where i(x) are amplitudes of angles resulting only from 
bending, i(x) are amplitudes of angles resulting only 
from shearing, Yi(x) are total displacement amplitudes and 
sint is a desired time function. 

By substituting the relevant derivatives of (9) to (8) 
and rearranging, we obtain the following equation: 

 0=cb+ iiIIiiIVi
    (10) 

where [35]: 
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The form of the solution of (10) depends on whether the 
frequency value  is higher or lower than the values of 
cut-off frequencies ib. Investigations performed in [35] 
have shown that even for relatively stocky springs, the 
first natural frequencies of transverse vibrations are 
usually lower than the cut-off frequency. Therefore this 
case, i.e. the one most often met in practice, will be 
considered in the paper. 

Thus, we are looking for solutions of (10) in the following 
form: 
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Using (1), (2), (9) and (12) after proper 
transformations, we obtain total displacement amplitude 
equations for the first and second element of the spring: 
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In a similar way, substituting the relevant derivatives 
of (9)1 with (1) and (2) and using (9)2 and (12), we obtain 
– after rearrangements – equations of amplitudes of the 
angle of deflection resulting from shearing only: 
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Equations (12), (14) and (16) allow frequencies and 
modes of transverse vibrations of the spring with local 
coatings to be determined, for the given boundary 
conditions.  
Utilizing (9)1,2, (12) and (16) in (2)2,3, we obtain – after 
rearrangements and integrations – equations describing 
the displacement amplitudes resulting only from bending 
(Yi) and the displacement amplitudes resulting only from 
shearing (Yi) the equivalent beam: 
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Equations (18) and (19) allow the influence of shearing 
the equivalent beam (modeling the spring) on the total 
spring displacement amplitude to be determined. 
Integration constants Ci and Ci will be determined 
below, separately for symmetrical and anti-symmetrical 
forms of vibrations. 

4 

Pcosi. After transformations made in the same way as in 
[21] and later in [31] and [35], we can obtain three 
equations (i = 1,2,3) of transverse vibrations of spring 
segments: 
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Calculations for three spring segments would require 
the solving of twelve equations. However, assuming the 
same parameters of coatings on both spring ends – which 
is fully justified from the point of view of maximum 
damping efficiency [11] – the same results can be 
obtained when considering only half of the spring (for x 
belonging to the interval of 0 to LA/2) and imposing 
proper boundary conditions, which leads to the necessity 
of solving only eight equations. Since transverse 
vibrations of clamped-clamped springs can have either a 
symmetrical form (forms of odd numbers: 1,3,5,…) or an 
anti-symmetrical form (forms of even numbers: 2,4,6,…), 
it should be remembered that there is a change – 
depending on the number of the desired frequency of 
vibrations – in boundary conditions at the right end of the 
spring model considered (for x = LA/2). These conditions 
will be discussed later in this paper. Thus, further 
considerations are limited to the analysis of the left half of 
the spring presented in Fig. 1 (i = 1,2). 

Using the Bernoulli-Fourier method, functions i(x,t), 
i(x,t) and yi(x,t)  can be written in the following form: 

tx=tx, ii  sin)()(  tx=tx, ii  sin)()(  

 txY=tx,y ii sin)()(  i = 1,2  (9) 
where i(x) are amplitudes of angles resulting only from 
bending, i(x) are amplitudes of angles resulting only 
from shearing, Yi(x) are total displacement amplitudes and 
sint is a desired time function. 

By substituting the relevant derivatives of (9) to (8) 
and rearranging, we obtain the following equation: 

 0=cb+ iiIIiiIVi
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where [35]: 
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The form of the solution of (10) depends on whether the 
frequency value  is higher or lower than the values of 
cut-off frequencies ib. Investigations performed in [35] 
have shown that even for relatively stocky springs, the 
first natural frequencies of transverse vibrations are 
usually lower than the cut-off frequency. Therefore this 
case, i.e. the one most often met in practice, will be 
considered in the paper. 

Thus, we are looking for solutions of (10) in the following 
form: 
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Using (1), (2), (9) and (12) after proper 
transformations, we obtain total displacement amplitude 
equations for the first and second element of the spring: 
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In a similar way, substituting the relevant derivatives 
of (9)1 with (1) and (2) and using (9)2 and (12), we obtain 
– after rearrangements – equations of amplitudes of the 
angle of deflection resulting from shearing only: 

)sincos(
)sinhcosh()(

24234

12113

xkC+xkCA
+xkC+xkCA=x

iiiii

iiiiii




i = 1,2 (16) 

where: 

P+
krm

=A
i

iigi
i 

 2
1

22

3  
P+

k+rm
=A

i

iigi
i 

 2
2

22

4

   
 (17) 

Equations (12), (14) and (16) allow frequencies and 
modes of transverse vibrations of the spring with local 
coatings to be determined, for the given boundary 
conditions.  
Utilizing (9)1,2, (12) and (16) in (2)2,3, we obtain – after 
rearrangements and integrations – equations describing 
the displacement amplitudes resulting only from bending 
(Yi) and the displacement amplitudes resulting only from 
shearing (Yi) the equivalent beam: 
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Equations (18) and (19) allow the influence of shearing 
the equivalent beam (modeling the spring) on the total 
spring displacement amplitude to be determined. 
Integration constants Ci and Ci will be determined 
below, separately for symmetrical and anti-symmetrical 
forms of vibrations. 
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Using (1), (2), (9) and (12) after proper transformations, we 
obtain total displacement amplitude equations for the first and 
second element of the spring:

Yi(x) = A1i(C1isinhk1i x + C2icoshk1i x) +

Yi(x) + A2i(C3isink2i x ¡ C4icosk2i x)
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In a similar way, substituting the relevant derivatives of (9)1 
with (1) and (2) and using (9)2 and (12), we obtain – after rear-
rangements – equations of amplitudes of the angle of deflection 
resulting from shearing only:

Φi(x) = A3i(C1icoshk1i x + C2isinhk1i x) +
Φi(x) + A4i(C3icosk2i x + C4isink2i x)

  i = 1, 2� (16)

where:

	

4 

Pcosi. After transformations made in the same way as in 
[21] and later in [31] and [35], we can obtain three 
equations (i = 1,2,3) of transverse vibrations of spring 
segments: 
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Calculations for three spring segments would require 
the solving of twelve equations. However, assuming the 
same parameters of coatings on both spring ends – which 
is fully justified from the point of view of maximum 
damping efficiency [11] – the same results can be 
obtained when considering only half of the spring (for x 
belonging to the interval of 0 to LA/2) and imposing 
proper boundary conditions, which leads to the necessity 
of solving only eight equations. Since transverse 
vibrations of clamped-clamped springs can have either a 
symmetrical form (forms of odd numbers: 1,3,5,…) or an 
anti-symmetrical form (forms of even numbers: 2,4,6,…), 
it should be remembered that there is a change – 
depending on the number of the desired frequency of 
vibrations – in boundary conditions at the right end of the 
spring model considered (for x = LA/2). These conditions 
will be discussed later in this paper. Thus, further 
considerations are limited to the analysis of the left half of 
the spring presented in Fig. 1 (i = 1,2). 

Using the Bernoulli-Fourier method, functions i(x,t), 
i(x,t) and yi(x,t)  can be written in the following form: 

tx=tx, ii  sin)()(  tx=tx, ii  sin)()(  

 txY=tx,y ii sin)()(  i = 1,2  (9) 
where i(x) are amplitudes of angles resulting only from 
bending, i(x) are amplitudes of angles resulting only 
from shearing, Yi(x) are total displacement amplitudes and 
sint is a desired time function. 

By substituting the relevant derivatives of (9) to (8) 
and rearranging, we obtain the following equation: 

 0=cb+ iiIIiiIVi
    (10) 

where [35]: 
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The form of the solution of (10) depends on whether the 
frequency value  is higher or lower than the values of 
cut-off frequencies ib. Investigations performed in [35] 
have shown that even for relatively stocky springs, the 
first natural frequencies of transverse vibrations are 
usually lower than the cut-off frequency. Therefore this 
case, i.e. the one most often met in practice, will be 
considered in the paper. 

Thus, we are looking for solutions of (10) in the following 
form: 
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Using (1), (2), (9) and (12) after proper 
transformations, we obtain total displacement amplitude 
equations for the first and second element of the spring: 
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In a similar way, substituting the relevant derivatives 
of (9)1 with (1) and (2) and using (9)2 and (12), we obtain 
– after rearrangements – equations of amplitudes of the 
angle of deflection resulting from shearing only: 

)sincos(
)sinhcosh()(

24234

12113

xkC+xkCA
+xkC+xkCA=x

iiiii

iiiiii




i = 1,2 (16) 

where: 

P+
krm

=A
i

iigi
i 

 2
1

22

3  
P+

k+rm
=A

i

iigi
i 

 2
2

22

4

   
 (17) 

Equations (12), (14) and (16) allow frequencies and 
modes of transverse vibrations of the spring with local 
coatings to be determined, for the given boundary 
conditions.  
Utilizing (9)1,2, (12) and (16) in (2)2,3, we obtain – after 
rearrangements and integrations – equations describing 
the displacement amplitudes resulting only from bending 
(Yi) and the displacement amplitudes resulting only from 
shearing (Yi) the equivalent beam: 
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Equations (18) and (19) allow the influence of shearing 
the equivalent beam (modeling the spring) on the total 
spring displacement amplitude to be determined. 
Integration constants Ci and Ci will be determined 
below, separately for symmetrical and anti-symmetrical 
forms of vibrations. 

