
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
Vol. 57, No. 3, 2009

Algorithms for parallel processor scheduling

with distinct due windows and unit-time jobs

A. JANIAK1∗, W.A. JANIAK2, and R. JANUSZKIEWICZ1

1 Institute of Computer Engineering, Control and Robotics, Wrocław University of Technology,

11/17 Janiszewskiego St., 50-372 Wrocław, Poland
2 Institute of Industrial Engineering and Management, Wrocław University of Technology,

25 Smoluchowskiego St., 50-372 Wrocław, Poland

Abstract. We have studied problems of scheduling n unit-time jobs on m identical parallel processors, in which for each job a distinct due

window is given in advance. If a job is completed within its due window, then it incurs no penalty. Otherwise, it incurs a job-dependent

earliness or tardiness cost. The objective is to find a job schedule such that the total weighted earliness and tardiness, maximum weighted

earliness and tardiness or total weighted number of early and tardy jobs is minimized. Properties of optimal solutions of these problems are

established. We proved that optimal solutions for these problems can be found in O(n5) time in case of minimization of the total weighted

earliness and tardiness and the total weighted number of early and tardy jobs and in O(n4
√

n log n) time in case of minimization of the

maximum weighted earliness and tardiness. The established solution methods are extended to solve the problems with arbitrary integer release

dates. A dedicated algorithm with time complexity O(n3) is provided for the special case of the problem of minimizing total weighted

number of early and tardy jobs with agreeable earliness-tardiness weights.

Key words: scheduling algorithms, parallel processor, earliness/tardiness, distinct due windows, unit-time jobs, integer release dates.

1. Introduction

Problems of scheduling unit-time jobs with distinct due win-

dows on identical parallel processors are studied. A due win-

dow is a time interval associated with a job. There are no re-

strictions imposed on due windows. A job incurs no schedul-

ing cost if it is completed within its due window. Otherwise,

an earliness or tardiness cost is incurred.

Scheduling problems with distinct due windows model

many real-life problems that occur in the production of per-

ishable goods. Consider for example a process in which one

chemical is combined with another to produce the final prod-

uct and one of the chemicals deteriorates rapidly. If the dete-

riorating chemical is produced before the second chemical is

ready it may become useless. On the other hand, if this chem-

ical is produced late, delay in production of the final product

may prove costly. Another example comes from a branch of

industry, in which a manufacturer agrees with his clients to

deliver products in certain time intervals. If the products are

manufactured before the earliest acceptable time, they must be

kept in warehouses, thus incurring an additional cost. On the

contrary, if they are manufactured after the latest acceptable

time, the manufacturer must pay for an express delivery of

the products.

Scheduling problems with distinct due windows were

studied only in a single processor environment. Sidney [1]

was among the pioneers, who introduced such problems into

scheduling. He studied a special case of a single processor

problem with minimization of maximum cost associated with

earliness and tardiness, in which any due window is not al-

lowed to contain another due window as a proper subset. He

proved that this problem is solvable in polynomial time. How-

ever, in general a single processor scheduling problem with

distinct due windows and minimization of the total weighted

earliness and tardiness is strongly NP-hard, since its special

case, i.e. minimization of total weighted tardiness (or earli-

ness), is already strongly NP-hard (see [2]). Some heuristic

algorithms for this problem were analyzed in [3] and [4]. Lat-

er on in [5] a general case of single processor scheduling

problem with distinct due windows and minimization of the

weighted number of early and tardy jobs was investigated and

the problem was shown to be strongly NP-hard. Some ad-

ditional discussion on this problem and heuristic algorithms

were presented in [6].

The present paper deals with the scheduling problems in

which the due windows are given in advance. In a scientif-

ic literature there have also been studied problems with due

window assignment. For a literature review and some results

see [7].

In this paper we analyze problems, whose special cas-

es, i.e. problems of scheduling unit-time jobs with arbitrary

job release dates and due dates, have already been studied

in the scientific literature. The problems of minimizing the

total weighted tardiness and the total weighted number of

tardy jobs can be reduced to the network-flow problem (see

[8–9]). The problem of minimizing the total weighted number

of tardy jobs can also be solved by a polynomial time algo-

rithm constructed by Baptiste et al. [10] for a more general

problem with equal processing times. The problem of mini-

∗e-mail: adam.janiak@pwr.wroc.pl

209

DOI: 10.2478/v10175-010-0122-3

A. Janiak, W.A. Janiak, and R. Januszkiewicz

mizing the maximum tardiness is solvable by scheduling jobs

in the order of non-decreasing due dates [9].

