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The aim of the study was to present an experimental investigation of the influence of the RMF on 

mixing time. The obtained results suggest that the homogenization time for the tested experimental 

set-up depending on the frequency of the RMF can be worked out by means of the relationship 

between the dimensionless mixing time number and the Reynolds number. It was shown that the 

magnetic field can be applied successfully to mixing liquids. 
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1. INTRODUCTION 

The mixing process is very often applied in chemical engineering systems and is the subject of many 

experimental investigations. This process is often realised by means of the mixing tank or stirred vessel 

and it may be described by various parameters (Zlotarnik, 2001). 

The mixing time and power consumption of the agitator or mixing time are important parameters for a 

mixer or reactor design (Harnby et al., 2000; Stręk, 1981). Power consumption is a basic quantity in a 

mixing process that, in part, determines other process quantities, e.g. mixing time. It should be also 

noticed that the cost of a process depends on the power consumption (King et al., 1988). In many 

situations, the correct knowledge of the power consumption and the mixing time are needed for better 

design and operation of the various types of mixers (Hiraoka et al., 2001). 

The mixing time can be compared with mass transfer time or reaction time when evaluation of the 

controlling mechanism of the process is of interest (Bouaifi and Rousatn, 2001). This parameter 

represents one the most useful criteria for characterization of the mixing system design, scaling-up and 

optimization of the mixing process (Jaworski et al., 2000; Karcz et al., 2005). This parameter contains 

information about hydrodynamics and mixing within the mixer and can be useful for the scaling up 

(Cascaval et al., 2004). The design process of a novel type of mixer closely depends on knowledge of 

hydrodynamics in the mixing vessel. Therefore, the mixing time is often used as an indication of the 

effectiveness of a mixing system (Kordas et al., 2013). The mixing time denotes the time required for 

the tank composition to achieve a specified level of homogeneity following the addition of a tracer 

pulse at a single point in a mixer (Hadjiev et al., 2006). This parameter is also defined as the time 
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needed to reach a given mixing intensity when starting from the completely segregated situation 

(Oniscu et al., 2002). 

The mixing performance of stirred tanks equipped with various types of agitators has been analyzed by 

many researchers (Masiuk and Rakoczy, 2007; Masiuk et al., 2008). Most investigations have 

examined the mixing time and power consumption of agitation systems resulting in empirical 

correlations (Bouaifi and Roustan, 2001; Manjula et al. 2009; Szoplik and Karcz, 2008; Woziwodzki et 

al., 2010; Zadghaffari et al., 2006). 

A novel approach to the mixing process focuses on the application of a rotating magnetic field (RMF). 

This kind of magnetic field may be used to augment the process intensity instead of mechanical 

intensity (Rakoczy, 2013). It should be noticed that RMF may act as a non-instructive mixing device 

(Moffat, 1965; Moffat, 1991). 

The main motivation for the present work was to investigate the possibility of the mixing system 

provided with a generator of RMF for the mixing process of various types of liquids, including water, 

NaCl solutions, Hestrin–Schramm medium (as an example of the microbiological medium used in the 

biotechnological process of bacterial cellulose production). The interaction of the applied magnetic 

field (MF) with liquids can be described by the relation between the mixing time and the Reynolds 

numbers. These dimensionless numbers allow for quantitative representation and characterization of the 

influence of the hydrodynamic condition under the RMF action on the mixing process. 

2. THEORETICAL BACKGROUND 

The mixing time, defined as the time needed to reach a specific degree of homogeneity, is defined by 

means of a dimensionless mixing time defined by the formula (Rakoczy, 2013): 

  ReRMFf   (1) 

The above relation includes a non-dimensional group characterizing the mixing time problem, 

expressed in the formula (Kordas, 2013): 
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To characterize the mixing process under the action of the magnetic field, the Reynolds number based 

on the frequency of the RMF may be used in the following form (Story et al., 2016): 
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The parameter ΩRMF may be expressed as follows (Moffat, 1965): 
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The maximum peripheral speed of the mixed liquid under the action of the RMF may be expressed as 

(Dahlberg, 1972): 
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3. MATERIALS AND METHODS 

3.1. Experimental apparatus 

Investigations were performed using the experimental apparatus shown in Fig. 1. The experimental 

apparatus consisted of a cooling jacket (1) and a generator of RMF (2). The RMF was generated by the 

3-phase stator of the squirrel cage induction motor. The power of the stator winding used 3-phase 

alternating current. The container (3) was axially aligned with the RMF generator. The mixing system 

consisted of a vessel of 145 mm inner diameter and 415 mm height. The a.c. transistorized inverter (4) 

was used to adjust the RMF frequency, f, in the range of 10-50 Hz, and to regulate the maximum 

voltage in the range of 10-100 V. This inverter was connected with a personal computer (5) equipped 

with software to control the RMF generator. Additionally, recorders (6) with electrodes (7) were used 

to measure the mixing time. 