.� (17)

Equations (12), (14) and (16) allow frequencies and modes 
of transverse vibrations of the spring with local coatings to be 
determined, for the given boundary conditions.

Utilizing (9)1, 2, (12) and (16) in (2)2, 3, we obtain – after 
rearrangements and integrations – equations describing the dis-
placement amplitudes resulting only from bending (Yψi) and the 



953Bull.  Pol.  Ac.:  Tech.  65(6)  2017

Natural transverse vibrations of helical springs in sections covered with elastic coatings

displacement amplitudes resulting only from shearing (YΦi) the 
equivalent beam:

YΨi(x) = (C4icosk2i x ¡ C3isink2i x)/k2i  ¡

¡ (C1isinhk1i x + C2icoshk1i x)/k1i + CΨi
i = 1, 2� (18)

YΦi(x) = A4i(C4icosk2i x ¡ C3isink2i x)/k2i  ¡

¡ A3i(C1isinhk1i x + C2icoshk1i x)/k1i + CΦi
i = 1, 2.� (19)

Equations (18) and (19) allow the influence of shearing the 
equivalent beam (modeling the spring) on the total spring dis-
placement amplitude to be determined. Integration constants 
CΨi and CΦi will be determined below,  separately for symmet-
rical and anti-symmetrical forms of vibrations.

3.	 Symmetrical forms of vibrations

Utilizing the conditions: YΨ1(0) = YΦ1(0) = 0 as well as 
YΨ1(L1) = YΨ2(L1) and YΨ2(L1) YΦ1(L1) = YΦ2(L1), we find in-
tegration constants CΨi and CΦi, occurring in (18) and (19):
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integration constants Ci and Ci, occurring in (18) and 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 
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Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 
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After introducing the above notations, the constants 
occurring in (12) are as follows:  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 
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8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 
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After introducing the above notations, the constants 
occurring in (12) are as follows:  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 
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8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 

hLk
LkLk

LkLk=B

22

122
122

121111
1

tan
sincos

coscosh



    

hLk
LkLk

Lk
A
A+Lk

=B

22

122
122

121
21

11
111

2

tan
sincos

sinsinh


 

h

h

Lk
LkLk

Lk
LkLk

=B

22

122
122

12

112
112

3

tan
sincos

tanh
sinhcosh




  

hLk
LkLk=B

12

112
1124 tanh

coshsinh   

hLk
Lk+Lk=B

22

122
1225 tan

cossin  

  2252121111117

225112121111116

coscosh
sinsinh

ABBLkLkA=B
ABBLkALkA=B




 (23) 

22531248 ABBAB=B   
After introducing the above notations, the constants 
occurring in (12) are as follows:  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 

11

1112111111

21

1213112141
121

)(cosh)(sinh

)(sin)(cos
)(

k
LkC+LkC

+
k

LkCLkC
LY=C

aa

aa
a






 

)coshsinh(

)sincos()(

1112111111
11

31

1213112141
21

41
121

LkC+LkC
k
A

+LkCLkC
k
A

LY=C

aa

aaa





 

5 

3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 
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8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 
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22531248 ABBAB=B   
After introducing the above notations, the constants 
occurring in (12) are as follows:  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 
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8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 
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After introducing the above notations, the constants 
occurring in (12) are as follows:  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1, 3, 5, …), the 
boundary conditions are as follows:

	
1. y1(0, t) = 0	 2. ψ1(0, t) = 0
3. ψ2(Lh, t) = 0	 4. φ2(Lh, t) = 0

� (21)

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following forms:

	

5. ψ1(L1, t) = ψ2 (L1, t)   6. y1 (L1, t) = y2(L1, t)

7. α1
∂ψ1(x, t)
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jx = L1

 = α2
∂ψ2(x, t)

∂x
jx = L1

8. β1φ1(L1, t) = β2φ2(L1, t).

� (22)

Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants occur-
ring in (12) were calculated. Constant C11 was assumed as the 
constant of a known value. On account of the complex form of 
the coefficients being calculated, the following notations were 
introduced for simplification purposes:
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3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
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8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 
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After introducing the above notations, the constants 
occurring in (12) are as follows:  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 
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8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 

hLk
LkLk

LkLk=B

22

122
122

121111
1

tan
sincos

coscosh



    

hLk
LkLk

Lk
A
A+Lk

=B

22

122
122

121
21

11
111

2

tan
sincos

sinsinh


 

h

h

Lk
LkLk

Lk
LkLk

=B

22

122
122

12

112
112

3

tan
sincos

tanh
sinhcosh




  

hLk
LkLk=B

12

112
1124 tanh

coshsinh   

hLk
Lk+Lk=B

22

122
1225 tan

cossin  

  2252121111117

225112121111116

coscosh
sinsinh

ABBLkLkA=B
ABBLkALkA=B




 (23) 

22531248 ABBAB=B   
After introducing the above notations, the constants 
occurring in (12) are as follows:  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
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(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
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Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
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After introducing the above notations, the constants 
occurring in (12) are as follows:  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 
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8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 
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After introducing the above notations, the constants 
occurring in (12) are as follows:  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 
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8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 
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After introducing the above notations, the constants 
occurring in (12) are as follows:  

idem=C11  

 

11

2253
8

7

3

2

8

12
74

12121
21

11
11111

2

1

2253
8

6

3

1

8

12
64

1212111111
2

1

21

coscosh

sinsinh

C

kBB
B
B

B
B

B
k

BB

+Lkk
A
A

+Lkk

kBB
B
B

B
B

+
B
k

BB

Lkk+Lkk

=C














































































 

1131 C=C   21
21

11
41 C

A
A=C   (24) 

 21
8

7
11

8

6
12 C

B
B+C

B
B=C

hLk
C=C

12

12
22 tanh

  

12321211132 CBCB+CB=C   
hLk

C=C
22

32
42 tan


 

Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 
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8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 

hLk
LkLk

LkLk=B

22

122
122

121111
1

tan
sincos

coscosh



    

hLk
LkLk

Lk
A
A+Lk

=B

22

122
122

121
21

11
111

2

tan
sincos

sinsinh


 

h

h

Lk
LkLk

Lk
LkLk

=B

22

122
122

12

112
112

3

tan
sincos

tanh
sinhcosh




  

hLk
LkLk=B

12

112
1124 tanh

coshsinh   

hLk
Lk+Lk=B

22

122
1225 tan

cossin  

  2252121111117

225112121111116

coscosh
sinsinh

ABBLkLkA=B
ABBLkALkA=B




 (23) 

22531248 ABBAB=B   
After introducing the above notations, the constants 
occurring in (12) are as follows:  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  























)sincos(
)sinhcosh(

)sincos(
)sinhcosh(

0

122421223242

112221121232
2

121411213141

111211111131
1

LkC+LkCA
+LkC+LkCA

β

LkC+LkCA
+LkC+LkCA

β=

 (25) 

4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 

5. )()( 1211 t,L=t,L   6. )()( 1211 t,Ly=t,Ly  

7. 
1

2
21

1
1

)()(
L=xL=x |

x
tx,=|

x
tx,








  (22) 

8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 
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After introducing the above notations, the constants 
occurring in (12) are as follows:  

idem=C11  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 
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8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 
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After introducing the above notations, the constants 
occurring in (12) are as follows:  

idem=C11  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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After introducing the above notations, the constants occur-
ring in (12) are as follows:

	

C21 = 

5 

3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 
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8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 
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22531248 ABBAB=B   
After introducing the above notations, the constants 
occurring in (12) are as follows:  

idem=C11  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 
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8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 
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After introducing the above notations, the constants 
occurring in (12) are as follows:  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 
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8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 
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After introducing the above notations, the constants 
occurring in (12) are as follows:  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 
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8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 
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After introducing the above notations, the constants 
occurring in (12) are as follows:  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 

11

1112111111

21

1213112141
121

)(cosh)(sinh

)(sin)(cos
)(

k
LkC+LkC

+
k

LkCLkC
LY=C

aa

aa
a






 

)coshsinh(

)sincos()(

1112111111
11

31

1213112141
21

41
121

LkC+LkC
k
A

+LkCLkC
k
A

LY=C

aa

aaa





 

5 

3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1), we find 
integration constants Ci and Ci, occurring in (18) and 
(19): 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends with (x = L1) in Fig. 1, take the following 
forms: 
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8. )()( 122111 t,L=t,L   
Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. Constant C11 was 
assumed as the constant of a known value. On account of 
the complex form of the coefficients being calculated, the 
following notations were introduced for simplification 
purposes: 
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22531248 ABBAB=B   
After introducing the above notations, the constants 
occurring in (12) are as follows:  
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Using the last condition from (22), the frequency 
equation for the spring model under consideration can be 
written in the following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) can be rewritten in the same 
form in the case of anti-symmetrical vibrations, however 
coefficients appearing in them will be different and for 
clarity they will be marked with superscript “a”. On 
account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), constants 
Cai and Cai are calculated: 
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Using the last condition from (22), the frequency equation 
for the spring model under consideration can be written in the 
following form:
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integration constants Ci and Ci will be determined 
below, separately for symmetrical and anti-symmetrical 
forms of vibrations. 