The paper is organized as follows. In Sec. 2, a study of

the parallel processor scheduling problem with unit-time jobs

and minimization of weighted earliness and tardiness is pre-

sented. In Sec. 3, a parallel processor scheduling problem

with unit-time jobs and minimization of the weighted number

of early and tardy jobs is analyzed. Section 4 concludes the

paper.

2. Problem formulation

There are n non-preemptive jobs to be scheduled on m iden-

tical parallel processors. Each processor can handle at most

one job at a time and each job can be completely processed

on any processor. All jobs have unit processing requirements

and for each job j = 1, . . . , n there is given a due window

[êj, d̂j] (êj ≤ d̂j), where êj and d̂j are non-negative integer

numbers. A schedule σ determines the allocation of jobs to

processors and job starting and completion times. Let Sj(σ)
and Cj(σ) denote the integer start and completion time of job

j in schedule σ, respectively. For convenience throughout the

paper Sj and Cj are also used instead of Sj(σ) and Cj(σ), re-

spectively, if there is no possible confusion as to the schedule

we refer to. Given a schedule σ, the earliness and tardiness

of job j are defined as Ej(σ) = max{0, êj − Cj(σ)} and

Tj(σ) = max{0, Cj(σ) − d̂j}, respectively. The objective is

to find a schedule σ for which one of the following criteria

fsum (σ) =

n
∑

j=1

(αjEj (σ) + βjTj (σ)) ,

fmax (σ) = max
1≤j≤n

{αjEj (σ) , βjTj (σ)} ,

fnum (σ) =
n
∑

j=1

(αjVj (σ) + βjUj (σ)),

is minimized, where

Vj (σ) =

{

1 if Cj (σ) < êj

0 in other cases
,

Uj (σ) =

{

1 if Cj (σ) > d̂j

0 in other cases
,

and where αj and βj determine strictly positive integer costs

of earliness and tardiness, respectively. Vj(σ) and Uj(σ) are

indicators that in the schedule σ job j is early or tardy, re-

spectively. The defined problems will be denoted as P-sum,

P-max and P-num, where suffixes “sum”, “max” and “num”

determine the objective criterion.

3. Properties of optimal solutions

In this section, we provide properties, which allow us to find

optimal polynomial time algorithms for the problems formu-

lated in the previous section.

3.1. Minimization of weighted earliness and tardiness.

Lemma 1. There exists an optimal solution for problems

P-sum and P-max for which the starting time Sj of each job

j meets the following condition:

max
{

êj −
⌈ n

m

⌉}

≤ Sj ≤ êj +
⌈ n

m

⌉

− 1.

Proof. Assume there is an optimal solution σ, which does

not comply with the thesis of this lemma. Therefore, there

exists at least one job j, which meets one of the following

conditions:

(a) Sj(σ) < êj − ⌈n/m⌉,
(b) Sj(σ) > êj + ⌈n/m⌉ − 1.

Observe that if condition (a) is satisfied for job j then there

exists time t such that êj − ⌈n/m⌉ ≤ t ≤ êj − 1 and in-

terval [t, t + 1] in which at least one processor is idle. As-

sume that schedule σ′ has been obtained from σ by setting

Si(σ
′) = Si(σ), for i 6= j, and Sj(σ

′) = t. Then for σ′ the ob-

jective criterion value is not greater than for solution σ, since

αj (êj − Cj(σ
′)) < αj (êj − Cj(σ)) and αi (êi − Ci(σ

′)) =
αi (êi − Ci(σ)), for i 6= j. Therefore σ′ is also optimal. On

the other hand, if condition (b) is satisfied for job j then there

exists time t such that êj ≤ t ≤ êj + ⌈n/m⌉ − 1 and interval

[t, t+1] in which at least one processor is idle. As for the pre-

vious case, assume that schedule σ′ has been obtained from

σ by setting Si(σ
′) = Si(σ), for i 6= j, and Sj(σ

′) = t, for

which the criterion value is not greater than for the solution σ,

since βj max
{

0, Cj(σ
′) − d̂j

}

≤ βj max
{

0, Cj(σ) − d̂j

}

and βi max
{

0, Ci(σ
′) − d̂i

}

= βi max
{

0, Ci(σ) − d̂i

}

, for

i 6= j. Therefore σ′ is optimal. Repeating the above argument,

if necessary, proves the result.

