
GEODESY AND CARTOGRAPHY c© Polish Academy of Sciences
Vol. 59, No 1, 2010, pp. 29-38

Sequential integration of measurements of navigational position
parameters

Andrzej Banachowicz1, Adam Wolski2

1Department of Artificial Intelligence and Applied Mathematics
West Pomeranian University of Technology
49 Żołnierska St., 71-210 Szczecin, Poland

e-mail: abanachowicz@wi.zut.edu.pl
2Institute of Marine Navigation
Maritime University of Szczecin

2 Wały Chrobrego St., 70-500 Szczecin, Poland
e-mail: a.wolski@am.szczecin.pl

Received: 6 January 2010/Accepted: 12 July 2010

Abstract: The sequential method of integrating navigational parameters obtained from
non-simultaneous navigational measurements is presented. The proposed algorithm of po-
sition coordinates estimation is general and includes two modes of data processing – from
simultaneous and non-simultaneous measurements. It can be used in hybrid receivers of
radionavigation systems integrating non-homogeneous position lines or in integrated navi-
gation systems, particularly in receivers combining the measurements of various satellite
navigation systems.
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1. Introduction

The idea of position coordinates determination from non-simultaneous lines of position
has been known since the Middle Ages (in its primitive form). In ocean navigation
at that time a line obtained from celestial body setting or rising (usually the Sun)
as the longitude was combined with a position line of the Sun culmination as the
latitude. There was an interval of a few hours between the moments position lines were
determined (the time length depended on latitude and season of the year). In centuries
that followed the method was improved as an analytical-plotting method and was used
in celestial and terrestrial navigation. The dynamic development of radionavigation after
World War Two led to a belief that navigational measurements – with their accuracy
at that time and speed of navigating vessels – can be regarded as simultaneous.

In navigation, position determination consists in the identification of coordinates
in the adopted coordinate system and reference system. Position coordinates cannot
be measured directly, therefore they are indirect measurements. The original measu-
rements involve physical quantities, which are used to determine geometric relations
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between the observer’s position and the positions of aids to navigation (lighthouses,
radionavigational system stations, navigational satellites orbiting the Earth). Geometric
quantities which express the relations between navigational mark coordinates and the
measurement point (observer’s position) are known as the navigational position para-
meter u, whereas the relation between the navigational parameter and the measurement
position in the examined space (coordinate system) is termed the position navigational
function f .

Traditionally, there has been a tacit assumption in navigational algorithms (Farrel
et al., 1999; Mitchell, 2007; Parkinson et al., 1996; Rogers, 2003) that measurements
of navigational position parameters are made simultaneously, although in many cases
this assumption is not justified.

In practice, one always has to do with non-simultaneous measurements of naviga-
tional parameters. This is due to:
• movement of the ship (sensor, receiver),
• movement of an aid to navigation (e.g. satellite),
• technical conditions (operation of a radionavigational system station in a chain,

single-channel measurement path of the receiver, sequential measurement cycle,
asynchronous measurements from individual navigational devices).
Traditional navigational methods of position determination are based on an as-

sumption that navigational parameters are measured simultaneously, or it is assumed
that errors due to non-simultaneity are negligibly small. One exception to this is the
position determination from non-simultaneous position lines in terrestrial and celestial
navigation, where the time between measurement moments is considerable.

However, in accurate automated or integrated navigation even small time intervals
(several seconds, depending on the precision of dead reckoning navigation) translate
into essential errors of coordinates position or estimator instability. Therefore, algo-
rithms of navigational data processing should take account of non-simultaneity of
measurements.

2. Determination of position coordinates from simultaneous measurements of
navigational parameters

The simplest practical case of position coordinates determination is the calculation of
coordinates from simultaneously measured navigational parameters. In the general case
of position coordinate calculations we have a navigational vector function mapping
navigational space elements into the space of measurements. This function can be
written as the following vector mapping:

f : Rm ⊃ N → U ⊂ Rn, n ≥ m (1)

where R, N , and U are real space, navigational space, measurement space, respectively;
m and n are dimensions of navigational space and measurement space, respectively.

The mapping will be put in a form of the system of equations
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f1(x1, x2, . . . , xm) − u1 = 0
f2(x1, x2, . . . , xm) − u2 = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

fn(x1, x2, . . . , xm) − un = 0

(2)

wherexi is the i-th coordinate of position, and ui is the measured navigational parameter
(bearing, range difference, pseudo-range).

The system of equations (2) in the vector notation will have this form

f(x) − u = 0 (3)

where x = [x1, x2, ..., xm]T is a generalized vector of position coordinates (state vector),
depending on the assumed coordinate system (X, Y , Z , ∆t or ϕsg λs h, ∆t), x ∈ N ,
and u = [u1, u2, ..., un]T is the vector of measured navigational parameters, u ∈ U.