3. Symmetrical forms of vibrations 

Utilizing the conditions: Y1(0) = Y1(0) = 0 as well as 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) we find the 
integration constants Ci and Ci, occurring in (18) and 
(19) 
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For the considered model of the clamped-clamped spring 
half and the desired odd natural frequencies (1,3,5,…),  
the boundary conditions are as follows: 

1. 0)0,(1 =ty   2. 0)0,(1 =t  
3. 0)(2 =t,Lh   4. 0)(2 =t,Lh  (21) 

where Lh = LA/2. Compatibility conditions, where the left 
coating ends (x = L1) in Fig.1, take the following forms: 
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Using conditions: 1, 2, 3, 4, 5, 6, 7, the constants 

occurring in (12) were calculated. The constant C11 was 
assumed as the constant of the known value. On account 
of the complex form of the calculated coefficients, the 
following notations were introduced for simplification 
purposes: 
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Using the last condition (22), the frequency equation 
for the considered spring model can be written in the 
following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) in the case of anti-
symmetrical vibrations can be rewritten in the same form, 
however coefficients appearing in them will be different 
and for clarity they will be marked with superscript “a”. 
On account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
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Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
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constants  Ca

i and Ca
i are calculated: 

11

1112111111

21

1213112141
121

)(cosh)(sinh

)(sin)(cos
)(

k
LkC+LkC

+
k

LkCLkC
LY=C

aa

aa
a






 

)coshsinh(

)sincos()(

1112111111
11

31

1213112141
21

41
121

LkC+LkC
k
A

+LkCLkC
k
A

LY=C

aa

aaa





 

5 

integration constants Ci and Ci will be determined 
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Using the last condition (22), the frequency equation 
for the considered spring model can be written in the 
following form:  
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4. Anti-symmetrical forms of vibrations 

Equations (18) and (19) in the case of anti-
symmetrical vibrations can be rewritten in the same form, 
however coefficients appearing in them will be different 
and for clarity they will be marked with superscript “a”. 
On account of anti-symmetrical vibrations, the conditions: 
Y2(Lh) = Y2(Lh) = 0 as well as the compatibility 
conditions (as in the case of symmetrical vibrations) 
Y1(L1) = Y2(L1) and Y1(L1) = Y2(L1) must be met. 
Utilizing the above conditions in (18) and (19), the 
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4.	 Anti-symmetrical forms of vibrations

Equations (18) and (19) can be rewritten in the same form in 
the case of anti-symmetrical vibrations, however coefficients 
appearing in them will be different and for clarity they will be 
marked with superscript “a”. On account of anti-symmetrical 
vibrations, the conditions: YΨ2 (Lh) = YΦ2 (Lh) = 0 as well as 
the compatibility conditions (as in the case of symmetrical vi-
brations) YΨ1 (L1) = YΨ2 (L1) and YΦ1 (L1) = YΦ2 (L1) must be 
met. Utilizing the above conditions in (18) and (19), constants 
C a
Ψi and C a

Φi are calculated:
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For frequencies of even numbers (2, 4, 6, …) the procedure 
is analogous, in addition to which the third and fourth condi-
tions from (21) should be replaced by the following conditions:

	 y2(Lh, t) = 0    α2
∂ψ2(x, t)

∂x
jx = Lh

 = 0� (27)

Once more to simplify the equation we introduce the fol-
lowing notations:
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For frequencies of even numbers (2,4,6,…) the 
procedure is analogous, in addition to which the third and 
fourth conditions (21) should be replaced by the 
conditions: 
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Once more to simplify the equation we introduce the 
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Constants from (12) can be expressed in the form 
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The frequency equation has analogous form to (25) with 
an exception that constants Cji (j = 1,2,3,4; i = 1,2) should 
be replaced with constants Cji

a. 

5. Simulations, results and discussion 

In order to illustrate the presented model, a spring of the 
following parameters was used: nominal diameter D = 
100mm, wire diameter ds = 10mm, initial pitch of a helix 
h0 = 40mm, total height of the non-loaded spring LA0 = 
380mm, initial height of elastic coatings L10 = L30 = 
100mm, external diameter of coatings dc = 18mm. Typical 
material properties of spring steel were assumed for the 
spring wire: the Young modulus Es = 209000MPa, 
Poisson’s ratio s = 0.28, density s = 7800kg/m3.  
Viscoelastic materials, such as rubber, are generally 
applied as damping materials in machine building. It was 
shown in [11] that coatings made of materials of typical 
rubber parameters have significantly lower efficiency 
when damping a spring's natural vibrations than coatings 
made of materials with parameters typical for high-
molecular plastics, such as HDPE, PP or PTFE. This is 
related to a very low – in comparison to steel – modulus 
of transverse stiffness, even in the case of rubbers of a 
hardness exceeding 90°Sh. Alongside the progress in 
plastic production, polymers and composite polymers, 
which are characterized by high damping, strength and 
stiffness properties, are more and more often applied in 
vibration damping systems [38,39,40]. On account of the 
fact that the properties of individual plastics can 
significantly differ depending on their production 
technology [41], work temperature, frequency and 
amplitudes of deformations, it was decided to assume 
approximate properties of the coating material typical for 
such materials as HDPE or PP, which can be found in [42] 
and [43]: the Young modulus  Ec = 1430MPa,  Poisson’s 
ratio c = 0.43, density c = 1100kg/m3.  
 The modes and frequencies of natural vibrations 
obtained using the presented model were compared with 
the numerical simulation results obtained in the ANSYS 
Mechanical APDL environment. A solid models of the 
spring and the coatings were prepared directly in ANSYS, 
by creating a helical paths and sweeping proper sections 
along them. Contact surfaces of the spring wire model and 
the coatings models were bonded together before meshing 
process. Discretization of the model of the spring with 
coatings was carried out using  20-node non-layered 
structural elements SOLID186. Modal analyzes were 
performed using Block Lanczos mode-extraction method. 
In case of axially loaded spring, the effects of pre-stress 
and large deflections were included. 
 
5.1. Spring not subjected to axial loads. The first four 
forms of transverse vibrations of the clamped-clamped 
spring not subjected to axial loads (P = 0N), obtained 
from the modal FEM analysis, are presented in Figs. 
2a,b,d,e.  The first two vibration forms obtained using the 
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Once more to simplify the equation we introduce the 
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Constants from (12) can be expressed in the form 
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The frequency equation has analogous form to (25) with 
an exception that constants Cji (j = 1,2,3,4; i = 1,2) should 
be replaced with constants Cji

a. 

5. Simulations, results and discussion 

In order to illustrate the presented model, a spring of the 
following parameters was used: nominal diameter D = 
100mm, wire diameter ds = 10mm, initial pitch of a helix 
h0 = 40mm, total height of the non-loaded spring LA0 = 
380mm, initial height of elastic coatings L10 = L30 = 
100mm, external diameter of coatings dc = 18mm. Typical 
material properties of spring steel were assumed for the 
spring wire: the Young modulus Es = 209000MPa, 
Poisson’s ratio s = 0.28, density s = 7800kg/m3.  
Viscoelastic materials, such as rubber, are generally 
applied as damping materials in machine building. It was 
shown in [11] that coatings made of materials of typical 
rubber parameters have significantly lower efficiency 
when damping a spring's natural vibrations than coatings 
made of materials with parameters typical for high-
molecular plastics, such as HDPE, PP or PTFE. This is 
related to a very low – in comparison to steel – modulus 
of transverse stiffness, even in the case of rubbers of a 
hardness exceeding 90°Sh. Alongside the progress in 
plastic production, polymers and composite polymers, 
which are characterized by high damping, strength and 
stiffness properties, are more and more often applied in 
vibration damping systems [38,39,40]. On account of the 
fact that the properties of individual plastics can 
significantly differ depending on their production 
technology [41], work temperature, frequency and 
amplitudes of deformations, it was decided to assume 
approximate properties of the coating material typical for 
such materials as HDPE or PP, which can be found in [42] 
and [43]: the Young modulus  Ec = 1430MPa,  Poisson’s 
ratio c = 0.43, density c = 1100kg/m3.  
 The modes and frequencies of natural vibrations 
obtained using the presented model were compared with 
the numerical simulation results obtained in the ANSYS 
Mechanical APDL environment. A solid models of the 
spring and the coatings were prepared directly in ANSYS, 
by creating a helical paths and sweeping proper sections 
along them. Contact surfaces of the spring wire model and 
the coatings models were bonded together before meshing 
process. Discretization of the model of the spring with 
coatings was carried out using  20-node non-layered 
structural elements SOLID186. Modal analyzes were 
performed using Block Lanczos mode-extraction method. 
In case of axially loaded spring, the effects of pre-stress 
and large deflections were included. 
 