Lemma 2. Let the set of all jobs J be partitioned into two

subsets J ′ and J ′′, such that |J ′| = k < n and |J ′′| = n − k
and maxj∈J′ {êj}+⌈k/m⌉ ≤ minj∈J′′ {êj}−⌈(n − k)/m⌉.
There exists an optimal solution to problems P-sum and P-

max in which only jobs from J ′ are scheduled in interval

[max {0, minj∈J′ {êj} − ⌈k/m⌉} , maxj∈J′ {êj} + ⌈k/m⌉].
Proof. According to Lemma 1

∀j∈J′

(

max

{

0, êj −
⌈

k

m

⌉}

≤ Sj ≤ êj +

⌈

k

m

⌉

− 1

)

,

and

∀j∈J′′

(

max

{

0, êj−
⌈

n − k

m

⌉}

≤ Sj ≤ êj +

⌈

n − k

m

⌉

−1

)

.

Therefore,

∀j∈J′ {Sj , Cj = Sj + 1} ∈

∈
[

max

{

0, min
j∈J′

{êj} −
⌈

k

m

⌉}

, max
j∈J′

{êj} +

⌈

k

m

⌉]

,

and

∀j∈J′′ {Sj, Cj = Sj + 1} ∈

∈
[

max

{

0, min
j∈J′′

{êj} −
⌈

n − k

m

⌉}

, max
j∈J′′

{êj} +

⌈

n − k

m

⌉]

.

210 Bull. Pol. Ac.: Tech. 57(3) 2009

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs

Since maxj∈J′ {êj} + ⌈k/m⌉ ≤ minj∈J′′ {êj} −
⌈(n − k)/m⌉, then the intervals in which the jobs from sub-

sets J’ and J” must be scheduled are disjoint.

The following algorithm PARTITION based on Lemma 2

partitions the set of jobs into disjoint subsets. With each sub-

set there is associated an interval in which the jobs from the

subset should be scheduled (according to Lemma 1). The in-

tervals associated with different subsets can contain at most

one common number – borders of the intervals.

Algorithm PARTITION (input: J – the set of jobs)

1. Let J1 = Ø, J2 = J .

2. Let i be the job such that êi = minj∈J2
{êj}.

3. Set J1 = J1 ∪ {i}, J2 = J2\ {i}.

4. If J2 = Ø then stop.

5. If maxj∈J1
{êj}+ ⌈|J1|/m⌉ ≤ minj∈J2

{êj} − ⌈|J2|/m⌉,
then J1 is one of the subsets and to find the other subsets

apply PARTITION to J2,

else go to step 2.

Lemma 3. If the set of all jobs is partitioned using algo-

rithm PARTITION into k ≤ n disjoint subsets J1, . . . , Jk, then

the length of intervals associated with the subsets in which

the jobs should be scheduled is at most O (n |Ji|/m), for

i = 1, . . . , k.

Proof. Suppose the algorithm PARTITION is applied to the set

of all jobs. At the beginning there are two subsets, the first

one, say J ′, contains one job and the other one, say J ′′ con-

tains the rest of jobs. The length of the interval associated

with J ′ equals 2 ⌈|J1|/m⌉ = 2 and in the worst case

max
j∈J′

{êj} +

⌈ |J ′|
m

⌉

− 1 = min
j∈J′′

{êj} −
⌈ |J ′′|

m

⌉

.

Hence, the distance between the upper bound of the interval

associated with J ′ and min
j∈J′′

{êj} is ⌈|J ′′|/m⌉+1 ≤ ⌈n/m⌉+
1 = O (n/m) and the job with the smallest êj from J ′′ have

to be added to J ′ and removed from J ′′. If the described

procedure is repeated until maxj∈J′ {êj} + ⌈|J ′|/m⌉ ≤
minj∈J′ {êj}−⌈|J ′′|/m⌉ it is clear that the length of the inter-

val associated with J ′ is at most |J ′|O (n/m)+2 ⌈|J ′|/m⌉ =
O (n |J ′|/m). If the algorithm PARTITION is next applied

to J ′′ the same reasoning leads to the conclusion that the

length of the associated interval is at most O (n |J ′′|/m)
and the same for the rest of subsets and the associated in-

tervals.

Lemma 4. If the set J of all jobs is partitioned using al-

gorithm PARTITION into k ≤ n disjoint subsets J1, . . . , Jk,

such that the jobs from the subset Jl should be scheduled

in interval [tl1, tl2], then an optimal allocation of jobs to the

processors and determination of starting times for problems

P-sum and P-max can be obtained by solving a proper min-

sum or min-max assignment problem for each subset Jl and

an associated interval [tl1, tl2].

