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Aerosol filtration in fibrous filters is one of the principal methods of accurate removal of particulate 

matter from a stream of gas. The classical theory of depth filtration of aerosol particles in fibrous 

structures is based on the assumption of existing single fibre efficiency, which may be used to 

recalculate the overall efficiency of entire filter. Using “classical theory” of filtration one may 

introduce some errors, leading finally to a discrepancy between theory and experiment. There are 

several reasons for inappropriate estimation of the single fibre efficiency: i) neglecting of short-

range interactions, ii) separation of inertial and Brownian effects, ii) perfect adhesion of particles to 

the fibre, iv) assumption of perfect mixing of aerosol particles in the gas stream, v) assumption of 

negligible effect of the presence of neighbouring fibres and vi) assumption of perpendicular 

orientation of homogenous fibres in the filtration structure. Generally speaking, “classical theory” of 

filtration was used for characterization of the steady – state filtration process (filtration in a clean 

filter, at the beginning of the process) without deeper investigation of the influence of the nternal 

structure of the filter on its performance. The aim of this review is to outline and discuss the 

progress of deep-bed filtration modelling from the use of simple empirical correlations to advanced 

techniques of Computational Fluid Dynamics and Digital Fluid Dynamics. 
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1. INTRODUCTION 

A collection of aerosol particles in the particular steps of their production, and purification of the air at 

the workplace and atmospheric environment requires an efficient separation method of particulate 

matter from the carrier gas. Filtration is one of the most effective methods of particle removal from an 

aerosol stream. New fibrous structures could provide a promising tool for the development of highly 

efficient filters. A fibrous material operates by capturing an aerosol particle on fibre surface within the 

filter depth. Its effectiveness depends on the particle and fibre size, filter porosity and material 

properties of particle and filter media. Performance of a filter can be defined by its efficiency, pressure 

drop, and dust capacity. The basic principle of deep bed filtration is that solid particles suspended in a 

fluid are typically smaller than the pores of the filtering medium and as they deposit on fibres they 

become evenly distributed in the entire volume of the filter. As the fluid-solid suspension flows through 

the filter, particles present in the suspension deposit at various depths within the bed, that is, on solid 

walls bordering pore spaces. This leads to progressive clogging of a filter and a subsequent increase of 

pressure drop across it. Thus, it is usual to divide the filtration process into two stages: initial and aging. 

In the initial stage, the deposition of particles inside the filter is relatively small. Its effect on the 
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properties of the filter is negligible, and the performance of the filter can be regarded as that of a clean 

filter. 

However, to produce the optimal filter structure for the given application, it is necessary to know not 

only the characteristic of a clean filter but also its behaviour during loading. The presence of previously 

deposited particles causes an increase of both – filtration efficiency and pressure drop. It is worth 

noting that not only the total amount of deposited particles but also their spatial distribution and 

structure affect filter performance. When pressure drop approaches the maximum acceptable value that 

corresponds to the clogging of the media the filter has to be regenerated or changed. 

The application of the “classical theory” of filtration for description of filter performance may 

introduce some errors for the realistic filter behaviour. There are several reasons for inappropriate 

estimation of the single fibre efficiency: neglecting of short-range interactions, separation of inertial 

and Brownian effects in description of particle motion, assumption of perfect adhesion of particles to 

the fibre and perfect mixing of aerosol particles in the gas stream, assumption of negligible effect of the 

presence of neighbouring fibres and their perpendicular orientation in the filtered structure. 

The aim of this review is to outline and discuss the progress of deep-bed filtration modelling from the 

use of simple empirical correlations to advanced techniques of Computational Fluid Dynamics and 

Digital Fluid Dynamics. 

2. CLASSICAL THEORY OF DEEP BED FILTRATION 

The main assumptions of “classical theory” can be summarised as follows (Podgórski, 2002): 

 Initial penetration of aerosol particles through a filter is calculated as: 

 )Lexp(  1  (1) 

 The filter coefficient is related to single fibre efficiency as: 
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 The single fibre efficiency (defined as a ratio of the flux of particles depositing onto the fibre to the 

flux of particles passing a surface being projection of the fibre onto a plane perpendicular to the 

direction of mean motion) is calculated assuming that the deposition efficiency due to deterministic 

mechanisms (inertial impaction, sedimentation, electrostatic force) and stochastic mechanism 

(Brownian diffusion) are independent: 

 )E)(E(E diffdet  111  (3) 

 Edet may be obtained using limiting trajectory concept and solving the deterministic, Lagrangian 

equation of motion for a particle, neglecting Brownian motion, Ediff is calculated solving Eulerian 

(convective-diffusion) equation for a weightless particle in the absence of external forces. 

 Both, Edet and Ediff are calculated for an assumed model of gas flow around a single circular fibre. 

 The perfect adhesion. No rebound of a particle colliding with fibre surface may occur. 

3. GAS FLOW MODELS 

3.1. Isolated fibre models 

The existing models of gas flow in fibrous filters were developed in most instances for the 2D case. For 

isolated fibre models, the gas flow field near a collector in a fibrous filter is estimated solving the 

governing equations for the simplest geometrical system of a single, circular cylinder in unbounded 
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space. Consequently, the effect of neighbouring fibres on the gas flow pattern around the fibre 

considered is completely neglected. 