5.1. Spring not subjected to axial loads. The first four 
forms of transverse vibrations of the clamped-clamped 
spring not subjected to axial loads (P = 0N), obtained 
from the modal FEM analysis, are presented in Figs. 
2a,b,d,e.  The first two vibration forms obtained using the 
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Constants from (12) can be expressed in the form 
idem=Ca

11  

 

a

aa
a

a
aa

a

a

aa
a

a
aa

a

a

a C

BkB
B
B

BBk
B
B

+Lkk
A
A

+Lkk

BkB
B
B

B+Bk
B
B

Lkk+Lkk

=C 11

5223
8

7
2412

8

7

12121
21

11
11111

2

1

5223
8

6
1412

8

6

1212111111
2

1

21

coscosh

sinsinh














































































 

aa C=C 1131   aa C
A
A=C 21

21

11
41   (29) 

a
a

a
a

a

a
a C

B
B+C

B
B=C 21

8

7
11

8

6
12  h

aa LkC=C 121222 tanh  

aaaaaaa CBCB+CB=C 12321211132   h
aa LkC=C 223242 tan  

The frequency equation has analogous form to (25) with 
an exception that constants Cji (j = 1,2,3,4; i = 1,2) should 
be replaced with constants Cji

a. 

5. Simulations, results and discussion 

In order to illustrate the presented model, a spring of the 
following parameters was used: nominal diameter D = 
100mm, wire diameter ds = 10mm, initial pitch of a helix 
h0 = 40mm, total height of the non-loaded spring LA0 = 
380mm, initial height of elastic coatings L10 = L30 = 
100mm, external diameter of coatings dc = 18mm. Typical 
material properties of spring steel were assumed for the 
spring wire: the Young modulus Es = 209000MPa, 
Poisson’s ratio s = 0.28, density s = 7800kg/m3.  
Viscoelastic materials, such as rubber, are generally 
applied as damping materials in machine building. It was 
shown in [11] that coatings made of materials of typical 
rubber parameters have significantly lower efficiency 
when damping a spring's natural vibrations than coatings 
made of materials with parameters typical for high-
molecular plastics, such as HDPE, PP or PTFE. This is 
related to a very low – in comparison to steel – modulus 
of transverse stiffness, even in the case of rubbers of a 
hardness exceeding 90°Sh. Alongside the progress in 
plastic production, polymers and composite polymers, 
which are characterized by high damping, strength and 
stiffness properties, are more and more often applied in 
vibration damping systems [38,39,40]. On account of the 
fact that the properties of individual plastics can 
significantly differ depending on their production 
technology [41], work temperature, frequency and 
amplitudes of deformations, it was decided to assume 
approximate properties of the coating material typical for 
such materials as HDPE or PP, which can be found in [42] 
and [43]: the Young modulus  Ec = 1430MPa,  Poisson’s 
ratio c = 0.43, density c = 1100kg/m3.  
 The modes and frequencies of natural vibrations 
obtained using the presented model were compared with 
the numerical simulation results obtained in the ANSYS 
Mechanical APDL environment. A solid models of the 
spring and the coatings were prepared directly in ANSYS, 
by creating a helical paths and sweeping proper sections 
along them. Contact surfaces of the spring wire model and 
the coatings models were bonded together before meshing 
process. Discretization of the model of the spring with 
coatings was carried out using  20-node non-layered 
structural elements SOLID186. Modal analyzes were 
performed using Block Lanczos mode-extraction method. 
In case of axially loaded spring, the effects of pre-stress 
and large deflections were included. 
 
5.1. Spring not subjected to axial loads. The first four 
forms of transverse vibrations of the clamped-clamped 
spring not subjected to axial loads (P = 0N), obtained 
from the modal FEM analysis, are presented in Figs. 
2a,b,d,e.  The first two vibration forms obtained using the 
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Constants from (12) can be expressed in the form 
idem=Ca

11  

 

a

aa
a

a
aa

a

a

aa
a

a
aa

a

a

a C

BkB
B
B

BBk
B
B

+Lkk
A
A

+Lkk

BkB
B
B

B+Bk
B
B

Lkk+Lkk

=C 11

5223
8

7
2412

8

7

12121
21

11
11111

2

1

5223
8

6
1412

8

6

1212111111
2

1

21

coscosh

sinsinh














































































 

aa C=C 1131   aa C
A
A=C 21

21

11
41   (29) 

a
a

a
a

a

a
a C

B
B+C

B
B=C 21

8

7
11

8

6
12  h

aa LkC=C 121222 tanh  

aaaaaaa CBCB+CB=C 12321211132   h
aa LkC=C 223242 tan  

The frequency equation has analogous form to (25) with 
an exception that constants Cji (j = 1,2,3,4; i = 1,2) should 
be replaced with constants Cji

a. 

5. Simulations, results and discussion 

In order to illustrate the presented model, a spring of the 
following parameters was used: nominal diameter D = 
100mm, wire diameter ds = 10mm, initial pitch of a helix 
h0 = 40mm, total height of the non-loaded spring LA0 = 
380mm, initial height of elastic coatings L10 = L30 = 
100mm, external diameter of coatings dc = 18mm. Typical 
material properties of spring steel were assumed for the 
spring wire: the Young modulus Es = 209000MPa, 
Poisson’s ratio s = 0.28, density s = 7800kg/m3.  
Viscoelastic materials, such as rubber, are generally 
applied as damping materials in machine building. It was 
shown in [11] that coatings made of materials of typical 
rubber parameters have significantly lower efficiency 
when damping a spring's natural vibrations than coatings 
made of materials with parameters typical for high-
molecular plastics, such as HDPE, PP or PTFE. This is 
related to a very low – in comparison to steel – modulus 
of transverse stiffness, even in the case of rubbers of a 
hardness exceeding 90°Sh. Alongside the progress in 
plastic production, polymers and composite polymers, 
which are characterized by high damping, strength and 
stiffness properties, are more and more often applied in 
vibration damping systems [38,39,40]. On account of the 
fact that the properties of individual plastics can 
significantly differ depending on their production 
technology [41], work temperature, frequency and 
amplitudes of deformations, it was decided to assume 
approximate properties of the coating material typical for 
such materials as HDPE or PP, which can be found in [42] 
and [43]: the Young modulus  Ec = 1430MPa,  Poisson’s 
ratio c = 0.43, density c = 1100kg/m3.  
 The modes and frequencies of natural vibrations 
obtained using the presented model were compared with 
the numerical simulation results obtained in the ANSYS 
Mechanical APDL environment. A solid models of the 
spring and the coatings were prepared directly in ANSYS, 
by creating a helical paths and sweeping proper sections 
along them. Contact surfaces of the spring wire model and 
the coatings models were bonded together before meshing 
process. Discretization of the model of the spring with 
coatings was carried out using  20-node non-layered 
structural elements SOLID186. Modal analyzes were 
performed using Block Lanczos mode-extraction method. 
In case of axially loaded spring, the effects of pre-stress 
and large deflections were included. 
 
5.1. Spring not subjected to axial loads. The first four 
forms of transverse vibrations of the clamped-clamped 
spring not subjected to axial loads (P = 0N), obtained 
from the modal FEM analysis, are presented in Figs. 
2a,b,d,e.  The first two vibration forms obtained using the 
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Constants from (12) can be expressed in the form 
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The frequency equation has analogous form to (25) with 
an exception that constants Cji (j = 1,2,3,4; i = 1,2) should 
be replaced with constants Cji

a. 

5. Simulations, results and discussion 

In order to illustrate the presented model, a spring of the 
following parameters was used: nominal diameter D = 
100mm, wire diameter ds = 10mm, initial pitch of a helix 
h0 = 40mm, total height of the non-loaded spring LA0 = 
380mm, initial height of elastic coatings L10 = L30 = 
100mm, external diameter of coatings dc = 18mm. Typical 
material properties of spring steel were assumed for the 
spring wire: the Young modulus Es = 209000MPa, 
Poisson’s ratio s = 0.28, density s = 7800kg/m3.  
Viscoelastic materials, such as rubber, are generally 
applied as damping materials in machine building. It was 
shown in [11] that coatings made of materials of typical 
rubber parameters have significantly lower efficiency 
when damping a spring's natural vibrations than coatings 
made of materials with parameters typical for high-
molecular plastics, such as HDPE, PP or PTFE. This is 
related to a very low – in comparison to steel – modulus 
of transverse stiffness, even in the case of rubbers of a 
hardness exceeding 90°Sh. Alongside the progress in 
plastic production, polymers and composite polymers, 
which are characterized by high damping, strength and 
stiffness properties, are more and more often applied in 
vibration damping systems [38,39,40]. On account of the 
fact that the properties of individual plastics can 
significantly differ depending on their production 
technology [41], work temperature, frequency and 
amplitudes of deformations, it was decided to assume 
approximate properties of the coating material typical for 
such materials as HDPE or PP, which can be found in [42] 
and [43]: the Young modulus  Ec = 1430MPa,  Poisson’s 
ratio c = 0.43, density c = 1100kg/m3.  
 The modes and frequencies of natural vibrations 
obtained using the presented model were compared with 
the numerical simulation results obtained in the ANSYS 
Mechanical APDL environment. A solid models of the 
spring and the coatings were prepared directly in ANSYS, 
by creating a helical paths and sweeping proper sections 
along them. Contact surfaces of the spring wire model and 
the coatings models were bonded together before meshing 
process. Discretization of the model of the spring with 
coatings was carried out using  20-node non-layered 
structural elements SOLID186. Modal analyzes were 
performed using Block Lanczos mode-extraction method. 
In case of axially loaded spring, the effects of pre-stress 
and large deflections were included. 
 