There are two cases of solving the equation (3). One is deterministic, where the
number of position parameters measurements is equal to the number of estimated
coordinates, i.e. n = m. In this case, the equation (3) is solved by Newton’s method
for non-linear equation systems (Demidovich, 1987). In the (k+1)-th step the position
coordinate vector will be expressed by the formula

x(k+1) = x(k) + G−1(x(k))z(k) (4)

where z – measurement vector, the difference between the measured navigational pa-
rameters
and the vector of projected (estimated) measurements; this vector is defined by the
relation:

z(k) = u − f(x(k)) (5)

and G is the Jacobian matrix of the mapping f (navigational position function).
The other case occurs when the number of position parameter measurements is

greater than the number of coordinates to be determined (n > m); then the equation
(3) is solved using the least squares method. In this case in (k + 1)-th step one obtains
the following approximation:

x(k+1) = x(k) +
[
GT(x(k))P−1u G(x(k))

]−1
GT(x(k))P−1u z(k) (6)

where Pu is the covariance matrix of the vector of measured position parameters u.
The vector z is defined by the formula (5). Formally, the matrix Pu is the covariance

matrix of the vector z. As this vector is the difference of vectors according to the
relation (5), and the vector f(x) being the result of calculations is determined with any
accuracy (non-random vector), then one can assume that the covariance matrix of the
vector u is equal to the covariance matrix of the vector z.

Calculations are further continued through subsequent iterations, until the assumed
accuracy of coordinates is reached. If the iteration process (4) or (6) is convergent with



32 Andrzej Banachowicz, Adam Wolski

the real solution x, then the estimation of accuracy of calculated position coordinates
is approximately equal to the value of the second addend in (4) or (6) calculated in
the final step. This fact is often used for the evaluation of iteration process stop. The
estimated position or previous fix is usually adopted as the first approximation. In
both cases, i.e. Newton’s method or the least squares method, the covariance matrix
of the state vector x (position coordinates) is calculated from the following formula
(Banachowicz, 1994)

Px =
[
GT(x(k))P−1u G(x(k))

]−1
(7)

3. Determination of position coordinates from non-simultaneous measurements
of navigational parameters

Due to the length of measurement cycles or delay in data distribution and transmission,
principally measurements are not performed simultaneously. In the case of measure-
ment non-simultaneity one can apply the sequential method of joining measurements,
which consists in projecting values the measurements will have at a common time.
This is essentially similar to known methods used in terrestrial or celestial navigation,
where position lines are brought down to a common time.

Let us choose a series of moments t1 < t2 < . . . < tn (after bringing them down to
a common time scale, if necessary), where ti denotes the moment of i-th measurement
of a navigational parameter. For convenience let us adopt that the measurements will be
brought down to the last moment of measurement (then the coordinates of the current
position will be obtained). The projected vector of measured navigational position
parameters up can be calculated from the relation

up = u + ∆u (8)

where
• vector of projected increments of navigational position parameters values

∆u =

n∑

i=1

∆ui (9)

∆ui = eT
i · grad fi · ∆x(i) (10)

• vector of the canonical base of n-dimensional space of measurements (1 occurs in
an i-th position, corresponding to a given coordinate in the space of measurements)

ei =

[
0, 0, ..., 0, 1

i
, 0, ..., 0

]
(11)

• gradient of i-th navigational function (position line, plane or hypersurface), it is an
i-th row of the matrix G
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grad fi =

[
∂ fi
∂x1

,
∂ fi
∂x2

, ...,
∂ fi
∂xm

]
(12)

• vector of value changes in position coordinates between the moment of navigational
parameter measurement ti and the common time tn

∆xi =
[
∆x1i ,∆x2i , ...,∆xmi

]T (13)

Assume that in sufficiently short time intervals navigational position parameters
change linearly. Putting (8) to (5) then to (4) one obtains the formula for (k + 1)-th
approximation of the position coordinates vector in the Newton’s method

x(k+1) = x(k) + G−1(x(k))
[
u + ∆u − f(x(k))

]
(14)

Similar procedure will be followed when using the least squares method. Having
substituted (8) to (5) and the substitution result to (6) one gets

x(k+1) = x(k) +
[
GT(x(k))P−1p G(x(k))

]−1
GT(x(k))P−1p

[
u + ∆u − f(x(k))

]
. (15)

From the theorem on the mean value and the covariance matrix of constant matrices
multiplied by random vector (Banachowicz, 2006) one obtains the following formulae
for mean vector value of position coordinates increments (initial approximation in
iterations is adopted with any small errors):