The potential flow was the first model ever used to investigate aerosol filtration in fibrous filters 

theoretically (Albrecht, 1931; Sell, 1931). The potential flow is the model of a steady state, vorticity-

free flow of an inviscid, incompressible fluid. The major drawbacks of the potential flow model are 

related to the neglect of the fluid viscosity and the assumption of zero vorticity due to which the 

tangential component of the gas velocity does not vanish at the fibre surface. Consequently, gas 

velocities are much too high near the fibre and hence the efficiency of aerosol particle deposition 

calculated using this model is expected to be significantly overestimated. 

As most fibrous filters operate at low Reynolds numbers defined as Re = U df / vf, the model of creeping 

flow seems to be a much better alternative than that of potential flow. This approximation assumes 

predomination of the viscous forces over the inertial ones. Unfortunately, it is impossible to match the 

constants of integration in order to satisfy exactly all the boundary conditions (fixed velocity in infinity 

and vanishing gas velocity at the fibre surface). 

The validity of the creeping flow approximation that neglects the inertial effects of the fluid motion is 

restricted to the values of the Reynolds number below about 0.5; losing a bit more accuracy it could be 

extended to Re = 1. An approximate method of approach to this issue enabling an analytical solution to 

the problem was suggested by Oseen (1927). The first approximate solution to that problem for the 

transverse flow past a circular cylinder was given by Lamb (1932). Two important features of the Lamb 

model should be outlined: being formally a solution to the Oseen problem, it still retains the 

downstream-upstream symmetry, so that the inertial effects of the fluid flow are not accounted for 

properly, and although the gas velocity vanishes at the fibre surface, both components of the velocity 

tend to infinity far from the fibre. It means that the Lamb model is still limited to very low values of the 

Reynolds number. But in addition, the Lamb model might have a high degree of error if used in the 

modelling of filters with extremely high porosity, when the mean inter-fibre distances are very large 

compared to the fibre diameter and one has to compute the trajectories of aerosol particles beginning 

very far from the fibre. 

The next, more successful trial to improve the Lamb solution, was undertaken by Tomotika and Aoi 

(1950) who employed a different kind of expansion to obtain the stream function as a sum of the stream 

function given by Lamb plus a correction term proportional to the Reynolds number. Tomotika and 

Aoi’s solution is a first order (with respect to Re) correction to the Lamb model, hence it also possesses 

an undesirable property of diverging gas velocity to infinity at an infinite distance from the fibre, 

though, like for the Lamb model, the non-slip conditions at the fibre surface are fulfilled exactly. 

Podgórski (1993) has shown a very accurate solution to the Oseen problem using Imai’s (1951) method 

of a complex disturbance velocity. A comprehensive comparison of the various flow models past an 

isolated fibre and an analysis of their applicability in the modelling of aerosol filtration in fibrous filters 

was presented by Lastow and Podgórski (1998). 

3.2. Fibre in cell models 

In contrast to isolated fibre models, fibre-in-cell models also describe one fibre but it placed centrally in 

a finite volume of fluid, called the unit cell. For the most popular, Kuwabara (1959) and Happel (1959) 

models, this unit cell is a cylinder (coaxial with a fibre) of radius RK , such that RK = Rc /1/2, Kuwabara 

(1959) derived a formula for the stream function for the creeping flow assuming non-slip conditions on 

the fibre surface and normal velocity and vorticity at the border of the unit cell to be zero. Happel 

(1959) obtained a similar solution assuming the tangential stress instead of vorticity to be zero at the 

cell border. 
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Kirsch and Fuchs (1967) measured fluid velocities in a system of parallel cylinders and concluded that 

the Kuwabara formula fits the experimental data better than the Happel solution. The Kuwabara model 

was extended by Pich (1966), Yeh and Liu (1974) and Henry and Ariman (1981) to allow for possible 

gas slip on the surface of an ultrathin fibre. In practice, this extension is important for fibres with a 

diameter below one micrometer. A disadvantage of the Kuwabara and Happel models is related to the 

fact that it is impossible to compose a filter structure as a set of circular unit cells (without the cells 

overlapping or empty spaces between them). Marshall et al. (1994) derived an approximate analytical 

solution for a fibre in a square cell that obeys periodic boundary conditions; the resulting formula for 

the stream function is much more complex than the Kuwabara solution. The authors reported that 

deposition efficiency predicted by the rectangular cell model is higher than that for the original 

Kuwabara model. Banks and Kurowski (1990) extended the 2D Kuwabara model for the case of gas 

flow past a fibre inclined with respect to the main direction of the gas flow. 

3.3. Analytical solution of flow around two fibres 

Przekop and Podgórski (2004) have proposed a solution to the Oseen problem for the case of two 

cylindrical fibres. The authors noticed that an approximate analytical solution can easily be obtained 

using Imai’s (1951) method of complex disturbance velocity, which was used earlier by Podgórski 

(1993) to obtain a solution to the Oseen problem in case of a single fibre. Let us introduce two 

Cartesian coordinate systems Ox1y1- and Ox2y2- engaged in the centre of the second fibre, oriented such 

that axes Ox1 and Ox2 overlap the main direction of gas flow. Similarly, let us introduce two cylindrical 

coordinate systems engaged in the centre of both fibres, Or11 and Or22, where angles 1 and 2 are 

measured from axes Ox1 and Ox2, respectively, counter-wise to the main direction of the gas flow  

(Fig. 1). 