5.1. Spring not subjected to axial loads. The first four 
forms of transverse vibrations of the clamped-clamped 
spring not subjected to axial loads (P = 0N), obtained 
from the modal FEM analysis, are presented in Figs. 
2a,b,d,e.  The first two vibration forms obtained using the 
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The frequency equation has analogous form to (25) with 
an exception that constants Cji (j = 1,2,3,4; i = 1,2) should 
be replaced with constants Cji

a. 

5. Simulations, results and discussion 

In order to illustrate the presented model, a spring of the 
following parameters was used: nominal diameter D = 
100mm, wire diameter ds = 10mm, initial pitch of a helix 
h0 = 40mm, total height of the non-loaded spring LA0 = 
380mm, initial height of elastic coatings L10 = L30 = 
100mm, external diameter of coatings dc = 18mm. Typical 
material properties of spring steel were assumed for the 
spring wire: the Young modulus Es = 209000MPa, 
Poisson’s ratio s = 0.28, density s = 7800kg/m3.  
Viscoelastic materials, such as rubber, are generally 
applied as damping materials in machine building. It was 
shown in [11] that coatings made of materials of typical 
rubber parameters have significantly lower efficiency 
when damping a spring's natural vibrations than coatings 
made of materials with parameters typical for high-
molecular plastics, such as HDPE, PP or PTFE. This is 
related to a very low – in comparison to steel – modulus 
of transverse stiffness, even in the case of rubbers of a 
hardness exceeding 90°Sh. Alongside the progress in 
plastic production, polymers and composite polymers, 
which are characterized by high damping, strength and 
stiffness properties, are more and more often applied in 
vibration damping systems [38,39,40]. On account of the 
fact that the properties of individual plastics can 
significantly differ depending on their production 
technology [41], work temperature, frequency and 
amplitudes of deformations, it was decided to assume 
approximate properties of the coating material typical for 
such materials as HDPE or PP, which can be found in [42] 
and [43]: the Young modulus  Ec = 1430MPa,  Poisson’s 
ratio c = 0.43, density c = 1100kg/m3.  
 The modes and frequencies of natural vibrations 
obtained using the presented model were compared with 
the numerical simulation results obtained in the ANSYS 
Mechanical APDL environment. A solid models of the 
spring and the coatings were prepared directly in ANSYS, 
by creating a helical paths and sweeping proper sections 
along them. Contact surfaces of the spring wire model and 
the coatings models were bonded together before meshing 
process. Discretization of the model of the spring with 
coatings was carried out using  20-node non-layered 
structural elements SOLID186. Modal analyzes were 
performed using Block Lanczos mode-extraction method. 
In case of axially loaded spring, the effects of pre-stress 
and large deflections were included. 
 
5.1. Spring not subjected to axial loads. The first four 
forms of transverse vibrations of the clamped-clamped 
spring not subjected to axial loads (P = 0N), obtained 
from the modal FEM analysis, are presented in Figs. 
2a,b,d,e.  The first two vibration forms obtained using the 
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Constants from (12) can be expressed in the form 
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The frequency equation has analogous form to (25) with 
an exception that constants Cji (j = 1,2,3,4; i = 1,2) should 
be replaced with constants Cji

a. 

5. Simulations, results and discussion 

In order to illustrate the presented model, a spring of the 
following parameters was used: nominal diameter D = 
100mm, wire diameter ds = 10mm, initial pitch of a helix 
h0 = 40mm, total height of the non-loaded spring LA0 = 
380mm, initial height of elastic coatings L10 = L30 = 
100mm, external diameter of coatings dc = 18mm. Typical 
material properties of spring steel were assumed for the 
spring wire: the Young modulus Es = 209000MPa, 
Poisson’s ratio s = 0.28, density s = 7800kg/m3.  
Viscoelastic materials, such as rubber, are generally 
applied as damping materials in machine building. It was 
shown in [11] that coatings made of materials of typical 
rubber parameters have significantly lower efficiency 
when damping a spring's natural vibrations than coatings 
made of materials with parameters typical for high-
molecular plastics, such as HDPE, PP or PTFE. This is 
related to a very low – in comparison to steel – modulus 
of transverse stiffness, even in the case of rubbers of a 
hardness exceeding 90°Sh. Alongside the progress in 
plastic production, polymers and composite polymers, 
which are characterized by high damping, strength and 
stiffness properties, are more and more often applied in 
vibration damping systems [38,39,40]. On account of the 
fact that the properties of individual plastics can 
significantly differ depending on their production 
technology [41], work temperature, frequency and 
amplitudes of deformations, it was decided to assume 
approximate properties of the coating material typical for 
such materials as HDPE or PP, which can be found in [42] 
and [43]: the Young modulus  Ec = 1430MPa,  Poisson’s 
ratio c = 0.43, density c = 1100kg/m3.  
 The modes and frequencies of natural vibrations 
obtained using the presented model were compared with 
the numerical simulation results obtained in the ANSYS 
Mechanical APDL environment. A solid models of the 
spring and the coatings were prepared directly in ANSYS, 
by creating a helical paths and sweeping proper sections 
along them. Contact surfaces of the spring wire model and 
the coatings models were bonded together before meshing 
process. Discretization of the model of the spring with 
coatings was carried out using  20-node non-layered 
structural elements SOLID186. Modal analyzes were 
performed using Block Lanczos mode-extraction method. 
In case of axially loaded spring, the effects of pre-stress 
and large deflections were included. 
 
5.1. Spring not subjected to axial loads. The first four 
forms of transverse vibrations of the clamped-clamped 
spring not subjected to axial loads (P = 0N), obtained 
from the modal FEM analysis, are presented in Figs. 
2a,b,d,e.  The first two vibration forms obtained using the 
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procedure is analogous, in addition to which the third and 
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The frequency equation has analogous form to (25) with 
an exception that constants Cji (j = 1,2,3,4; i = 1,2) should 
be replaced with constants Cji

a. 

5. Simulations, results and discussion 

In order to illustrate the presented model, a spring of the 
following parameters was used: nominal diameter D = 
100mm, wire diameter ds = 10mm, initial pitch of a helix 
h0 = 40mm, total height of the non-loaded spring LA0 = 
380mm, initial height of elastic coatings L10 = L30 = 
100mm, external diameter of coatings dc = 18mm. Typical 
material properties of spring steel were assumed for the 
spring wire: the Young modulus Es = 209000MPa, 
Poisson’s ratio s = 0.28, density s = 7800kg/m3.  
Viscoelastic materials, such as rubber, are generally 
applied as damping materials in machine building. It was 
shown in [11] that coatings made of materials of typical 
rubber parameters have significantly lower efficiency 
when damping a spring's natural vibrations than coatings 
made of materials with parameters typical for high-
molecular plastics, such as HDPE, PP or PTFE. This is 
related to a very low – in comparison to steel – modulus 
of transverse stiffness, even in the case of rubbers of a 
hardness exceeding 90°Sh. Alongside the progress in 
plastic production, polymers and composite polymers, 
which are characterized by high damping, strength and 
stiffness properties, are more and more often applied in 
vibration damping systems [38,39,40]. On account of the 
fact that the properties of individual plastics can 
significantly differ depending on their production 
technology [41], work temperature, frequency and 
amplitudes of deformations, it was decided to assume 
approximate properties of the coating material typical for 
such materials as HDPE or PP, which can be found in [42] 
and [43]: the Young modulus  Ec = 1430MPa,  Poisson’s 
ratio c = 0.43, density c = 1100kg/m3.  
 The modes and frequencies of natural vibrations 
obtained using the presented model were compared with 
the numerical simulation results obtained in the ANSYS 
Mechanical APDL environment. A solid models of the 
spring and the coatings were prepared directly in ANSYS, 
by creating a helical paths and sweeping proper sections 
along them. Contact surfaces of the spring wire model and 
the coatings models were bonded together before meshing 
process. Discretization of the model of the spring with 
coatings was carried out using  20-node non-layered 
structural elements SOLID186. Modal analyzes were 
performed using Block Lanczos mode-extraction method. 
In case of axially loaded spring, the effects of pre-stress 
and large deflections were included. 
 