Proof. According to Lemma 2, it is possible to partition the

set J into disjoint subsets, and jobs that belong to each such

subset Jl can be scheduled in different interval. Therefore,

the objective criterion for problems P-sum and P-max can be

rewritten as follows:

fsum (σ) =

n
∑

j=1

(αjEj (σ) + βjTj (σ)) =

=

k
∑

i=1

∑

j∈Ji

(αjEj (σ) + βjTj (σ))

and

fmax (σ) = max
1≤j≤n

{αjEj (σ) , βjTj (σ)} =

= max
1≤i≤k

{

max
j∈Ji

{αjEj (σ) , βjTj (σ)}
}

respectively, under assumption that
⋃k

i=1 Ji = J and Ji∩Jj =
Ø, for i, j = 1, . . . , n, i 6= j. Thus, the minimization of the

global objective criterion value can be obtained by the mini-

mization of the criterion value for each disjoint subset of jobs

and an associated interval.

For each subset Jl and an associated interval [tl1, tl2] the

minimization of the criterion value for the problem P-sum can

be formulated as follows:

min :

il
∑

i=1

jl
∑

j=1

cijxij , (1)

for il = m (tl2 − tl1) and jl = |Jl|, where

c(i+q(tl2−tl1))j =



















αj (êj − (tl1 + i)) if tl1 + i < êj

βj

(

tl1 + i − d̂j

)

if tl1 + i > d̂j

0 in other cases

(2)

for 1 ≤ i ≤ tl2 − tl1 and 0 ≤ q ≤ m − 1, and where j is the

j-th job in Jl, subject to

∀1≤i≤il

jl
∑

j=1

xij ≤ 1, (3)

∀1≤j≤jl

il
∑

i=1

xij = 1. (4)

In case of the problem P-max, the minimization of the objec-

tive value can be formulated as follows:

min : max
1≤i≤il,1≤j≤jl

{cijxij} (5)

for il = m (tl2 − tl1) and jl = |Jl|, subject to constraints

(3)–(4), where cij is given by (2). The value xij should be

interpreted as follows:

xij = 1 ⇔

⇔







j-th job in Jl is scheduled on processor

⌈

i

tl2 − tl1

⌉

Sj = tl1 + (i − 1) mod (tl2 − tl1)
(6)

for 1 ≤ i ≤ il and 1 ≤ j ≤ jl.

Bull. Pol. Ac.: Tech. 57(3) 2009 211

A. Janiak, W.A. Janiak, and R. Januszkiewicz

Theorem 1. Optimal solutions for problems P-sum and P-max

can be found in O
(

n5
)

and O
(

n4
√

n log n
)

time, respective-

ly.

Proof. At first the set J of all n jobs is partitioned using

algorithm PARTITION into k ≤ n disjoint subsets J1, . . . , Jk.

If the jobs in J are sorted according to the non-decreasing

order of êj (that takes O (n log n) time) then computation in

algorithm PARTITION takes O (n) time. Thus, the operations

of sorting and partitioning the jobs take O (n log n) time. By

Lemma 3, with subset Ji there is associated an interval of

length at most O (n|Ji|/m), for i = 1, . . . , k. The data of the

instance of the assignment problem, which by Lemma 4 must

be solved for each subset Ji and the associated interval, can

be represented as a graph with a number O (n |Ji|) of vertices

and O
(

n2 |Ji|
)

of edges. The min-sum assignment problem

with a number |V | of vertices and |E| of edges is solvable

in O
(

|V |2 log |V | + |V | · |E|
)

time (see [11]) and the min-

max assignment problem is solvable in O
(

|E|
√

|V | log |V |
)

time (as a special case of the bottleneck transportation prob-

lem with unit edge capacities, see [12]). Therefore, the optimal

solution for problem P-sum can be found in

k
∑

i=1

O
(

(n |Ji|)2 log (n |Ji|) + n |Ji| · n2 |Ji|
)

≤

≤
k
∑

i=1

O
(

(n |Ji|)2 log n2 + n3 |Ji|2
)

=

=

k
∑

i=1

O
(

(n |Ji|)2 log n + n3 |Ji|2
)

=

=

k
∑

i=1

(

O
(

n2 |Ji|2 log n
)

+ O
(

n3 |Ji|2
))

=

= O
(

n3
)

k
∑

i=1

|Ji|2 ≤ O
(

n5
)

time, and for problem P-max in

k
∑

i=1

O
(

n2 |Ji|
√

n |Ji| log (n |Ji|)
)

≤

≤
k
∑

i=1

O
(

n2 |Ji|
√

n |Ji| log n2
)

=

= O
(

n2
√

n log n
)

k
∑

i=1

|Ji|1.5 ≤

≤ O
(

n2
√

n log n
)

k
∑

i=1

|Ji|2 ≤

≤ O
(

n4
√

n log n
)

time, since
∑k

i=1 |Ji|2 ≤
(

∑k

i=1 |Ji|
)2

= |J |2 = n2.