 

Fig. 1. Definition of the co-ordinates systems for flow past two fibres 

Following the Imai’s scheme one may introduce a complex coordinate z = x + iy, where 1i  is an 

imaginary unit and a complex disturbance velocity U, such that U+u0=ux-iuy. A general solution to the 

Oseen problem in cylindrical coordinate system has the following form if one decomposes U into 

harmonic, Uh, and non-harmonic, Uu, components: 
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where 
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Let us define: 
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In view of ux = u0+Re(U) and uy = Im(U), where Re(U) and Im(U) denote the real and imaginary 

parts, respectively, we can calculate their values as: 
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To obtain 8N constants of integration (an
(1), bn

(1), an
(2), bn

(2), n
(1), n

(2), n = 1,…, N) one uses the zero-

velocity condition for both components on both fibre surfaces and expands the exponential components 

into Fourier-Bessel series which leads to a system of 8N linear equations, from which the necessary 

constants may be derived. 

Similary to Podgórski (1993) solution for the case of a single fibre, the method fulfils the condition of 

steady gas velocity away from the fibre surface. 

The results obtained by Przekop and Podgórski (2004) have shown a strong influence of mutual fibre 

orientation on filtration efficiency and spatial distribution of deposits, which suggests that mesoscale 
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inhomogeneity of filter structures may influence the overall filtration efficiency. This problem will be 

discussed later in this review. 

3.4. Multi fibre models 

No exact analytical solution to the problem of gas flow in a system consisting of many fibres exists. 

However, some analytical approximate solutions can be obtained for assumed regular arrangements of 

fibres. There are two popular models of a fibrous filter: channel structure (rectangular array) and 

staggered model (hexagonal array). The basic element of such structures is a row of parallel cylinders. 

General solutions of the problem of creeping flow past a row of fibres were obtained by Tamada and 

Fujikawa (1957) and Miyagi (1958) in the form of an infinite series. Explicit expressions for gas 

velocity components taking into account only the first terms of the series were first presented by Kirsch 

and Stechkina (1977). However, such a description was not sufficiently accurate (for typical values of 

the filter porosity, that solution gave the velocity on the fibre surface of the order of 10% of the mean 

gas velocity). Expansions for two terms of the series were given by Podgórski and Gradoń (1992), and 

an even more accurate solution for three terms was presented by Podgórski et al. (1998). 

4. THE COUPLING OF DETERMINISTIC AND STOCHASTIC MECHANISMS 

Particle collection by interception occurs when a particle follows a gas streamline that happens to come 

within a particle radius to the surface of a fibre. The particle hits the fibre and is captured due to its 

finite size. The single fibre deposition efficiency due to interception depends on the dimensionless 

parameter, R, defined as 
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The single fibre efficiency due to interception was given by Lee and Ramamurthi (1993) as: 
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where Kuwabara factor, Ku, is defined as: 
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Inertial impaction occurs when the particle, because of its inertia, is unable to adjust quickly to the 

abruptly changing streamlines near the fibre and crosses those streamlines to hit the fibre. The 

parameter that governs this mechanism is Stokes number 
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The single fibre efficiency for inertia was given by Yeh and Liu (1974) 
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where: 
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 2.0=J           for R > 0.4 (14) 
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Impaction is the most important mechanism for large particles. But such particles reveal significant 

collection by direct interception as well. The sum of EI and ER may not exceed the theoretical value of 

R+1. 

The Brownian motion of small particles is sufficient to greatly enhance the probability of their hitting a 

fibre while travelling past it on a non-intercepting streamline. The single fibre efficiency is a function 

of dimensionless Peclet number, Pe 
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The single fibre efficiency due to diffusion was empirically determined by Kirsch and Fuchs (1968) as 
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Theoretical expression for Ediff including the effect of Ku was presented by Brown (1993) 
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In estimating the deposition efficiency near the size of minimum efficiency Hinds (1999) reported the 

necessity to include the interaction term for enhanced collection due to the interception of diffusing 

particles 
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Generalised Brownian dynamics algorithm accounting simultaneously for particle inertia, random walk, 

convection in a moving fluid and influence of external forces was derived by Podgórski (2002) from 

Chandrasekhar’s (1943) method. Particle trajectory is calculated for the generalised Besset-

Boussinesqu-Ossen equation, which in a simplified form is reduced to the following expression: 

 
)R()ext()D( FFF

dt

dv
m   (19) 