5.1. Spring not subjected to axial loads. The first four 
forms of transverse vibrations of the clamped-clamped 
spring not subjected to axial loads (P = 0N), obtained 
from the modal FEM analysis, are presented in Figs. 
2a,b,d,e.  The first two vibration forms obtained using the 
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For frequencies of even numbers (2,4,6,…) the 
procedure is analogous, in addition to which the third and 
fourth conditions (21) should be replaced by the 
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Once more to simplify the equation we introduce the 
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The frequency equation has analogous form to (25) with 
an exception that constants Cji (j = 1,2,3,4; i = 1,2) should 
be replaced with constants Cji

a. 

5. Simulations, results and discussion 

In order to illustrate the presented model, a spring of the 
following parameters was used: nominal diameter D = 
100mm, wire diameter ds = 10mm, initial pitch of a helix 
h0 = 40mm, total height of the non-loaded spring LA0 = 
380mm, initial height of elastic coatings L10 = L30 = 
100mm, external diameter of coatings dc = 18mm. Typical 
material properties of spring steel were assumed for the 
spring wire: the Young modulus Es = 209000MPa, 
Poisson’s ratio s = 0.28, density s = 7800kg/m3.  
Viscoelastic materials, such as rubber, are generally 
applied as damping materials in machine building. It was 
shown in [11] that coatings made of materials of typical 
rubber parameters have significantly lower efficiency 
when damping a spring's natural vibrations than coatings 
made of materials with parameters typical for high-
molecular plastics, such as HDPE, PP or PTFE. This is 
related to a very low – in comparison to steel – modulus 
of transverse stiffness, even in the case of rubbers of a 
hardness exceeding 90°Sh. Alongside the progress in 
plastic production, polymers and composite polymers, 
which are characterized by high damping, strength and 
stiffness properties, are more and more often applied in 
vibration damping systems [38,39,40]. On account of the 
fact that the properties of individual plastics can 
significantly differ depending on their production 
technology [41], work temperature, frequency and 
amplitudes of deformations, it was decided to assume 
approximate properties of the coating material typical for 
such materials as HDPE or PP, which can be found in [42] 
and [43]: the Young modulus  Ec = 1430MPa,  Poisson’s 
ratio c = 0.43, density c = 1100kg/m3.  
 The modes and frequencies of natural vibrations 
obtained using the presented model were compared with 
the numerical simulation results obtained in the ANSYS 
Mechanical APDL environment. A solid models of the 
spring and the coatings were prepared directly in ANSYS, 
by creating a helical paths and sweeping proper sections 
along them. Contact surfaces of the spring wire model and 
the coatings models were bonded together before meshing 
process. Discretization of the model of the spring with 
coatings was carried out using  20-node non-layered 
structural elements SOLID186. Modal analyzes were 
performed using Block Lanczos mode-extraction method. 
In case of axially loaded spring, the effects of pre-stress 
and large deflections were included. 
 
5.1. Spring not subjected to axial loads. The first four 
forms of transverse vibrations of the clamped-clamped 
spring not subjected to axial loads (P = 0N), obtained 
from the modal FEM analysis, are presented in Figs. 
2a,b,d,e.  The first two vibration forms obtained using the 
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Constants from (12) can be expressed in the form 
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The frequency equation has analogous form to (25) with 
an exception that constants Cji (j = 1,2,3,4; i = 1,2) should 
be replaced with constants Cji

a. 

5. Simulations, results and discussion 

In order to illustrate the presented model, a spring of the 
following parameters was used: nominal diameter D = 
100mm, wire diameter ds = 10mm, initial pitch of a helix 
h0 = 40mm, total height of the non-loaded spring LA0 = 
380mm, initial height of elastic coatings L10 = L30 = 
100mm, external diameter of coatings dc = 18mm. Typical 
material properties of spring steel were assumed for the 
spring wire: the Young modulus Es = 209000MPa, 
Poisson’s ratio s = 0.28, density s = 7800kg/m3.  
Viscoelastic materials, such as rubber, are generally 
applied as damping materials in machine building. It was 
shown in [11] that coatings made of materials of typical 
rubber parameters have significantly lower efficiency 
when damping a spring's natural vibrations than coatings 
made of materials with parameters typical for high-
molecular plastics, such as HDPE, PP or PTFE. This is 
related to a very low – in comparison to steel – modulus 
of transverse stiffness, even in the case of rubbers of a 
hardness exceeding 90°Sh. Alongside the progress in 
plastic production, polymers and composite polymers, 
which are characterized by high damping, strength and 
stiffness properties, are more and more often applied in 
vibration damping systems [38,39,40]. On account of the 
fact that the properties of individual plastics can 
significantly differ depending on their production 
technology [41], work temperature, frequency and 
amplitudes of deformations, it was decided to assume 
approximate properties of the coating material typical for 
such materials as HDPE or PP, which can be found in [42] 
and [43]: the Young modulus  Ec = 1430MPa,  Poisson’s 
ratio c = 0.43, density c = 1100kg/m3.  
 The modes and frequencies of natural vibrations 
obtained using the presented model were compared with 
the numerical simulation results obtained in the ANSYS 
Mechanical APDL environment. A solid models of the 
spring and the coatings were prepared directly in ANSYS, 
by creating a helical paths and sweeping proper sections 
along them. Contact surfaces of the spring wire model and 
the coatings models were bonded together before meshing 
process. Discretization of the model of the spring with 
coatings was carried out using  20-node non-layered 
structural elements SOLID186. Modal analyzes were 
performed using Block Lanczos mode-extraction method. 
In case of axially loaded spring, the effects of pre-stress 
and large deflections were included. 
 
5.1. Spring not subjected to axial loads. The first four 
forms of transverse vibrations of the clamped-clamped 
spring not subjected to axial loads (P = 0N), obtained 
from the modal FEM analysis, are presented in Figs. 
2a,b,d,e.  The first two vibration forms obtained using the 
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Constants from (12) can be expressed in the form 
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The frequency equation has analogous form to (25) with 
an exception that constants Cji (j = 1,2,3,4; i = 1,2) should 
be replaced with constants Cji

a. 

5. Simulations, results and discussion 

In order to illustrate the presented model, a spring of the 
following parameters was used: nominal diameter D = 
100mm, wire diameter ds = 10mm, initial pitch of a helix 
h0 = 40mm, total height of the non-loaded spring LA0 = 
380mm, initial height of elastic coatings L10 = L30 = 
100mm, external diameter of coatings dc = 18mm. Typical 
material properties of spring steel were assumed for the 
spring wire: the Young modulus Es = 209000MPa, 
Poisson’s ratio s = 0.28, density s = 7800kg/m3.  
Viscoelastic materials, such as rubber, are generally 
applied as damping materials in machine building. It was 
shown in [11] that coatings made of materials of typical 
rubber parameters have significantly lower efficiency 
when damping a spring's natural vibrations than coatings 
made of materials with parameters typical for high-
molecular plastics, such as HDPE, PP or PTFE. This is 
related to a very low – in comparison to steel – modulus 
of transverse stiffness, even in the case of rubbers of a 
hardness exceeding 90°Sh. Alongside the progress in 
plastic production, polymers and composite polymers, 
which are characterized by high damping, strength and 
stiffness properties, are more and more often applied in 
vibration damping systems [38,39,40]. On account of the 
fact that the properties of individual plastics can 
significantly differ depending on their production 
technology [41], work temperature, frequency and 
amplitudes of deformations, it was decided to assume 
approximate properties of the coating material typical for 
such materials as HDPE or PP, which can be found in [42] 
and [43]: the Young modulus  Ec = 1430MPa,  Poisson’s 
ratio c = 0.43, density c = 1100kg/m3.  
 The modes and frequencies of natural vibrations 
obtained using the presented model were compared with 
the numerical simulation results obtained in the ANSYS 
Mechanical APDL environment. A solid models of the 
spring and the coatings were prepared directly in ANSYS, 
by creating a helical paths and sweeping proper sections 
along them. Contact surfaces of the spring wire model and 
the coatings models were bonded together before meshing 
process. Discretization of the model of the spring with 
coatings was carried out using  20-node non-layered 
structural elements SOLID186. Modal analyzes were 
performed using Block Lanczos mode-extraction method. 
In case of axially loaded spring, the effects of pre-stress 
and large deflections were included. 
 
