
Chemical and Process Engineering 2017, 38 (4), 577-585 

DOI: 10.1515/cpe-2017-0046 

 

 

*Corresponding authors, e-mail: jacek.stelmach@p.lodz.pl     cpe.czasopisma.pan.pl;  degruyter.com/view/j/cpe 
577 

 

SIMULTANEOUS VELOCITY MEASUREMENT OF PHASES  

IN A LIQUID-GAS SYSTEM 

Radosław Musoski, Jacek Stelmach* 

Lodz University of Technology, Faculty of Process and Environmental Engineering, ul. Wólczańska 

213, 90-924 Łódź, Poland 

Results of velocity measurements of liquid and gas bubbles in a tank with a self-aspirating disk 

impeller are analysed. Studies were carried out using a fluorescent dye tracer in the measuring 

system with two cameras (simultaneous phase velocity measurement) and with one camera 

(sequential measurement of phase velocity). Based on a comparative analysis of the acquired data it 

was found that when differences in the phase velocities were small the simultaneous velocity 

measurement gave good results. However, sequential measurement gives greater possibilities for 

setting the measuring system and if the analysis of instantaneous velocities is not necessary, it seems 

to be a better solution. 
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1. INTRODUCTION 

The determination of velocity in a two-phase liquid-gas system is an important processing problem. 

When liquid is a continuous phase then relative velocity of gas bubbles in the liquid and energy 

dissipation rate (which may be calculated from velocity fluctuations) affect mass transfer coefficient 

and bubble size (Alves et al., 2004; Bröder and Sommerfeld, 2002; Garcia-Ochoa and Gomez, 2004; 

Lau et al., 2014; Linek et al., 2004; Millies and Mewes, 1999; Zhou and Kresta, 1998). On the other 

hand, when gas is a continuous phase, the velocity of liquid droplets can influence the process of bed 

humidification (Heim et al., 2004, Heim et al., 2008). However, it is difficult to determine the velocity 

of both phases. In the case of very small bubbles their population can be divided into two groups and – 

assuming that the trajectories of small bubbles are the mapping of liquid motion – velocities of the 

phases can be determined (Deen et al., 2002; Gui et al., 1997; Kiger and Pan, 2000; Stelmach and 

Kuncewicz, 2011). New possibilities have emerged after the advent of the measurement methods of 

PIV (Particle Image Velocimetry) (Aubin et al., 2004; Delnoij et al., 2000; Sathe et al., 2010) and PLIF 

(Planar Laser Induced Fluorescence). A fluorescent dye used in PLIF measurement can be included in 

trace particles (or liquid droplets) (Lindken and Merzkirch, 2002). Emitting secondary radiation the dye 

is used to obtain light with two wavelengths in the measuring system, i.e. the wavelengths of laser light 

and fluorescent dye. This radiation can be separated by optical filters. This allows us to separately 

analyze the movement of objects which reflect laser radiation and these which emit radiation generated 

during fluorescence. This measuring system enables a simultaneous measurement of phase velocities 

but requires the use of two synchronized cameras (Bröder and Sommerfeld, 2000; Chung et al., 2009; 

Honkanen and Saarenrinne, 2002; Kosiwczuk et al., 2005). Further analysis of this issue leads to a 

conclusion that in this method a problem may be time intervals between laser pulses, due to which in 

two frames the shifts of flow tracers are recorded. In the analyzed method such tracers are also gas 
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bubbles and if their velocities are much lower than the continuous phase velocities the recorded shifts 

will be too small to properly determine the velocity of bubbles on this basis. 

The aim of the study was to compare liquid and gas velocities obtained by the PIV method during 

simultaneous and separate measurements of phase velocities. Results should show how the same time 

interval between laser pulses selected for one phase affects the accuracy of measurement of the second 

phase velocity during a simultaneous measurement. 

2. EXPERIMENTAL 

Measurements were conducted in a flat-bottomed glass tank of diameter T = 292 mm. The tank was 

equipped with four standard baffles (B = 0.1·T) and filled with water (20 °C) to height H = 300 mm 

(H  T). At height h = 75 mm over the bottom there was a self-aspirating disk impeller of diameter 

D = 125 mm. The impeller rotated at rotational frequency N = 6 s-1 (360 min-1) dispersing the gas. The 

blade tip velocity was equal to Utip = 2.36 m/s. The Reynolds number for the mixing process was 

Re = 93750 and the modified Froude number was Fr’ = N2·D2/[g·(H - h)] = 0.255. In these conditions 

the gas phase hold-up was  = 0.4% (Stelmach, 2000). The cylindrical tank was placed in a rectangular 

tank filled with water. This system of tanks reduced distortions caused by the curvature of the 

cylindrical tank wall (Stelmach, 2014). Under these conditions Sauter diameter of bubbles is equal to 

d32 = 1.59 mm. Bubble size distribution is log-normal with highest number of bubbles in the range from 

0.2 to 0.6 mm (Stelmach, 2006; Stelmach, 2007). However, the bubbles flowing out of the orifices are 

about 5-8 mm in size (Stelmach and Rzyski, 2003). 