Integration of Eq. (19) for the time interval Δt, small enough that the host fluid velocity ui and the 

external force Fi
(ext) may be assumed constant over (t,t + Δt), gives the following bivariate normal 

density probability distribution functions φi(Δvi, ΔLi) that during time interval Δt the particle will 

change its ith component of velocity by Δvi and it will be displaced by a distance ΔLi in ith direction. 
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The generalised algorithm for the Brownian dynamics can be formulated as follows. For a given initial 

particle position and its initial velocity components, vi, at a moment t, we calculate the local fluid 

velocity, ui, the external forces, Fi
(ext), then, one calculates the expected values <Δvi> and <ΔLi> and the 

correlation coefficient, ρc. Next, we generate two independent random values GLi, Gvi, having Gaussian 

distribution with zero mean and a unit variance. Finally, we calculate the change of particle velocity, 

Δvi, and the particle linear displacement, ΔLi, during time step Δt from the expressions accounting for 

deterministic and stochastic motion: 
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All the steps are repeated for each co-ordinate i = 1, 2, 3. Having determined the increments Δvi  and 

ΔLi the new particle velocity at the moment t + Δt is obtained as vi (t+Δt) = vi+Δvi, and in the same 

manner the new particle’s position is calculated. After completing one time-step of simulations, the 

next step is performed in the same way. 

Based on comparison of Brownian dynamics calculations of a single fibre efficiency and “classical 

theory” estimations of deterministic and diffusive deposition, Sztuk et al. (2012) have reported the 

enhancement term in a similar form to Eq. (18). 

5. THERMAL REBOUND AND RESUSPENSION 

5.1. Empirical correlations 

Most theories of aerosol filtration in fibrous filters assume that the particle is captured when it collides 

with a fibre. However, the particle may bounce-off the collector if its kinetic energy is high enough to 

overcome the energy of adhesion. Maus and Umhauer (1997) observed experimentally that the 

collection efficiency of particle drops for values of the Stokes number above 2. The authors suggested 

the following empirical correlation for the adhesion efficiency (defined as the ratio of the actually 

measured collection efficiency to that calculated with the particle rebound neglected): 

  21761 Stk/)Stk.(AE   (23) 

Another formula was proposed by Ptak and Jaroszczyk (1990): 
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Using the data collected by Brown (1993), Podgórski et al. (1998) derived another correlation: 

 
24041081
.

kpE.AE
  (25) 

Kasper et al. (2010) have introduced bounce parameter ~ Stk/R. The authors concluded that compact, 

forward facing deposit structures dominate in case of significant particle bounce (> * where * 

represents the critical conditions for the onset bounce on the bare fibre). For smaller values of bounce 

parameter, dendritic structures with pronounced sideways branching are formed. The critical bounce 

parameter is defined as *= dpU
*. The critical fluid velocity, U*, is defined as fluid velocity above 

which particles start to bound. Critical fluid velocity depends on particle size and material (Wang and 

John, 1987). 

5.2. Molecular Dynamics 

Moskal and Przekop (2002) have used Molecular Dynamics method to model particle deposition on 

surfaces. In this method the motion of each particle is computed by Newton’s law. The standard pair-

wise potential in Molecular Dynamics simulations is the Lennard-Jones potential 
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Molecular dynamics can be used to calculate, both, static and dynamic properties of the system. The 

method briefly described above was used to simulate the impact of a particle with collector surface. 

Particle deformations during the impact were observed. Also, the possibility of particle rebound from 

surface was theoretically confirmed. The method allows to predict forces acting between the particle 

and surface during the impact. 

5.3. Energy-balanced oscillatory model 

Energy-balanced oscillatory model of particle rebound and resuspension was introduced by Przekop  

et al. (2004). The model is based on adhesion theory. There are two dominating models of particle 

adhesion proposed by Johnson et al. (1971), known as JKR theory, and by Derjaguin et al. (1975), 

referred to as DMT theory. The JKR model assumes that adhesion-induced deformations are entirely 

elastic. Deformations could be calculated from three terms: the elastically stored energy from creating 

the contact zone, the mechanical potential energy, and the surface energy. The JKR theory assumes that 

interaction forces exist at the contact area only. When the applied load is negative, the contact area 

decreases. This means that the force of adhesion may be defined as the opposite of the force required to 

separate two bodies: 

 pa dF 
2

3
  (27) 

The contact area corresponding to this force is not zero. However, it jumps to zero as the surfaces 

spontaneously separate. The DMT theory does not approach the problem of particle adhesion from a 

contact mechanism perspective. It takes into account the molecular attraction in the noncontact zone. 

The analysis consists of two steps: determination of a shape of a particle near the contact surface and 

calculation of the sticking force. The applied load causes a pressure distribution over the contact area. 

The DMT model assumes that this distribution is given by Hertz equations (Hertz, 1896). The theory 

considers the generalised force of particle attraction, Fs, the elastic reaction force, Fe, and the adhesion 

force, Fa = Fs − Fe. When the sphere just touches the plane (“point contact”), there is no deformation 

and the adhesion force has the maximum value: 

 pa dF 2  (28) 

Muller et al. (1980) proposed a model, later called MYD, in which the surface forces were calculated 

by doing a pairwise summation of interaction potentials between atoms. The basic assumption is that 

atoms in a particle are interacting with those in the substrate via a Lennard-Jones potential (Lennard-

Jones, 1924) and the motion of one atom does not affect the position of neighbouring atoms. According 

to MYD theory, both the JKR and DMT models are its subsets and have their ranges of validity. The 

JKR model is proper for compliant materials, large particles, and high values of work of adhesion, 

whereas the DMT model is valid for small particles, more rigid materials, and lower surface energies. 