 

Fig. 1. Scheme of experimental apparatus: 1 - cooling jacket, 2 - RMF generator, 3 – vessel, 4 - a.c. transistorized 

inverter, 5 - personal computer, 6 – recorders (CX-701), 7 – electrodes, 8 – batcher, 9 – heat exchanger, 10 – 

pump, 11 – internal coil 

The tracer, (sodium hydroxide solution; 1 mol∙dm-3) was introduced into the working liquid using the 

batcher (8). The temperature of the analyzed liquids during the exposition to the RMF was controlled 

by an additional cooling system based on oil circulation (in a heat exchanger (9) and a pump (10) and 

water circulation system in an internal coil (11). 

3.1.1. Working liquids 

A total of 5 dm3 liquid was introduced into the glass container. Aqueous solutions of NaCl brine, 

distilled water and Herstin-Schramm (HS) medium composed of glucose (2 w/v%), yeast extract (0.5 

w/v%), bacto-pepton (0.5 w/v%), citric acid (0.115 w/v%,) Na2HPO4 (0.27 w/v%), MgSO4·7H2O (0.05 

w/v%) and ethanol (1 v/v%) (Ciechańska et al., 1998). The HS medium is an example of the 
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microbiological growth medium used in the biotechnological process of bacterial cellulose production 

(Fijałkowski et al., 2015). The temperature of the analyzed liquids was equal to 20oC. This parameter 

was monitored using the special temperature sensors cooperating with the recorder. 

The physical parameters of the applied fluids are given in Table 1. 

Table 1. Physical properties of tested liquids (for temperature T = 20°C) 

Medium ρ, kg∙m-3 η, Pa∙s σe, A2∙s3∙kg-1∙m-3 

distilled water 998 0.001002 0.05 

4% w/w NaCl brine 1027 0.001068 6.35 

8% w/w NaCl brine 1056 0.001145 14.00 

Hestrin–Schramm (HS) medium*) 986 0.000944 0.65 

*) Viscosity of H-S medium was obtained using a capillary viscometer 

3.1.2. Mixing time measurements 

The mixing time was determined using the pH tracer method (Kushalkar and Pangarkar, 1994). The 

values of this parameter were determined by means of top injections of 1 M NaOH used as a tracer. The 

top injection means that the tracer is added at the top of the vessel, 1 cm under the liquid surface and in 

the middle of the tested apparatus. All injections were performed with a batcher. The time injection was 

equal to 6 s. 

Two pH electrodes were used as follows: one probe mounted at 10 mm from the vessel bottom; another 

probe was mounted opposite the bottom pH electrode. Both were connected to the recorder (CX-701). 

The localization of the electrodes and the injection point are shown in Fig. 2. 

 

Fig. 2. Localization of the pH electrodes (1, 2) and the injection point (3) 

As a tracer, 50 ml of sodium hydroxide solution (1 mol∙dm-3) was injected. The pH tracer method was 

based on measurements of pH difference response caused by the tracer (1 M NaOH). The mixing 

process was completed when the pH of the mixed liquid stopped changing. The time to reach, t95, (95% 

of the concentration step change from starting point to end point concentration) was defined as the 
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mixing time, that is, the time necessary to render the liquid well-mixed. This parameter is defined as a 

time required for the system to mix the liquid to a prescribed final state and can be represented by the 

following relationship: 

 
  0

0

pH t pH
Y

pH pH





 (6) 

where pH0
 and pH∞ are the initial and the final pH values; pH(t) is the value of pH at some instant in 

time t. 

A typical example of the pH transient process is shown in Fig. 3. As shown in this figure, the mixing 

time t95 for distilled water is much higher in comparison with the H-S medium. 

 

  

Fig. 3. Typical example of pH transient processes (pH changes during mixing time investigation) at f = 30 Hz for: 

a) H-S medium, b) distilled water 

The mixing time is defined as the time required for the normalized probe output to reach and remain 

between 95 and 105% (±5%) of the final equilibrium value. This value is called the 95% mixing time 

or t95 (Magelli et al., 2013). To obtain an overall mixing time for the system, two probe responses must 

be combined and must be weighted toward the probe showing the largest concentration deviation to 

ensure that all regions of the vessel are mixed. This is achieved by means of the RMS variance (Paul  

et al., 2004). 