5.1. Spring not subjected to axial loads. The first four 
forms of transverse vibrations of the clamped-clamped 
spring not subjected to axial loads (P = 0N), obtained 
from the modal FEM analysis, are presented in Figs. 
2a,b,d,e.  The first two vibration forms obtained using the 

6 

22

22322242

12

12221212
2

)(sin)(cos

)(cosh)(sinh

k
LkCLkC

k
LkC+LkC

=C

h
a

h
a

h
a

h
a

a






 (26) 

)sincos(

)coshsinh(

22322242
22

42

12221212
12

32
2

h
a

h
a

h
a

h
aa

LkCLkC
k
A

LkC+LkC
k
A

=C





 

For frequencies of even numbers (2,4,6,…) the 
procedure is analogous, in addition to which the third and 
fourth conditions (21) should be replaced by the 
conditions: 

0)(2 =t,Ly h   0
)(

h

2
2 =|

x
tx,

α L=x


 (27) 

Once more to simplify the equation we introduce the 
following notations: 

 
aaaa

aaa

aaa
h

a
h

a
h

ha

h

a

h

a

BABBA=B

BABLkLkA=B

BABLkALkA=B

LkLkLk=B

LkLkLk=B

LkLk+Lk
LkLkLk=B

LkLk+Lk

Lk
A
A+Lk

=B

LkLk+Lk
LkLk=B

52234128

5222121111117

522112121111116

122221225

112121124

12222122

11212112
3

12222122

121
21

11
111

2

12222122

121111
1

coscosh

sinsinh

costansin

coshtanhsinh

sintancos
sinhtanhcosh

sintancos

sinsinh

sintancos
coscosh



















 (28) 

Constants from (12) can be expressed in the form 
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The frequency equation has analogous form to (25) with 
an exception that constants Cji (j = 1,2,3,4; i = 1,2) should 
be replaced with constants Cji

a. 

5. Simulations, results and discussion 

In order to illustrate the presented model, a spring of the 
following parameters was used: nominal diameter D = 
100mm, wire diameter ds = 10mm, initial pitch of a helix 
h0 = 40mm, total height of the non-loaded spring LA0 = 
380mm, initial height of elastic coatings L10 = L30 = 
100mm, external diameter of coatings dc = 18mm. Typical 
material properties of spring steel were assumed for the 
spring wire: the Young modulus Es = 209000MPa, 
Poisson’s ratio s = 0.28, density s = 7800kg/m3.  
Viscoelastic materials, such as rubber, are generally 
applied as damping materials in machine building. It was 
shown in [11] that coatings made of materials of typical 
rubber parameters have significantly lower efficiency 
when damping a spring's natural vibrations than coatings 
made of materials with parameters typical for high-
molecular plastics, such as HDPE, PP or PTFE. This is 
related to a very low – in comparison to steel – modulus 
of transverse stiffness, even in the case of rubbers of a 
hardness exceeding 90°Sh. Alongside the progress in 
plastic production, polymers and composite polymers, 
which are characterized by high damping, strength and 
stiffness properties, are more and more often applied in 
vibration damping systems [38,39,40]. On account of the 
fact that the properties of individual plastics can 
significantly differ depending on their production 
technology [41], work temperature, frequency and 
amplitudes of deformations, it was decided to assume 
approximate properties of the coating material typical for 
such materials as HDPE or PP, which can be found in [42] 
and [43]: the Young modulus  Ec = 1430MPa,  Poisson’s 
ratio c = 0.43, density c = 1100kg/m3.  
 The modes and frequencies of natural vibrations 
obtained using the presented model were compared with 
the numerical simulation results obtained in the ANSYS 
Mechanical APDL environment. A solid models of the 
spring and the coatings were prepared directly in ANSYS, 
by creating a helical paths and sweeping proper sections 
along them. Contact surfaces of the spring wire model and 
the coatings models were bonded together before meshing 
process. Discretization of the model of the spring with 
coatings was carried out using  20-node non-layered 
structural elements SOLID186. Modal analyzes were 
performed using Block Lanczos mode-extraction method. 
In case of axially loaded spring, the effects of pre-stress 
and large deflections were included. 
 
5.1. Spring not subjected to axial loads. The first four 
forms of transverse vibrations of the clamped-clamped 
spring not subjected to axial loads (P = 0N), obtained 
from the modal FEM analysis, are presented in Figs. 
2a,b,d,e.  The first two vibration forms obtained using the 
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The frequency equation has a form analogous to (25) with 
the exception of constants Cji( j = 1, 2, 3, 4; i = 1, 2) having to 
be replaced with constants C a

ji.

5.	 Simulations,  results and discussion

In order to illustrate the model presented herein, a spring of the 
following parameters was used: nominal diameter D = 100 mm, 
wire diameter ds = 10 mm, initial pitch of a helix h0 = 40 mm, 
total height of the non-loaded spring LA0 = 380 mm, initial 
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height of elastic coatings L10 = L30 = 100 mm, external di-
ameter of coatings dc = 18 mm. Typical material properties 
of spring steel were assumed for the spring wire: Young’s 
modulus Es = 209000 MPa, Poisson’s ratio νs = 0.28, density 
ρs = 7800 kg/m3.

Viscoelastic materials, such as rubber, are generally applied 
as damping materials in machine building. It was shown in [11] 
that coatings made of materials of typical rubber parameters 
have significantly lower efficiency when damping a spring’s 
natural vibrations than coatings made of materials with param-
eters typical for high-molecular plastics, such as HDPE, PP or 
PTFE. This is related to a very low – in comparison to steel 
– modulus of transverse stiffness, even in the case of rubbers 
of hardness exceeding 90°Sh. Alongside the progress in plastic 
production, polymers and composite polymers, which are char-
acterized by high damping, strength and stiffness properties, 
are more and more often applied in vibration damping sys-
tems [38, 39, 40]. On account of the fact that the properties of 
individual plastics can significantly differ depending on their 
production technology [41], work temperature, frequency and 
amplitudes of deformations, it was decided to assume approx-
imate properties of the coating material typical for materials 
such as HDPE or PP, which can be found in [42] and [43]: 
Young’s modulus Ec = 1430 MPa, Poisson’s ratio νc = 0.43, 
density ρc = 1100 kg/m3.

The modes and frequencies of natural vibrations obtained 
using the model presented herein were compared with the nu-
merical simulation results obtained in the ANSYS Mechan-
ical APDL environment. Solid models of the spring and the 
coatings were prepared directly in ANSYS, by creating helical 
paths and sweeping proper sections along them. Contact sur-
faces of the spring wire model and the coatings models were 
bonded together before the meshing process. Discretization of 
the model of the spring with coatings was carried out using 
20-node non-layered SOLID186 structural elements. Modal 
analyses were performed using the Block Lanczos mode-ex-
traction method. In the case of an axially loaded spring, the 
effects of pre-stress and large deflections were included.

5.1. Spring not subjected to axial loads. The first four forms 
of transverse vibrations of the clamped-clamped spring not sub-
jected to axial loads (P = 0N), obtained from the modal FEM 
analysis, are presented in Fig. 2a, b, d, e. The first two vibration 
forms obtained using the model presented herein are shown 
in Fig. 2c, f. Thicker red lines in Fig. 2c, f illustrate displace-
ment amplitudes of spring segments covered by coatings, while 
thinner black lines illustrate displacement amplitudes of spring 
segments without coatings. Dotted lines present displacement 
amplitudes YΦi, resulting from shearing of the equivalent beam, 
dashed lines present displacement amplitudes Yψi, resulting from 

Fig. 2. First four forms of transverse vibrations of the clamped-clamped spring obtained from the FEM simulation (a, b, d, e) and first two forms 
of vibrations obtained on the basis of the model presented herein (c, f), of the spring that is non-loaded axially. Dotted lines in diagrams c and 
f represent displacement amplitudes resulting from shearing YΦi, dashed lines represent displacement amplitudes resulting from bending Yψi, 

while solid lines represent amplitudes of total displacements Yi of successive segments of the equivalent beam
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bending of the equivalent beam, and solid lines present the 
amplitudes Yi of the total displacement.

The equivalent beam model, contrary to the FEM model 
representing the actual spring geometry as a spatially curved 
rod, exhibits the axial symmetry of stiffness and inertia 
parameters. Therefore, the first two frequencies of natural 
vibrations f1 and f2 of the spring modelled in the ANSYS 
environment, vibrating in two planes (Fig. 2a, b), correspond 
to one natural frequency fI of the equivalent beam (Fig. 2c). 
The same is true for antisymmetric vibration forms. A com-
parison of frequencies obtained from the FEM simulation 
and frequencies obtained using the model presented herein 
is given in Table 1.

Table 1 
Comparison of natural frequencies (in Hz) obtained from the FEM 

simulation with frequencies obtained from the model presented 
herein for a spring not subjected to an axial load

f1 f2 f3 f4

FEM model (Fig. 2a, b, d, e) 30.981 31.074 66.882 67.565

Model presented in this paper 
(Fig. 2c, f) fI = 31.126 fII = 68.232

(( f1, 2, 3, 4 – fI, II)/f1, 2, 3, 4)   ¢ 100% –0.47% –0.17% –2.02% –0.99%

5.2. Spring loaded by static axial force. To analyze the modes 
and frequencies of natural vibrations of springs loaded by static 
axial force P, a pre-stressed modal analysis of a large-deflection 
solution was performed. A comparison of forms obtained from 
the simulation and from the model presented in the study for 

the spring loaded by static axial force P = 1046 N, causing 
the spring shortening by ¼ of its initial length, is presented in 
Fig. 3.