The solution procedure for problems P-sum and P-max

established by Theorem 1 can be extended to the case when

for each job j there is given an arbitrary integer release date

rj (rj ≤ êj). Notice, that Sj(σ) ≥ rj must hold for each

job in any feasible schedule σ. If the set of all jobs J is

partitioned into disjoint subsets using algorithm PARTITION,

then for each subset Jl and job j ∈ Jl Sj ∈ [tl1, tl2],
where tl1 = max {0, mini∈Jl

{êi} − ⌈|Jl|/m⌉} and tl2 =
maxi∈Jl

{êi} + ⌈|Jl|/m⌉. Observe that rj ≤ maxi∈Jl
{êi}

for each j ∈ Jl. Since all the jobs from subset Jl can be

scheduled in an even narrower interval [maxi∈Jl
{êi} , tl2],

then they can also be scheduled in [tl1, tl2]. Thus, it is only

necessary to ensure that the starting time of each job is equal

to or greater than its release date. To do this, the cost matrix

c in (2) has to be replaced with c′ defined as follows:

c′(i+q(tl2−tl1))j =

=























M if tl1 + i < rj

αj (êj − (tl1 + i)) if tl1 + i < êj and tl1 + i ≥ rj

βj

(

tl1 + i − d̂j

)

if tl1 + i > d̂j

0 in other cases

,

(7)

where M is an arbitrary large number, e.g.

M = n
∑n

j=1
(αj + βj).

Therefore, the following theorem can be stated.

Theorem 2. Optimal solutions for problems P-sum and P-max

with arbitrary integer job release dates rj (rj ≤ êj) can be

found in O
(

n5
)

and O
(

n4
√

n logn
)

time, respectively.

3.2. Minimization of weighted number of early and tardy

jobs. In the following part of the paper we analyze prob-

lems of minimizing the total weighted number of early and

tardy jobs. The problem with arbitrary job weights and the

problem with agreeable earliness-tardiness weights are stud-

ied separately. We provide properties of optimal solutions and

optimal polynomial time algorithms to solve the above men-

tioned problems.

Lemma 5. There exists an optimal solution for problem P-

num such that the starting time Sj of any job j meets the

following condition:

max
{

êj −
⌈ n

m

⌉}

≤ Sj ≤ êj +
⌈ n

m

⌉

− 1.

Lemma 6. Let the set of all jobs J be partitioned in-

to two subsets J ′ and J ′′, such that |J ′| = k < n and

|J ′′| = n− k and maxj∈J′ {êj}+ ⌈k/m⌉ ≤ minj∈J′′ {êj}−
⌈(n − k)/m⌉. There exists an optimal solution to problem

P-num in which only jobs from J ′ are scheduled in interval

[max {0, minj∈J′ {êj} − ⌈k/m⌉} , maxj∈J′ {êj} + ⌈k/m⌉].
Proofs of the above provided lemmas are similar to ones

of Lemmas 1 and 2 for problems P-sum and P-max.

Lemma 7. If the set J of all n jobs is partitioned using algo-

rithm PARTITION into k ≤ n disjoint subsets J1, . . . , Jk, such

that the jobs from subset Jl should be scheduled in interval

[tl1, tl2], then an optimal allocation of jobs to the processors

and determination of starting times for problem P-num can be

212 Bull. Pol. Ac.: Tech. 57(3) 2009

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs

obtained by solving a proper min-sum assignment problem for

each set Jl and an associated interval [tl1, tl2].

Proof. According to Lemma 6, it is possible to partition set

J into disjoint subsets, and jobs that belong to each such sub-

set Jl should be scheduled in different interval. Therefore,

the objective criterion for problem P-num can be rewritten as

follows:

fnum (σ) =
n
∑

j=1

(αjVj (σ) + βjUj (σ)) =

=

k
∑

i=1

∑

j∈Ji

(αjVj (σ) + βjUj (σ))

under assumption that
⋃k

i=1 Ji = J and Ji ∩ Jj = Ø, for

i, j = 1, . . . , n, i 6= j.

For each subset Jl and an associated interval [tl1, tl2] the

minimization of the criterion value for problem P-num can be

formulated as follows:

min :

il
∑

i=1

jl
∑

j=1

cijxij (8)

for il = m (tl2 − tl1) and jl = |Jl|, where

c(i+q(tl2−tl1))j =











αj if tl1 + i < êj

βj if tl1 + i > d̂j

0 in other cases

(9)

for 1 ≤ i ≤ tl2 − tl1 and 0 ≤ q ≤ m − 1, and where j is the

j-th job in Jl, subject to

∀1≤i≤il

jl
∑

j=1

xij ≤ 1, (10)

∀1≤j≤jl

il
∑

i=1

xij = 1. (11)

Value xij should be interpreted as stated in Eq. (6).