The resuspension model is based on works by Reeks et al. (1988) and Ziskind et al. (2000). The authors 

assumed that the adhesion force and elastic reaction force considered in the JKR theory can be 

described by an equation of harmonic movement with dumping effect. Extending this approach, one 

can assume that the interactions between particles also have an oscillatory character. The displacement 

of a particle at the cluster attached to the neighbouring particles can be expressed as follows: 
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The coefficient of stiffness can be calculated from the expression: 
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The elastic constant κ is given by: 
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The coefficient of dumping b = bf + bm, where 
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The process of resuspension is caused by external forces, but the transmission of stress by interactions 

between particles is also important. Interaction between particles (or particle and collector) vanishes 

when the distance between their surfaces is larger than yb. 
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6. MESOSCALE INHOMOGENEITY 

The first approach to modelling of mesoscale in homogeneity were purely empirical correction factors, 

derived to obtain agreement between theory and experiment (Benarie, 1969). These correction factors 

(called filter inhomogeneity factors) are defined as: 
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Cai (1992) reported the following expressions: 
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Shweers and Löffler (1994) subdivided a filter into a series of cubical elements with different local 

permeabilities and then used the known correlations for the single fibre deposition efficiency for each 

element. The distribution of local packing densities was assumed to be log-normal. The overall filter 

efficiency was then calculated element by element. A similar approach was used by Dhaniyala and Liu 

(2001). The authors also assumed log-normal distribution of local packing densities and used well 

known correlations to calculate single fibre efficiency as a function of the local packing density. The 
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filter efficiency was then obtained computing the integral-mean of the deposition efficiency averaged 

over the assumed distribution of the packing density. An even simpler model was proposed by Clement 

and Dunnett (2000). The authors used the standard equation of the “classical theory”, Eq. (1), assuming 

that for a non-uniform filter the parameter is a random variable (along various paths through a filter) 

having Gaussian distribution. 

All these models can predict a lower pressure drop and a higher penetration than results from the 

“classical theory” for homogeneous structures. Neither of them, however, seems to be realistic, since 

they are based on the concept of the single fibre efficiency and averaging over an assumed distribution. 

Thus, the effect of neighbouring fibres is in practice neglected. Moreover, as the transport of aerosol in 

a porous space between many fibres is not considered in these models, the fundamental phenomena 

related to the filter non-uniformity (namely, a preferential “channelling” of flow through regions of a 

higher local porosity and the “shadowing” of fibres by preceding ones in zones of a lower local 

porosity) are not taken into consideration. Podgórski and Moskal (2001) and Podgórski (2002) have 

performed the analysis for a representative volume of a filter, which contains a small enough number of 

fibres to enable a numerical solution of microscopic transport equations, and simultaneously large 

enough to assure that the results obtained are statistically significant. 

The model calculations consisted of the following steps: a) generation of a filtering structure consisting 

of 100 fibres placed in space in an assumed way (completely random distribution, perfectly regular 

arrangement of fibres, or a slightly disturbed ordered structure); b) characterisation of the degree of the 

structure inhomogeneity by dividing it into smaller parts, determination of the local packing densities 

and the standard deviation of the packing density distribution; c) calculation of the microscopic flow 

pattern in the entire structure by numerical solution of Navier-Stokes equation (using Fluent CFD 

package) and determination of the pressure drop; d) solution of Lagrangian transport equations 

(Brownian dynamics method) for a cloud of 10.000 particles injected into the filter and direct 

determination of the overall penetration by counting the number of particles leaving the filter; due to 

the stochastic nature of Brownian motion, step d) is repeated several times and results are averaged. 

Such simulations allow the relationships between the filter penetration, pressure drop, standard 

deviation of the local packing density and particle residence time to be established. 

It may be concluded that classical theories of homogeneous filter media always overestimate pressure 

drop in real, more or less random fibrous filters. The pressure drop in a filter with a random 

arrangement of fibres is well correlated with the degree of filter inhomogeneity measured by the 

standard deviation of the local mesoscale packing density and this relationship seems to be linear. 

Too high variability of the local filter porosity causes very strong channelling of the aerosol stream 

resulting in a drop of filtration efficiency. On the other hand when the structure becomes too regular, 

the shadowing effect (also lowering filtration efficiency) may be the predominant phenomenon so an 

optimum level of filter inhomogeneity might be expected. From the practical point of view, it seems 

that the bypass effect is most important for real fibrous filter structures. 

Similar results were obtained by Przekop and Jackiewicz (2016). The authors studied the influence of 

filter inhomogeneity and fibre size distribution on deposition efficiency and pressure drop using 3D 

lattice-Boltzmann hydrodynamics combined with Brownian Dynamics model of particle displacement. 

The assumption of polydispersity of fibre sizes increased the predicted values of filtration efficiency. It 

was probably related to the presence of small fibres in the filter structure. 

Przekop and Gradoń (2008) analysed the time evolution of quality factor defined as: 
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for homogenous and inhomogeneous filter structures. It was shown that for inhomogeneous structures 

the time of filter clogging can be significantly longer than that of regular ones, so some optimum level 

of polydispersity not only for initial filter performance, as mentioned above, but also for its time 

evolution is expected. 