3.1.3. Magnetic field patterns 

The values of magnetic induction at different points inside the vessel are detected by means of 

microprocessor magnetic induction sensors connected with Hall probe. The measuring points were 

located on a plane that coincides with the axial section of the RMF generator. It should be noticed that 

the values of magnetic induction were recorded for about 110 points. Then, the averaged values of the 

magnetic field, Bavg, were calculated as the arithmetic mean of these measurements. 

As follows from the analysis of experimental data, the values of magnetic induction are spatially 

distributed in the volume of the RMF generator and may be presented in a system of coordinates (R*, 

H*) in the form of iso-contour patterns (see Fig. 4). The normalized values of the radius, R*, and the 

height, H*, of a glass container, were defined as R* = R / Rmax  R* = R / 0.075 m and  

H* = H / Hmax  H* = H / 0.2 m. 

a) b) 
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Fig. 4. A typical example of magnetic field patterns: a) f = 10 Hz, b) f = 50 Hz 

As follows from the experimental database, the values of the magnetic induction, B, are spatially 

distributed. This distribution is depended on the RMF frequency, f. On the basis of the experimental 

measurements, the maximum values of magnetic induction, Bmax, were obtained. These values were 

recorded at the point (R* = -1 or 1; H* = 0.5) inside the RMF generator. In order to establish the effect 

of the maximum and the averaged values of the magnetic field, the obtained results are graphically 

shown in Fig. 5. 

 

Fig. 5. Graphical presentation of relations between the maximum and averaged values  

of magnetic induction and RMF frequency 

4. RESULTS AND DISCUSSION 

Taking into account Eq. (1) and the basic parameters from Eqs (2) and (3), the following relationship 

was obtained: 
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According to Eq. (7), the plot of the data obtained in the current work was presented in coordinates (Θ, 

ReRMF) of the log-log system in Fig. 6. 

 

Fig. 6. The dependence of Θ = f (ReRMF) for the analyzed liquids 

The experimental results presented in Fig. 6 indicate that the dimensionless mixing number versus the 

dimensionless Reynolds number may be defined by the following formula 

   2

1 Re
p

RMFp   (8) 

The constants and exponents were computed by means of Matlab software and the principle of least-

squares. These values are collected in Table 2. 

Table 2. Physical properties of tested liquids (for temperature T = 20°C) 

Medium p1 p2 R2 

distilled water 1.62 -0.60 0.91 

4% w/w NaCl brine 0.36 -0.33 0.94 

8% w/w NaCl brine 0.46 -0.38 0.96 

Hestrin–Schramm (HS) medium  0.19 -0.23 0.74 

According to Fig. 6, the scatter of experimental points for the various types of liquids may be described 

by the same relationship using various values of the coefficients (see Table 2). The results presented in 

Figure 6 show the influence of the dimensionless Reynolds number on the dimensionless mixing 

number. Figure 6 indicates also that the mixing time decreases moderately with the increase in the 

dimensionless Reynolds number. It was found that as the intensity of the magnetic field increased, the 

time duration of the mixing process under the action of the RMF decreased. Moreover, Fig. 6 shows a 

strong influence of the liquid on the analyzed mixing process. The dimensionless mixing time obtained 

for distilled water was consequently higher than that for the HS medium and NaCl solutions. Moreover, 

a significant decrease took place in the region of large values of the Reynold number. The obtained 

relationships (see Fig. 6 and data in Table 2) indicate that the mixing time is more sensitive to the 

dimensionless Reynolds number for distilled water (  Re-0.60) than for HS medium (  Re-0.23) and 

both NaCl brine solutions (  Re-0.33;   Re-0.38). 
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Following these considerations, RMF may be successfully applied for enhancement of mixing process 

for various kinds of liquids. It should be noticed that RMF may induce electromagnetic forces in the 

mixed liquid due to interactions between the induced electric currents and the applied magnetic field 

(Mehedintu and Berg, 1997). The application of time-varying magnetic field (e.g. RMF) involves the 

induction of eddy currents in liquids, which are highly conductive due to additional ions added. These 

eddy currents create their own magnetic field that in a co-operation with the MF used for the exposure, 

creates small dynamos mixing the liquid at micro-level. Such microscopic dynamos can enhance the 

mixing process (Hristov, 2010). 