Theorem 3. An optimal solution to problem P-num can be

found in time O(n5).

Proof. Analogous to the proof of Theorem 1.

As for problems P-sum and P-max, the solution method

established for problem P-num can be extended to the case

when for each job j there is given an arbitrary integer release

date rj (rj ≤ êj). To do this, the cost matrix c in (9) has to

be replaced with c′ defined as follows:

c′(i+q(tl2−tl1))j
=

=



















M if tl1 + i < rj

αj if tl1 + i < êj and tl1 + i ≥ rj

βj if tl1 + i > d̂j

0 in other cases

,
(12)

where M is an arbitrary large number, e.g.

M = n
∑n

j=1
(αj + βj).

Thus, the following theorem can be stated.

Theorem 4. An optimal solution to problem P-num with ar-

bitrary integer job release dates rj (rj ≤ êj) can be found in

O
(

n5
)

time.

We now pass to consider the special case of prob-

lem P-num with agreeable earliness-tardiness weights, i.e.

αi ≥ αj ⇔ βi ≥ βj . This simplified problem will be de-

noted as PA-num. In the following part of the paper there

are provided additional properties of problems P-num and

PA-num which allow us to construct a dedicated algorithm

for problem PA-num.

Lemma 8. For each optimal solution to problem P-num the

following properties must be satisfied:

a) if αj > βj then job j cannot be early;

b) there do not exist two jobs i, j for which Si ≥ d̂i,

êj − 1 ≤ Si ≤ d̂j − 1 and Sj < êj − 1 or Sj ≥ d̂j ;

c) there do not exist two jobs i, j for which Si < êi − 1,

Sj < êj − 1 and êj − 1 ≤ Si ≤ d̂j − 1.

Proof. Case (a) Assume that there is an optimal schedule σ
in which there exists job j such that αj > βj and Sj < êj−1.

Assume that the schedule σ′ has been obtained from σ by set-

ting Sj (σ′) = t for any t ≥ d̂j such that at least one processor

is idle in the interval [t, t+1]. Thus, job j is tardy in schedule

σ′. Observe that the objective criterion value for the sched-

ule σ′ is smaller than for σ by αj − βj . This contradicts the

optimality of the schedule σ.

Case (b) Assume that there is an optimal schedule σ in which

there exist two jobs i and j such that Si ≥ d̂i, Sj < êj − 1 or

Sj ≥ d̂j , and êj −1 ≤ Si ≤ d̂j −1. Assume that the schedule

σ′ has been obtained from σ by setting Sj (σ′) = Si (σ) and

Si (σ′) = t for some t ≥ Si (σ) (or t > Si (σ) in case of

a single processor). Observe that the penalty incurred by jobs

i and j in the schedule σ is αj + βi or βj + βi, and in the

schedule σ′ is at most βi. Thus, σ cannot be optimal.

Case (c) Assume that there is an optimal schedule σ in which

there exist two jobs i and j such that Si < êi−1, Sj < êj −1

and êj − 1 ≤ Si ≤ d̂j − 1. Observe that Sj < Si in σ. As-

sume that the schedule σ′ has been obtained from σ by setting

Sj (σ′) = Si (σ) and Si (σ′) = Sj (σ). The penalty incurred

by jobs i and j in the schedule σ is αi + αj , and in the

schedule σ′ is αi. This contradicts the optimality of σ.

Lemma 9. In each optimal solution to problem P-num if

Sj < êj − 1 for some job j then for each job i scheduled

such that êj − 1 ≤ Si ≤ d̂j − 1 and êi − 1 ≤ Si ≤ d̂i − 1 we

have αi ≥ αj .

Proof. Assume there is an optimal schedule σ in which there

exist two jobs i and j such that Sj < êj − 1, êj − 1 ≤
Si ≤ d̂j − 1, êi − 1 ≤ Si ≤ d̂i − 1 and αi < αj . As-

sume that the schedule σ′ has been obtained from σ by set-

ting Si (σ′) = Sj (σ) and Sj (σ′) = Si (σ). Observe that the

penalty incurred by jobs i and j in the schedule σ is αj , and

in the schedule σ′ is at most αi. Since αi < αj , then σ cannot

be optimal.