7. DEPOSITION OF NON-SPHERICAL PARTICLES 

When the transport of spherical particle is considered, it is usually sufficient to take into account only 

the translation of the particle mass centre. However aerosol aggregates composed of many solid 

particles are of great concern in most environmental issues (Wichmann and Peters, 2000). Real 

aggregates may undergo modifications of structure owing to the fluid–structure interaction during their 

movement in fluid. This fact has explicit importance in estimating aggregate deposition ratios on filter 

fibre. In order to establish deposition efficiencies for fractal-like aggregates, one should include 

interactions between primary particles which are often not stiff. Aggregate deposition efficiency is 

determined largely by the deformation of their structure. A flexible or rigid structure of aggregate gives 

different values of deposition efficiency (Podgórski et al., 1995). With the increasing power of the 

computers, research into the dynamics of fractal-like aggregates has been enhanced by their more 

complex and accurate mathematical models. There are two ways to model fractal-like aggregates. The 

first is to model an aggregate structure as a rigid body, which does not undergo deformation. An 

example of this approach can be followed in the work of Moskal and Payatakes (2006). The algorithm 

for the random displacement of small aggregates, whose deposition is controlled by diffusion, can be 

found in Bałazy and Podgórski (2007). The most important fact in this approach is that the structure 

and accurate shape of the aggregate are included, in order to find the real movement of the structure. 

The second approach allows the modelling of aggregates as flexible structures. Aggregates can be 

modelled with different elasticity. A common way to model an aggregate as a flexible structure is to 

apply interactions between primary particles, which are modelled by harmonic oscillator equation. 

Harmonic oscillator has been used to study the adhesion of particles on soft and rough surfaces (Reeks 

et al., 1988), or to model the re-entrainment of aggregates from the surface of the filter fibre (Przekop 

et al., 2004). This enables to go forward and use this approach to model movement of flexible 

aggregates in fluid. Flexible structures of aggregates, which undergo deformation under fluid 

interaction, are often modelled by joining together particles connected through springs or ball–socket 

systems. There are few examples of models of flexible aggregate structures that have been used for 

different tasks. Yamamoto and Matsuoka (1992) designed a flexible model consisting of connected 

rigid spheres, and established a new method called particle simulation method. Forces and torques 

acting on particles are obtained from previously calculated components of a mobility matrix. 

Interaction between particles is modelled by functions which mimic stretching, bending and twisting. 

Various structures can be analysed, such as rod-like or plate-like particles, with different abilities to 

deform under shear flow (Yamamoto and Matsuoka, 1999). Ross and Klingenberg (1996) used a 

flexible fibre model based on Yamamoto and Matsuoka’s (1992) equations, where a structure is made 

up of rigid prolate spheroids connected through a ball and socket system. Switzer and Klingenberg 

(2004) developed a particle-level flexible chain fibre model, consisting of a number of cylinders 

connected with a ball and socket system, which has been used to investigate flocculation in the system 

of fibres interacting with each other. Wang et al. (2006) established a rod-chain-like fibre model, which 

can simulate long fibre chains with a relatively small amount of elements, which can speed up the 

calculations. Yamanoi and Maia (2011) analysed flexible and rigid fibres by implementing the particle 

simulation model approach, in order to investigate rheological properties under shear flow. In Żywczyk 

and Moskal (2015) model a flexible fractal-like aggregate is composed of N identical spherical primary 

particles. Interactions between particles are modelled by imposing equations of potential energy 

functions, which control stiffness of a structure. Aggregate structure is submitted to stochastic 

Brownian force, causing the modification of structure during its movement in fluid. The model was 
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used to find the deposition efficiency of aggregates with different fractal dimensions, composed of 

various numbers of primary particles. Aggregates are conveyed towards the fibre's surface for various 

values of air velocity. More or less flexible structures of aggregates were analysed. It was shown that 

interactions between primary particles and the modifications of structure influence the efficiency of 

deposition of fractal-like aggregates. 

8. NON-STEADY STATE FILTRATION 

During an initial period of filtration, aerosol particles deposits on the collector surfaces forming 

chainlike agglomerates – dendrites. This phenomenon and its consequences were analysed originally 

for the case of submicron particles deposited on the micronsize fibres, by Payatakes and Gradoń 

(1980a) and then extended by Payatakes and Gradoń (1980b). The presence of previously deposited 

particles produces the increase of both – filtration efficiency and pressure drop. It is worth noting that 

not only the total amount of deposited particles, but also their spatial distribution and structure affect 

filter performance (Przekop and Gradoń, 2008). Most recently published papers (Karadimos and 