∆x(k)
mean = G−1(x(k))z(k)

p (16)

Px =
[
GT(x(k))P−1p G(x(k))

]−1
(17)

where zp is the projected vector of measurements

z(k)
p = up − f(x(k)) (18)

The covariance matrix Pp of the projected vector of measured navigational position
parameters, as per formulae (8), (9) and (10) is expressed as

Pp = Pu +

n∑

i=1

P∆ui +

n∑

i=1

(Pu∆ui + PT
u∆ui

) +

n∑

i=1
i, j

n∑

j=1

P∆ui∆u j (19)

with the covariance matrix
n∑

i=1

P∆ui of increment values of navigational position para-

meters

n∑

i=1

P∆ui =

n∑

i=1

eT
i · grad fi · P∆xi

(
grad fi

)T · ei (20)

and
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• P∆xi – covariance matrix of coordinates increments,

•
n∑

i=1

Pu∆ui – covariance matrix between the vector of measured navigational position

parameters and the vector of their increments (cross covariance matrix of two
random vectors (Banachowicz, 2006; Vaniček et al., 1986)),

•
n∑

i=1
i, j

P∆ui∆u j – covariance matrix between individual increments of measured naviga-

tional position parameters values (cross covariance matrix of two random vectors)

P∆ui∆u j = eT
i · grad fi · P∆xi∆x j

(
grad f j

)T · e j (21)

• P∆xi∆x j – cross covariance matrix of coordinates increments.
The equation (19) describes the covariance matrix of the projected measurement

vector. That matrix is increased in relation to the measurement vector matrix by the
covariance matrix of projected increments of navigational parameters values and the
covariance matrix between measurements and their projections. If the total distribution
of measurement vectors and navigational parameters increment projections is normal,
then, with a natural assumption that navigational parameters measurement errors and
estimation (projections are based on this assumption) are independent, then the third
addend on the right-hand side of the equation (19) is a zero vector. Finally, one
can obtain the following formula for the covariance matrix of fix coordinates from
non-simultaneous measurements of navigational position parameters:

Pp = Pu +

n∑

i=1

P∆ui +

n∑

i=1
i, j

n∑

j=1

P∆ui∆u j . (22)

4. Sequential integration of measurements from two positioning systems

Let us illustrate the above considerations with an example. For this purpose we will
assume that two different positioning systems are being integrated:
• satellite GPS system,
• another satellite pseudo-range system.

Let us assume that all the measurements are made sequentially. Then the individual
vectors and matrices take the form
• state vector

x =
[
ϕ, λ, h,∆tI ,∆tII

]T (23)

where ϕs λs h are geodetic latitude, geodetic longitude, and geodetic (ellipsoidal)
height, respectively; ∆tI and ∆tII are clock errors of the GPS receiver, and of another
pseudo-range system, respectively,
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vector of measurements (k pseudo-range measurements of the first system and m me-
asurements of the second system)

zp =



d1 +
∂d1

∂ϕ
∆ϕ1 +

∂d1

∂λ
∆λ1 +

∂d1

∂h
∆h1 − dz1

d2 +
∂d2

∂ϕ
∆ϕ2 +

∂d2

∂λ
∆λ2 +

∂d2

∂h
∆h2 − dz2

· · ·
dk +

∂dk

∂ϕ
∆ϕk +

∂dk

∂λ
∆λk +

∂dk

∂h
∆hk − dzk

dk+1 +
∂dk+1

∂ϕ
∆ϕk+1 +

∂dk+1

∂λ
∆λk+1 +

∂dk+1

∂h
∆hk+1 − dzk+1

dk+2 +
∂dk+2

∂ϕ
∆ϕk+2 +

∂dk+2

∂λ
∆λk+2 +

∂dk+2

∂h
∆hk+2 − dzk+2

· · ·
dk+m +

∂dk+m

∂ϕ
∆ϕk+m +

∂dk+m

∂λ
∆λk+m +

∂dk+m

∂h
∆hk+m − dzk+m



(24)

where
di – measured i-th pseudo-range,
dzi – calculated i-th pseudo-range,
∆ϕi, ∆λi, ∆hi – increments of geodetic coordinates between i-th and n-th moment
(one to which all measurements are brought down), obtained from estimation,
∂di

∂ϕ
,
∂di

∂λ
,
∂di

∂h
– partial derivatives of i-th pseudo-range (navigational function)

relative to geodetic coordinates,
k – number of measurements from the of GPS system (GPS),
m – number of measurements from another pseudo-range navigational system,
Jacobian matrix of navigational position function