Bull. Pol. Ac.: Tech. 57(3) 2009 213

A. Janiak, W.A. Janiak, and R. Januszkiewicz

Lemma 10. In each optimal solution to problem P-num if

Sj ≥ d̂j − 1 for some job j then for each job i scheduled

such that êj − 1 ≤ Si ≤ d̂j − 1 and êi − 1 ≤ Si ≤ d̂i − 1 we

have βi ≥ βj .

Proof. Analogous to the proof of Lemma 9.

Lemma 11. In each optimal solution to problem P-num if

Si < êi − 1, Sj ≥ d̂j , Sj ≥ d̂i, and êj − 1 ≤ Si ≤ d̂j − 1 for

some jobs i and j then βi ≥ αi + βj .

Proof. Assume there is given an optimal schedule σ in which

exist two jobs i and j such that Si < êi−1, Sj ≥ d̂j , Sj ≥ d̂i,

êj−1 ≤ Si ≤ d̂j−1 and βi < αi+βj . Assume that the sched-

ule σ′ has been obtained from σ by setting Si (σ′) = Sj (σ)
and Sj (σ′) = Si (σ). The penalty incurred by jobs i and j in

the schedule σ is αi + βj , and in schedule the σ′ is βi. Since

βi < αi + βj , then σ cannot be optimal.

On the basis of the above lemmas, we will construct an

optimal polynomial time algorithm for the problem PA-num.

Algorithm SCHEDULE (input: J – the set of jobs)

1. Partition J into disjoint subsets using algorithm PARTITION.

2. In each subset Jl sort the jobs in a non-increasing order of

max {αj , βj} and set

Ll = max {0, mini∈Jl
{êi} − ⌈|Jl|/m⌉} and

Ul = maxi∈Jl
{êi} + ⌈|Jl|/m⌉.

3. For each subset Jl until it is empty

a) Choose from Jl job j with the greatest value of

max {αj , βj} and remove j from Jl.

b) If there exists an interval [t, t+1] such that êj − 1 ≤
t ≤ min

{

d̂j − 1, Ul

}

in which some processor is

idle, then set Sj = t and go to a).

c) If for any interval [t, t+1] there exists job i such that

êi−1 ≤ t ≤ d̂i−1 which can be scheduled in a differ-

ent interval (in which some processor is idle) without

introducing an additional penalty, then set Sj = t,
j = i and go to b) (Lemma 9 and 10, and agreeable

earliness-tardiness weights).

d) If for any interval [t, t+1] such that êj − 1 ≤ t ≤
min

{

d̂j − 1, Ul

}

there exists job i which is tardy,

then set Sj = t, j = i and go to b) (Lemma 8,

case b).

e) If for any interval [t, t+1] such that êj − 1 ≤ t ≤
min

{

d̂j − 1, Ul

}

there exists job i which is early and

there exists an interval [t′, t′+1] such that Ll ≤ t′ ≤ t
(Ll ≤ t′ < t in case of a single processor) in which

some processor is idle, then set Sj = t, j = i and go

to b) (Lemma 8, case c).

f) If αj ≤ βj and there exists an interval [t, t+1] such

that Ll ≤ t < êj −1 in which some processor is idle,

then set Sj = t and go to a) (Lemma 8, case a).

g) Choose any interval [t, t+1] such that d̂j ≤ t ≤ Ul

in which some processor is idle, set Sj = t and go

to a).

Theorem 5. Algorithm SCHEDULE solves optimally the prob-

lem PA-num in O
(

n3
)

time.

Proof. Algorithm SCHEDULE is based on the properties estab-

lished by Lemma 6, 8, 9 and 10, and it relies on the condition

that αi ≥ αj ⇔ βi ≥ βj for any jobs i and j, therefore

the solutions obtained by the algorithm are optimal. Assume

that the set J was partitioned into k ≤ n disjoint subsets

J1, J2, . . . , Jk. The bound on the time complexity of the al-

gorithm is based on the assumptions that operations in step c)

can be done in O(q) time where q is the number of already

scheduled jobs and that checking if interval [t′, t′+1] exists in

step e) can be done in O(1) time. To satisfy the first assump-

tion, for each job there must be stored a number of possible

allocations of job to processors within its due window. The

number has to be updated for each job whenever some job is

scheduled in the interval in which some processor is idle. To

fulfill the other assumption, for each

t ∈
[

max

{

0, min
i∈Jl

{êi} − ⌈|Jl|/m⌉
}

, max
i∈Jl

{êi} + ⌈|Jl|/m⌉
]

there must be stored a number of idle intervals for all proces-

sors within the interval
[

max

{

0, min
i∈Jl

{êi} − ⌈|Jl|/m⌉
}

, t

]

.