A comparison of frequencies obtained from the FEM simu-
lation with the frequencies obtained using the model presented 
herein for a spring compressed statically – by force P = 1046N 
– to the length: LA = 0.75·LA0, is shown in Table 2.

Table 2 
Comparison of natural frequencies (in Hz) obtained from the FEM 

simulation with frequencies obtained using the model presented 
herein for the axially loaded spring

f1 f2 f3 f4

FEM model (Fig. 3a, b, d, e) 30.672 30.765 67.325 68.283

Model presented in this paper 
(Fig. 3c, f) fI = 30.885 fII = 69.246

(( f1, 2, 3, 4 – fI, II)/f1, 2, 3, 4)   ¢ 100% –0.69% –0.39% –2.86% –1.41%

The data shown in Tables 1 and 2 indicate that the com-
patibility of results obtained using the model presented herein 
and numerical simulation is high, for the spring that is axially 
loaded as well as for the spring not subjected to axial loads.

5.3. Influence of geometrical parameters of coatings on 
natural frequencies. The diagram showing the dependence of 
the first natural frequency on relative height L1/Lh and relative 
thickness (dc – ds)/ds of elastic coatings, at the material param-
eters given above, is shown in Fig. 4, while the analogous dia-
gram for the second natural frequency is shown in Fig. 5. Both 
diagrams are obtained using the analytical model presented in 

Fig. 3. First four forms of transverse vibrations of the clamped-clamped spring obtained from the FEM simulation (a, b, d, e) and first two forms 
obtained using the model presented herein (c, f), for the axially loaded spring (P = 1046 N, LA = 0.75 ¢ LA0 = 285 mm)
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the paper. Values of the first (Fig. 4) and the second (Fig. 5) fre-
quency of the spring without coatings (horizontal yellow plane) 
are also marked in these diagrams. As can be seen, coatings 
can increase or decrease the natural frequencies of transverse 
vibrations depending on their geometrical parameters.

Both in the first and second form of transverse vibrations, 
regardless of the relative thickness of coatings (within the ana-
lyzed example range), such a relative height of coatings can be 
selected for which the frequencies of these vibrations will not 
change in relation to the analogous frequencies of the spring 
without coatings. Thus, the model developed allows for the 
introduction of essential modifications to the natural frequen-

Fig. 4. Dependence of the first transverse natural frequency f1 on the 
relative height of local coatings (dc – ds)/ds and on the relative thick-
ness of local coatings L1/Lh, at the determined material parameters of 

these coatings

Fig. 6. Stiffness quotient cwc/cnc as dependent on the relative height 
and relative thickness of local coatings at the given material parameters 

of these coatings

Fig. 5. Dependence of the second transverse natural frequency on the 
relative height of local coatings and on the relative thickness of local 

coatings, at the determined material parameters of these coatings

cies of transverse vibrations by means of coatings. In the ana-
lyzed example, the difference between the maximum fmax and 
minimum fmin frequency value, related to the frequency of the 
spring without coatings fwc, was above 26% in the case of the 
first frequency (Fig.3), and exceeded 21% in the case of the 
second frequency (Fig.4).

It is obvious that the application of coatings also influences 
the spring static compression stiffness, defined as a quotient of 
the static axial force and the corresponding absolute deflection 
of the spring. Using this definition, after its elementary rear-
rangements, the dependence between the static compression 
stiffness cwc of the spring with local coatings and the static 
compression stiffness cnc of the analogous spring without coat-
ings can be written as follows:

	

8 

 

 The comparison of frequencies obtained from the FEM 
simulation with the frequencies obtained using the 
presented model for the spring compressed statically - by 
the force  P = 1046N - to the length: LA = 0.75·LA0, is 
shown in Table 2. 

Table 2 
Comparison of natural frequencies (in Hz) obtained from the FEM 

simulation with frequencies obtained using the presented model for the 
axially loaded spring  

 f1 f2 f3 f4 

FEM  model (Figs. 3a,b,d,e) 30.672 30.765 67.325 68.283 

Model presented in this 
paper (Figs.3c,f) fI = 30.885 fII = 69.246 

((f1,2,3,4 – fI,II)/ f1,2,3,4)·100% -0.69% -0.39% -2.86% -1.41% 
 
The data shown in Tables 1 and 2 indicate that the 
compatibility of results obtained using the presented 
model and the numerical simulation is high, for the spring 
axially loaded as well as for the spring not subjected to 
axial loads.  
 
5.3 Influence of the geometrical parameters of coatings 
on natural frequencies. The diagram showing the 
dependence of the first natural frequency on the relative 
height  L1/Lh and relative thickness (dc – ds)/ds of elastic 
coatings, at the material parameters given above, is shown 
in Fig. 4, while the analogous diagram for the second 
natural frequency is shown in Fig.5. Both diagrams are 
obtained using analytical model presented in the paper. 
Values of the first (Fig. 4) and the second (Fig. 5) 
frequency of the spring without coatings (horizontal 
yellow plane) are also marked in these diagrams. As can 
be seen, coatings can increase or decrease the natural 
frequencies of transverse vibrations depending on their 
geometrical parameters.  

Fig. 4. Dependence of the first transverse natural frequency  f1 on the 
relative height of local coatings (dc – ds)/ds and on the relative thickness 
of local coatings L1/Lh  , at the determined material parameters of these 
coatings. 

Fig. 5. Dependence of the second transverse natural frequency on the 
relative height of local coatings and on the relative thickness of local 
coatings, at the determined material parameters of these coatings. 

Both in the first and second form of transverse vibrations, 
regardless of the relative thickness of coatings (within the 
analyzed example range), such a relative height of 
coatings can be selected for which the frequencies of these 
vibrations will not change in relation to the analogous 
frequencies of the spring without coatings. Thus, the 
developed model allows the introduction of essential 
modifications to the natural frequencies of transverse 
vibrations by means of coatings. In the analyzed example, 
the difference between the maximal  fmax and minimal  fmin 
frequency value, related to the frequency of the spring 
without coatings fwc ,  - in the case of the first frequency 
(Fig.3) - was above 26% ,  while - in the case of the 
second frequency (Fig.4) - exceeded 21%. 

It is obvious that the application of coatings also 
influences the spring static compression stiffness, defined 
as a quotient of the static axial force and the 
corresponding absolute deflection of the spring. Using this 
definition, after its elementary rearrangements, the 
dependence between the static compression stiffness cwc 
of the spring with local coatings and the static 
compression stiffness cnc of the analogous spring without 
coatings can be written as follows: 
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The diagram of the stiffness quotient described by (30) 
is presented in Fig. 6 as a function of the relative height 
and the relative thickness of local coatings, at the given 
material parameters of these coatings. It can be observed, 
when analyzing the diagrams in Fig.4 and Fig.5, that in 
cases where damping coatings cover the spring wire on its 
whole length, independently of their relative thickness (dc 
– ds)/ds (within the analyzed range), they cause a decrease 
in the natural transverse frequencies, while short coatings 
always cause a frequency increase when compared to the 
natural frequencies of the spring without coatings. 

.� (30)

The diagram of the stiffness quotient described by (30) 
is presented in Fig. 6 as a function of the relative height and 
the relative thickness of local coatings, at the given material 
parameters of these coatings. It can be observed, when ana-
lyzing the diagrams in Fig. 4 and Fig. 5, that in the cases where 
damping coatings cover the spring wire on its whole length, 
independently of their relative thickness (dc – ds)/ds (within the 
analyzed range), they cause a decrease in the natural transverse 
frequencies, while short coatings always cause a frequency in-
crease when compared to the natural frequencies of the spring 
without coatings.

When comparing the diagrams in Fig. 4, Fig. 5 and Fig. 6, 
it is visible that an increase in natural frequencies is not nec-
essarily related to a significant increase in the spring static 
stiffness.
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6.	 Conclusions

Coatings covering the spring wire along its whole length or in 
sections can be applied in order to protect the wire against un-
favorable factors such as corrosion or abrasive wear as well as 
in order to increase damping in the system. Thus, it is important 
to determine the influence of such coatings on spring static 
and dynamic properties such as stiffness and natural frequen-
cies as well as modes of spring transverse vibrations. In the 
existing literature there is no study dealing with this problem. 
The novel calculation model allowing users to determine the 
frequencies and modes of natural transverse vibrations of he-
lical springs with elastic coatings, subjected to the static axial 
force, is presented in the paper. It has been shown that coatings 
of materials with parameters similar to the typical high-mo-
lecular plastics applied in machine building can significantly 
influence the values of natural frequencies. Comparing the 
results of the model presented herein with the FEM analysis 
indicates its high accuracy. Attention was drawn to the fact that 
for the same resultant spring stiffness it is possible to obtain 
either a decrease or an increase in the frequency of natural 
transverse vibrations. Thus, the model presented herein enables 
the selection of material and geometrical parameters of coat-
ings, ensuring that the required properties of the spring being 
designed are obtained. This can be also useful when coating 
springs that already exist.
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