Ocone, 2003; Przekop and Podgórski, 2004; Przekop et al., 2004; Wang et al., 2006; Sztuk et al., 2012) 

consider particle deposition on the collector using the classical continuum approach. This approach can 

be efficiently used only for the initial stage of filtration, when previously deposited particles have not 

as yet significantly changed the fluid flow field and surface open for deposition. Some papers (Dunnett 

and Clement, 2006; Dunnett and Clement, 2012) take into account deposit growth, but the approach 

requires making assumptions of deposit structure. The important advantage in deep bed filtration 

modelling was the introduction of lattice gas automata (Biggs et al., 2003) and lattice-Boltzmann 

method (Long and Hilpert, 2009), that allows to take into account the geometry of flow change due to 

deposition of suspended particles. Biggs et al. (2003) have studied particle deposition in a 2D 

constriction unit cell and a random 2D porous medium. Long and Hilpert (2009) have studied filtration 

in sphere packings, using advection-diffusion equation for particle transport. By performing a set of 

numerical experiments the authors have developed a correlation for diffusional efficiency, but 

interception and sedimentation efficiency could be only obtained by employing terms from unit cell 

correlations. The authors have also reported numerical instabilities for fluid velocities higher than those 

of m/s order. 

The growth of deposits causes the decrease of local porosity and thus the increase of local fluid velocity 

and shear stress that may lead to the re-entrainment of single particles or aggregates. The phenomenon 

is not necessarily negative as resuspended particles may redeposit at the deeper layers of a filter 

structure, which results in a more uniform distribution of deposits through the filter and prevents the 

filter from clogging which boosts the filter lifetime. The combination of lattice-Boltzmann 

hydrodynamics, Brownian dynamics method for particle displacement and energy balanced model of 

adhesion, may be found as comprehensive model that may predict the nonsteady-state performance of a 

filter e.g. deposition efficiency, volume distribution of deposits or pressure drop (Przekop and Gradoń, 

2008). 

The concept of lattice applied to fluid dynamics is based on the Ulam's works on cellular automata, 

Ulam (1952). Fluid dynamics is especially a sufficiently large system for a cellular automaton 

formulation because there are two rich and complementary ways to picture fluid motion. The kinetic 

picture, in which many simple atomic elements rapidly collide with simple interactions, is in good 

agreement with the infinitive picture of dynamics in a cellular space. 

The classical approach to the flow phenomena is through partial differential equations (Navier–Stokes 

equations) that describe collective motion in a dissipative fluid. The kinetic theory models a fluid by 

using an atomic picture and imposing Newtonian mechanics on the motion of the atoms. 
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Complete information on the statistical description of a fluid at, or near, its thermal equilibrium is 

assumed to be contained in the one-particle phase-space distribution function f (  for atomic 

constituents of the system. The variables x and t are the space and time coordinates of the atoms and  

stands for all other phase-space coordinates e.g. momentum, momentum flux. Since collisions preserve 

conservation laws, by integration of Boltzmann equation over the continuity equation and momentum 

tensor, an equation describing the macrodynamics of a system can be derived. To build a cellular-space 

picture with collective motion dynamics predicted by Navier-Stokes equation, a lattice on which 

particles move, collision rules and other restrictions characteristic for a chosen model should be 

defined. The evolution of the system is described by the expression: 

      fΩ=t,xf+t,+exf i 1


 (40) 

The outcome of a collision can be approximated by assuming that the momentum of interacting 

particles will be redistributed at some constant rate toward an equilibrium distribution fi
eq(x,t) (Qian et 

al., 1992). This simplification is called the single-time-relaxation approximation or lattice-BGK 

(Bhatnagar-Gross-Krook) and can be given by: 

     t,xft,xf
τ

=Ω ieq
i

i 
1

 (41) 

In the single-time-relaxation approximation, the momentum distribution at each lattice site is forced 

toward the equilibrium distribution at each time step. In the absence of external forces, the equilibrium 

distribution of a state with zero net momentum is just equal to momentum in each direction. The rate of 

change toward equilibrium is 1/ , the inverse of relaxation time, and is chosen to produce the desired 

value of fluid viscosity. 
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The equilibrium distribution fi
eq(x,t) is given as follows: 
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where ai are the model dependent constants. The values of parameters in Eq. (43) for different lattice 

geometries can be found in Masselot (2000). The equation of state for a discrete space has the 

following form: 

 ρc=P s
2

 (44) 

In traditional (continuum) flow analysis, a no-slip velocity constraint is enforced along all solid-fluid 

interfaces. The notion behind the no-slip condition arises from the fact that there should be no 

discontinuities in the velocity field within the fluid as this would give rise to infinite velocity gradients 

and therefore infinite shear stresses. A similar argument can be employed for conditions at the wall. 

However, the no-slip constraint is strictly only valid if the fluid adjacent to the surface is in local 

thermodynamic equilibrium; a condition which requires a very high frequency of molecular collisions 

with the wall. In practice, the no-slip condition is found to be appropriately provided by the Knudsen 

number, Kn < 10-2. If the Knudsen number is increased beyond this value, rarefaction effects start to 

influence the flow and the molecular collision frequency per unit area becomes too small to ensure 

thermodynamic equilibrium. Under such conditions, a discontinuity in the tangential velocity will form 

at any solid-fluid interface. 
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In continuum regime the bounce-back boundary condition is used on the solid level. This means that 

when a fluid particle enters the solid site, it changes its moving direction for the opposite one. This 

method naturally leads to zero-velocity at the solid level. 