Velocity measurements were made by the PIV method using a LaVision measuring system. A light 

knife about 1 mm thick cut the tank in a vertical plane symmetrically between the baffles. The light 

knife was generated by a double-pulse Nd:YAG laser emitting light of a wavelength λ = 532 nm with 

the highest frequency of 15 Hz. Tracer particles of size from 1 μm to 20 μm containing the fluorescent 

dye Rhodamine B were added to water. Under the influence of laser light the dye emits radiation at a 

wavelength λ = 553 nm. 

Two settings of the measuring system were used: 

 In the simultaneous measurement of liquid and gas velocities two ImagerPro 4M cameras 

(2048 px × 2048 px matrix, 14 bit grayscale) were used. Their optical axes were open at an angle 

of about 16° (Fig. 1a). One camera was equipped with a low-pass filter which cut off radiation 

with a wavelength greater than λ = 532 nm. The other camera had a high-pass filter cutting off 

radiation with a wavelength shorter than λ = 540 nm. Rays reflected from the interface reached 

the first camera, while these formed as a result of fluorescence reached the second one. Time 

interval between laser pulses was Δ = 207 μs and Δ = 1500 μs, respectively. In this 

measurement two pairs of images were obtained. The interrogation area of both cameras was 

60 mm×60 mm. Perspective distortions were corrected on the basis of data acquired during the 

measuring system calibration. 

 During separate (sequential) velocity measurements one ImagerPro 4M camera was applied. Its 

optical axis was perpendicular to the interrogation area (Fig. 1b). During water velocity 

measurements there was a low-pass filter on the camera lens and displacements of the tracer 

particles were recorded. In this case time interval between laser pulses was Δ = 207 μs. While 

measuring the displacement of air bubbles the camera was equipped with a high-pass filter and 

time interval between laser pulses was Δ = 1500 μs. The interrogation area was about 

70 mm×70 mm. 

In each case a series of 300 images (quadruple for setting (1) or double for setting (2)) was taken. Then, 

the images underwent two-pass processing using the DaVis 7.2 software. The interrogation area had the 
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final size of 64 px×64 px. A relatively large size of this area was adopted because of the size of gas 

bubbles. As a result of calculations the field of vectors of averaged axial and radial velocities was 

obtained. On the basis of velocity components the resultant velocity and angle between the vector of 

this velocity and level were calculated. For the PIV method it is difficult to estimate the velocity 

measurement error. Errors can be caused by poor estimation of the time interval Δ between laser 

pulses. 

 

Fig. 1. Setting of the cameras and light knife during measurements, a) two cameras with filters - simultaneous 

measurement of phase velocity, b) one camera - sequential measurement with filter change 

3. RESULTS AND DISCUSSION 

3.1. Water velocity 

In our earlier studies (Stelmach, 2014) the distribution of dimensionless radial and axial velocities was 

determined at the height of the impeller in a one-phase system when the impeller did not disperse gas. 

The reference velocity was the peripheral velocity of the blade tip. Results are shown in Fig. 2. Based 

on these measurements the required time interval between laser pulses was specified. 

 

Fig. 2. Dimensionless average water velocities in the one-phase system for N = 6 s-1 
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Since for process parameters the hold-up of the gas phase and therefore the number of bubbles is small, 

the results for the one-phase system can be treated as comparative (reference) data for the liquid phase. 

Figure 3 shows water velocity maps obtained during simultaneous (a) and separate (b) measurements. 

Due to changes in the equipment setting the interrogation areas in both cases are slightly different. 

 

Fig. 3. Dimensionless average water velocities in two phase system in simultaneous  

(a) and separate (b) velocity measurements for Δ = 207 μs 

The analysis of Fig. 3 shows that for these parameters similar water velocity distributions were 

obtained. The reasons of worse ordering of vectors in Fig. 3b can be as follows: 

 different frequency of laser flashes which makes the position of the blade relative to the baffles 

change. This, as found in the previous studies (Heim and Stelmach, 2011), has an influence on 

the average velocity field; 

 the aging of the fluorescent dye and changes in light emission (tracer particles remained in the 

liquid for a few days during which the tests were made). 