The number has to be updated for each t whenever some job

is scheduled in the interval in which some processor is idle.

Based on the assumptions, the most time demanding operation

in step (3) is:

a) finding an interval [t, t+1] which can be done in O (n |Jl|)
time, since the length of the interval in which the jobs from

subset Jl must be scheduled is O (n |Jl|/m) and there are

m processors,

b) updating for each t the number of idle intervals for all

processors which can be done in O (n |Jl|) time (since the

number for t is easily calculated based on the number for

t − 1).

Assignment of a job to the processor may require a change

of the assignment for at most one job. Observe that the change

of the assignment for an already scheduled job is possible on-

ly in cases c), d) and e) of step (3). If the operations of

case c) are performed then the reassignment must be done

in case b) of step (3) in the next iteration of the algorithm,

hence without further reassignment. On the other hand, if the

operations of case d) or e) are performed then the job that

must be reassigned is tardy or early, respectively. Thus, the

reassignment of this job must be performed is case f) or g) of

step (3), hence also without further reassignment. The number

of operations required to schedule jobs in the subset Jl can

therefore be estimated by O
(

n |Jl|2
)

. The total computation

time of algorithm SCHEDULE is

k
∑

l=1

O
(

n |Jl|2
)

= O (n)

k
∑

l=1

|Jl|2 ≤

≤ O (n)

(

k
∑

l=1

|Jl|
)2

= O
(

n3
)

.

214 Bull. Pol. Ac.: Tech. 57(3) 2009

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs

4. Conclusions

Problems P-sum, P-max and P-num of scheduling n unit-time

jobs on m identical parallel processors have been studied, in

which with each job is associated a distinct due window and

cost of earliness and tardiness. The optimal solutions to prob-

lems P-sum and P-num can be found in O(n5) time and to

problem P-max in O
(

n4
√

n log n
)

time by solving a polyno-

mial number of instances of min-sum or min-max assignment

problem. The solution methods have been extended to the case

of jobs arbitrary integer release dates. For the special case

of problem P-num with agreeable earliness-tardiness weights

there has been presented a dedicated optimal algorithm with

time complexity O
(

n3
)

.

Further research might be focused on development of

heuristic solution algorithms for scheduling problems with

distinct due windows and arbitrary processing times in the

parallel processor environment. These algorithms might be

based on the algorithms presented in this paper.

REFERENCES

[1] J. Sidney, “Optimal single-machine scheduling with earliness

and tardiness penalties”, Operations Research 25 (1), 62–69

(1977).

[2] E.L. Lawler, “A pseudopolynomial algorithm for sequence jobs

to minimizing total tardiness”, Annals of Discrete Mathematics

1, 331–342 (1977).

[3] C. Koulamas, “Single-machine scheduling with time windows

and earliness/tardiness penalties”, Eur. J. Operational Research

96, 190–202 (1996).

[4] G. Wan and B.P.-C. Yen, “Tabu search for single machine

scheduling with distinct due windows and weighted earli-

ness/tardiness penalties”, Eur. J. Operational Research 142,

271–281 (2002).

[5] C. Koulamas, “Maximizing the weighted number of on-time

jobs in single machine scheduling with time windows”, Math-

ematical and Computer Modelling 25 (10), 57–62 (1997).

[6] W.-S. Yoo and L.A. Martin-Vega, “Scheduling single-machine

problems for on-time delivery”, Computers & Indusrial Engi-

neering 39, 371–392 (2001).

[7] A. Janiak, W.A. Janiak, and M. Marek, “Single processor

scheduling problems with various models of a due window”,

Bull. Pol. Ac.: Tech. 57 (1), 95–101 (2009).

[8] J. Blazewicz, K.H. Ecker, E. Pesch, G. Schmidt, and J. We-

glarz, Handbook on Scheduling. From Theory to Applications,

Springer, Berlin, 2007.

[9] Peter Brucker, Scheduling Algorithms, Springer, Berlin, 2007.

[10] P. Baptiste, P. Brucker, S. Knust, and V. Timkovsky, “Ten notes

on equal-execution-time scheduling”, 4OR 2, 111–127 (2004).

[11] M.L. Fredman, R.E. Tarjan, “Fibonacci heaps and their uses

in improved network optimization algorithms”, J. ACM 34 (3),

596–615 (1987).

[12] A.P. Punnen and R. Zhang, “Bottleneck flows in unit capac-

ity networks”, Information Processing Letters 109, 334–338

(2009).

Bull. Pol. Ac.: Tech. 57(3) 2009 215