The model involves two parameters r, s, representing the probability for a particle to be bounced back 

and slipped forward, respectively. The boundary kernel takes the form, Succi (2002): 
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Obviously, the two parameters are not independent and must be chosen such that r + s = 1. Assuming 

second order slip velocity, one can write. 
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Knudsen number for lattice is given by 
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Przekop and Gradoń (2014) have used lattice Boltzmann algorithm combined with Brownian Dynamics 

method for calculations of non-steady state filter performance. Aerosol particles, moving with the 

superficial gas velocity, were uniformly distributed at the inlet. The particles passing through the 

outflow surface were lost from the computational domain; while on the sides, periodic boundary 

conditions were applied. 

The procedure of calculating numerical, dimensionless values for lattice Boltzmann model was as 

follows. Having assumed physical values of air velocity and fibre size, we were able to calculate 

Knudsen and Reynolds numbers from the definition equations. Subsequently, the value of viscosity in 

the attice model and then relaxation time were calculated. After that, the formula for the Reynolds 

number enables to calculate a dimensionless superficial velocity for lattice-Boltzmann model. The 

interaction between lattice-Boltzmann and Brownian dynamics may be modelled as follows. Initially, 

the fluid velocity profile for a clean fibre was calculated. Then, the trajectories of aerosol particles with 

an assumed time step were tracked. The fluid velocity in a point of space, necessary to calculate drag 

forces acting on a particle, was determined as a superposition from the neighbouring nodes. Obviously, 

the relation between dimensionless velocity in lattice Boltzmann scheme and physical one, used in 

Brownian Dynamics calculations, was linear. When the deposition of particle occurred, the geometry of 

the computational domain was changed and a new velocity profile was calculated. The similar 

procedure was used earlier by Filippova and Hannel (1997) and Przekop et al. (2003) for the 

calculation of particle deposition on single fibre or in small fibre systems. 

9. SUMMARY AND OUTLOOK 

A collection of aerosol particles in the particular steps of the technology of their production, and 

purification of the air at the workplace and atmospheric environment, requires the efficient method of 

separation of particulate matter from the carrier gas. Filtration is one of the effective methods for the 
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removal of particles from an aerosol stream. The developments in the formation of specific fibrous 

structures promises the construction of highly efficient filters for the collection of both micro and 

nanoparticles. Over the last fifty years many studies on modelling of filter performance have been 

done. With increasing computational power of computers it became possible to overcome all the 

limitations of “classical theory” of filtration. Many phenomena initially predicted about filter 

performance were successfully explained and described at the basic level. Today, comprehensive 

models of deep bed filtration enable to predict filter performance evolution over time taking into 

account its inhomogeneous structure, particle rebound and resuspension or changes of local velocity 

profile due to particle deposition and dendrite growth. 

SYMBOLS 

An complex constant of integration 

AE adhesion efficiency 

b dumping coefficient, kg/s 

bf fluid dumping coefficient, kg/s 

bm mechanical dumping coefficient, kg/s 

Bn complex constant of integration 

nB  coupled constant of integration 

CC Cunningham factor 

sc  dimensionless sound speed 

D diffusion coefficient, m2/s 

dF fibre diameter, m 

dp particle diameter, m 

e unit vector 

E single fibre efficiency 

EBD single fibre efficiency interaction term 

Edet deterministic single fibre efficiency 

Ediff diffusional single fibre efficiency 

Ekp particle kinetic energy, J 

ER interception single fibre efficiency 

EI inertial single fibre efficiency 

EY Young’s modulus, Pa 

Fa adhesion force, N 

F(D) drag force, N 

F(ext) external force, N 

F(R) random Brownian force, N 

Gvi random number 

GLi random number 

J interception coefficient 

k stiffness coefficient, kg/s2 

Kn modified Bessel function of n-th order 

Kn Knudsen number 

Ku Kuwabara factor 

L filter thickness, m 

m mass, kg 

P pressure, Pa 

P  dimensionless pressure 

Pe Peclet number 
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QF quality factor, Pa-1 

r reflection parameter 

ra distance between atoms, m 

R interception parameter 

RK Kuwabata cell diameter, 

Re Reynolds number 

s slip parameter 

Stk Stokes number 

t time, s 

t  dimensionless time 

U fluid velocity, m/s 

U* critical fluid velocity, m/s 

u  dimensionless fluid velocity 

v particle velocity, m/s 

x position, m 

x  dimensionless position 

yb distance between surfaces, m 

Greek symbols 

 packing density 

 bounce parameter, m2/s 

* critical bounce parameter, m2/s 

 work of adhesion, J/m2 

 porosity 

b binding energy, J/mol 

 elastic constant, Pa-1 

 filter efficiency 

 angle, deg 

 filter coefficient, m-1 

 viscosity, Pa*s 

 Poisson’s ratio 

f fluid dynamic viscosity, m2/s 

  dimensionless viscosity 

c correlation coefficient 

p particle density, kg/m3 

  dimensionless density 

 spacing between atoms at which inter-particle potential is zero, m 

Li standard deviation of displacement, m 

vi standard deviation of velocity, m/s 

p relative standard deviation of pore size distribution 

  dimensionless relaxation time 

i distribution function 

 Lennard-Jones potential, J/mol 

 collision term 
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