In turn, a comparison of Figs. 2 and 3 leads to a conclusion that gas bubbles leaving the impeller outlets 

change the flow of liquid at a small distance from the blade tips. In a one-phase system, at a small 

distance from the blade tip liquid velocities are the highest (about 20% of impeller tip velocity Utip). In 

the two-phase system in such place slow liquid velocities (only 5% of Utip) are observed because there 

is the highest concentration of gas bubbles and the interphase surface can strongly diffuse light, leading 

to a decrease water velocity. By contrast, outside the impeller zone (5 mm above and under impeller 

plates, 15 mm outside impeller tip) the circulation of liquid in the one- and two-phase system is almost 

identical and equal to several percent of Utip. Because in the region near the blade tips of the self-

aspirating impeller the highest mass transfer coefficients were reported this is a very important problem 

which requires further in-depth studies at various positions of the blade relative to the baffles. With 

small gas hold-up in the simultaneous (with gas velocity measurement) and separate liquid velocity 

measurements almost identical liquid velocity fields were obtained. 

During simultaneous velocity measurements of liquid and gas bubbles time interval between laser 

pulses is constant. If there are significant differences in the velocities of phases the interval determined 

for one phase can be inappropriate for the second phase which can consequently lead to measuring 

errors. Since gas bubbles should move more slowly than liquid, the measurements were carried out at 

time interval between laser pulses being Δ = 1500 μs. Results obtained for this case are shown in 

Fig. 4. 
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Fig. 4. Dimensionless water velocities in the simultaneous velocity measurement for Δ = 1500 μs 

The longer time interval between laser pulses did not affect significantly the image of liquid circulation 

and velocity. Figure 4 shows that only below the impeller there is a circulation zone in the direction of 

the tank axis. As such a zone is not observed in the two-phase system, results obtained for Δ = 1500 μs 

seem to be less reliable in this case. This also confirms the need for a proper selection of time interval 

between laser pulses. The time interval between laser pulses has an influence on results obtained. 

3.2. Air velocities 

As mentioned earlier, time interval between laser pulses is associated with the displacement of tracer 

images in both recorded frames. In the case of the gas phase an additional factor influencing final 

results is the likelihood of incomplete illumination of gas bubbles by the light knife (Honkanen and 

Sarenrinne, 2002). This problem is illustrated in Fig. 5. 

 

Fig. 5. Lighting of gas bubbles with a light knife 
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ImagerPro 4M cameras differentiate 16,384 levels of brightness. Based on the analysis of images the 

level of brightness equal to 5,000 was used in binarization. This reduces the number of analyzed objects 

and it can appear that average velocities determined on the basis of 300 double images will show 

chaotic velocity vectors, especially in the areas of low concentration of bubbles. This case is illustrated 

in Fig. 6. 

 

Fig. 6. Comparison of bubble velocity maps obtained on the basis of original (a) and binarized (b) images 

In fact, for images subjected to prior binarization below the impeller the average velocity vectors show 

a large scatter of returns. At the same time, however, a comparison of Figs. 6a and 6b leads to a 

conclusion that for the assumed level of binarization the velocity differences are very small. This 

suggests that the impact of the images of bubbles outside the light knife plane is very small. 

Bubble velocity maps shown in Fig. 6 were obtained for the time interval between pulses equal to 

Δ = 1500 μs during the simultaneous velocity measurement. Figure 7 shows the map of bubble 

velocities for time interval between pulses equal to Δ = 207 μs. 

 

Fig. 7. Gas bubble velocities obtained from binarized images (Δ = 207 μs) 
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conclusion that for interval Δ = 207 μs the velocities of bubbles in the stream flowing from the 

impeller towards the wall are slightly larger than water velocities determined in the same measurement 

(Fig. 8). 

 

Fig. 8. Comparison of phase velocities for Δ = 207 μs in the simultaneous measurement 
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image distortion is confined to the distortion caused by the curvature of the tank wall. For both 

phases a different number of frames required to average the velocity can be taken. For the 

measurement of bubble velocity on the basis of binarized images the assumed sample size is too 

small. 

 A simultaneous recording of images for the liquid and gas phases can be of great importance 

when studying the flow of liquid around large bubbles. 

 The results suggest that there is no need to binarize the images of bubbles. However, studies 

were carried out for a small gas hold-up. At a greater number of bubbles the bubbles lit by 

scattered light from the interface can strongly influence the results. It therefore seems 

appropriate to binarize images for the determined brightness threshold. 

The work was completed within the statutory activities of the Department of Process Equipment no. W-

10/1/2016/Dz.St. 

SYMBOLS 

B baffle width, m 

D impeller diameter, m 

g acceleration of gravity, m/s2 

h impeller level, m 

H liquid height, m 

N rotational frequency, s-1 

U velocity, m/s 

T tank diameter, m 

Greek symbols 

 gas hold-up 

μ dynamic viscosity, Pa·s 

λ wavelength of light, nm 

 density, kg/m3 

Δ time interval between laser pulses, μs 

Dimensionless numbers 

Fr’ = N2·D2/[g·(H - h)] modified Froude number for mixing process 

Re = N·D2·/ Reynolds number for mixing process 
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