The obtained results may also be analytically described by a unique monotonic function. The plot of 

data obtained in the current work is presented in Fig. 7a. The calculated values from the proposed 

relationship (see Fig. 7a) for the mixing process under the action of the RMF and the values obtained 

from the experimental procedures are graphically compared in Fig. 7b. Fig. 7b shows that most results 

do not exceed the ±15% maximum error. 

Fig. 7. The dependence of Θ = f (ReRMF) (a) and comparison of the experimental and calculated values  

or the dimensionless mixing time number (b) 

It should be noticed that the mixing time can be considered as a criterion for comparison of mixing 

performance of different studied configurations of mixing devices. Therefore, a comparison between 

the presented results (see Fig. 7) with experimental findings reported in relevant literature should be 

done. A comparison of the dimensionless mixing time data from this work and previous studies is given 

in Fig. 8. 

 

Fig. 8. A comparison of the dimensionless mixing time for systems enhanced by RMF and the RMF mixer 

(Konopacki et al., 2014) 

  

a) b) 
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Konopacki et al. (2014) studied the effect of RMF and various types of magnetic particles on the 

mixing time. This study has shown that the mixing time for distilled water (working volume equal to 

3.3 dm3) under the action of the RMF (with the variation of the maximum value of the MF in the range 

between 23 mT and 34 mT) decreases with increasing the dimensionless Reynold number. It can be 

seen that the obtained values of mixing time are consistent with the information from relevant 

literature. 

The values of the dimensionless mixing time for the tested RMF mixer are higher in comparison with 

the data given in the previously mentioned literature for the dimensionless Reynolds number  

ReRMF < 600 (Konopacki et al., 2014). A possible explanation for this might be that the applied RMF 

generator and the working volumes of liquids for the analyzed mixers were different. Manna (1997) 

proposed that the definition of the mixing time highly depends on the measurement methods, the 

geometrical configurations of mixers, the system homogeneity and the tool by which the tracer is 

injected and its location. Therefore, different results of the dimensions mixing time may be explained 

by the difference between the mixing systems and the use of different methods for mixing time 

investigations. The current study found that RMF may enhance the mixing process of various types of 

liquids, e.g.: HS medium, aqueous solutions of brine. As was mentioned above, the magnetic field 

creates dynamos mixing the liquid at micro-level. These dynamos may be converted into micro-stirrers 

when the liquid with ions is subjected to RMF. Moreover, micro-stirrers may generate liquid eddies 

including enhancement of liquid transport properties (Rakoczy, 2013). 

5. CONCLUSIONS 

The analysis of experimental mixing time for the vessel equipped with a RMF generator in the present 

study leads to the following conclusions: 

 The mixing system with the RMF generator may be successfully applied as a mixer for liquids. 

The experimental data indicated that the influence of RMF on the mixing intensity strongly 

depends on the physical parameters of liquids. 

 The established mathematical correlations describe unitary of the dependence between the 

mixing time and the modified Reynolds number. The proposed relationship takes into 

consideration the operational parameters, which define hydrodynamic state and the intensity of 

the magnetic effects in the tested apparatus. 

 The values obtained for the dimensionless mixing time may be used to compare the mixing 

process performed by various types of mixing systems. It should be noticed that the values of the 

dimensionless mixing time number for the mixing system with the RMF generator in the region 

of the lowest Reynolds numbers are much lower than those for STR with the Rushton turbine. 

This study was supported by the National Centre for Research and Development in Poland (Grant no. 

LIDER/011/221/L-5/13/NCBR/2014). 

SYMBOLS 

Bmax maximum magnetic induction, kg∙A-1∙s-2 

D diameter of container, m 

f frequency of electrical current, s-1 

H* normalized height of a glass container 

pH0 initial pH values 

pH∞ final pH values 
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pH(t) value of pH at some instant in time t 

R* normalized radius of a glass container 

ReRMF Reynolds number for the RMF mixing system 

t95 mixing time, s 

max
w  maximum peripheral velocity of the mixed liquid under the RMF action, m∙s-1 

Greek symbols 

η dynamic density, Pa∙s-1 

Θ mixing time number 

ν kinematic viscosity, m2∙s-1 

ρ density, kg∙m-3 

σe electrical conductivity, A2∙s3∙kg-1∙m-3 

τmix mixing time, s 

ωRMF angular velocity of RMF, rad∙s-1 

ΩRMF angular velocity of liquid under the action of the RMF, m∙s-1 
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