G =



∂d1

∂ϕ

∂d1

∂λ

∂d1

∂h
∂d1

∂∆tI
0

· · · · · · · · · · · · · · ·
∂dk

∂ϕ

∂dk

∂λ

∂dk

∂h
∂dk

∂∆tI
∂dk+1

∂ϕ

∂dk+1

∂λ

∂dk+1

∂h
0

∂dk+1

∂∆tII
· · · · · · · · · · · · · · ·

∂dk+m

∂ϕ

∂dk+m

∂λ

∂dk+m

∂h
0

∂dk+m

∂∆tII



(25)

covariance matrix of measurement vector (assuming the both systems are independent)
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Pu =



σ2
d1

· · · σd1dk 0 · · · 0
· · · · · · · · · · · · · · · · · ·
σd1dk · · · σ2

dk
0 · · · 0

0 0 0 σ2
dk+1

· · · σdk+1dk+m

· · · · · · · · · · · · · · · · · ·
0 0 0 σdk+1dk+m · · · σ2

dk+m



(26)

where σ2
di

is a variance of pseudo-range di, σdid j is a covariance between pseudo-ranges
di and d j.

If both systems are dependent (or correlated only), then their mutual correlation
should be taken into account in the matrix Pu.
covariance matrix of coordinates increments (practically it is a covariance matrix of
estimated position coordinates increments)

P∆xi =



σ2
∆ϕi

σ∆ϕi∆λi σ∆ϕi∆hi σ∆ϕi∆ti σ∆ϕi∆tIIi
σ∆ϕi∆λi σ2

∆λi
σ∆λi∆hi σ∆λi∆ti σ∆ϕi∆tIi

σ∆ϕi∆hi σ∆λi∆hi σ2
∆hi

σ∆hi∆tIi σ∆hi∆tIIi
σ∆ϕi∆tIi σ∆λi∆tIi σ∆hi∆tIi σ2

∆tIi
σ∆tIi ∆tIIi

σ∆ϕi∆tIIi σ∆λi∆tIIi σ∆hi∆tIIi σ∆tIi ∆tIIi σ2
∆tIIi



(27)

covariance matrix between individual value increments of measured navigational po-
sition parameters

P∆xi∆x j =



σ∆ϕi∆ϕ j σ∆ϕi∆λ j σ∆ϕi∆h j σ∆ϕi∆tI j σ∆ϕi∆tII j

σ∆λi∆ϕ j σ∆λi∆λ j σ∆λi∆h j σ∆λi∆tI j σ∆λi∆tII j

σ∆hi∆ϕ j σ∆hi∆λ j σ∆hi∆h j σ∆hi∆tI j σ∆hi∆tII j

σ∆tIi ∆ϕ j σ∆tIi ∆λ j σ∆tIi ∆h j σ∆tIi ∆tI j σ∆tIi ∆tII j

σ∆tIIi ∆ϕ j σ∆tIIi ∆λ j σ∆tIIi ∆h j σ∆tIIi ∆tI j σ∆tIIi ∆tII j



(28)

5. Summary

The presented method of position coordinates calculations based on data from non-
simultaneous measurements of navigational position parameters can be used in in-
tegrated navigational systems or hybrid receivers of radionavigation systems, e.g.
GPS/GALILEO, GPS/GLONASS, GPS/rho-rho system or another radionavigation sys-
tem.

By extending the concept of navigational parameter measurement vector to the
projected measurement vector one can standardize algorithms for calculations of a fix
coordinates. The application of projected values of navigational parameters, in turn,
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enables determining a position using any set of position parameters – homogenous or
non-homogenous. This is essential to automated navigational systems where measure-
ments of navigational parameters are integrated. Projected values in non-simultaneous
measurements are burdened with larger errors than simultaneous measurements. This,
however, is accounted for in the resultant position covariance matrix. Then a non-biased
assessment of position coordinates is obtained, that is correct from the viewpoint of the
system measurement model (Banachowicz, 1994; Banachowicz, 2005a; Banachowicz
et al., 2005b). The algorithm of position coordinates calculation from non-simultaneous
measurements is more general, and when simultaneous measurements are made it is
simplified to the first algorithm step.
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Streszczenie

W artykule przedstawiono sekwencyjną metodę integracji parametrów nawigacyjnych pochodzących z nie-
jednoczesnych pomiarów nawigacyjnych. Zaproponowany w niej algorytm estymacji współrzędnych po-
zycji jest ogólny i zawiera w sobie dwa przypadki opracowywania pomiarów – jednoczesnych i nie-
jednoczesnych. Może on być wykorzystany w hybrydowych odbiornikach systemów radionawigacyjnych
integrujących niejednorodne linie pozycyjne lub w zintegrowanych systemach nawigacyjnych, a w szcze-
gólności w odbiornikach łączących pomiary różnych nawigacyjnych systemów satelitarnych.




