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Abstract 

The paper presents a method of adaptation of the original second order Prony’s method for applications in low-
cost digital measurement systems with low computing performance. The presented method can be used in 

measuring systems where it is important to obtain in real time the values of amplitude, frequency, initial phase and 

damping coefficient of a single sinusoidal component of an analysed signal. The paper presents optimized, in terms 

of the number of mathematical operations, implementation of the method in selected embedded devices as well as

the calculation times of the method for each platform. 
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1. Introduction 
 

Analysis of a digital multi-frequency signal to estimate the basic parameters of its 

components is a very broad subject mainly related to Fourier transforms [1−7]. One section 
of this area includes the analysis dedicated to estimation of a single component with the greatest 

possible accuracy and short calculation time. This area of application includes some 

modifications of the Fourier analysis [8−9] and other methods [10], of which the Prony’s 

methods gain greater and greater practical significance [11−16]. 
The Prony’s methods are characterized by the properties of precise estimation of the 

parameters of an analysed signal. They generate new measurement possibilities by identifying 
real frequencies of the analysed signal components, and by extending the signal model with 

information about the damping coefficients of the components [17−20]. These methods enable 

the use of short windows of analysis, which is valuable in the study of fast variable phenomena. 
They also specify the parameters of components of slowly variable signals, with incomplete 
periods in the analysed analysis window. Nevertheless, when analysing multiple components, 

they are computationally complex methods that require inversion of large matrixes, and 
calculation of roots of high-order polynomials. These methods may also involve problems with 

the numerical stability of solutions.  
The great versatility of Prony’s methods makes them an alternative to Fourier transform-

based methods, enabling to measure a wider range of signals in variable measurement 
conditions (analysis window duration, sampling frequency) not available with other methods. 

The paper presents a method of modifying the calculations required in the algorithm 

of original version of Prony’s method of the second order in such a way as to obtain maximum 
simplification. The proposed modification is based on fundamental mathematical operations 

without involving complex numbers and operations requiring iterative calculations. This 
enables a significant reduction of the calculation time of Prony’s method even for low-
performance embedded devices. In the paper the accuracy aspect of calculations of Prony’s 
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method is deliberately omitted, as it is the subject of separate publications [17−20]. The 
implementation of the method for a specific application is also not presented so as not to narrow 

down the group of potential recipients of the proposed solution. 
The paper consists of 4 Sections. In Section 1 an introduction is included. In Sector 2 there 

are described the original Prony’s method and its modifications to simplify the calculations 

of the presented algorithm. Section 3 shows the implementation of the method in selected 
embedded devices and the measurement results of algorithm execution time. Sector 4 contains 

a summary. 
 

2. Description of adaptation of original Prony’s method for embedded applications 

 

The original Prony’s method can be presented essentially as two calculation stages. In the 

first stage, frequency and damping coefficients of the complex exponents modelling the 
analysed signal are determined. In the second stage, amplitudes and initial phases of the 

components are calculated based on the parameter values determined in the previous stage 
[17, 21].  

 

2.1. Determination of frequency and damping coefficients of components 

 

In the first stage of the original Prony’s method calculations a Toeplitz matrix is created 
on the basis of samples x1…x2p of analysed signal, (left side of (1)). The following equation is 
based on this matrix:  
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where p is a size of Prony’s model, and the vector A1…Ap  is a set of certain coefficients, which 
will be described later in the argument. For the adopted order of Prony’s model p = 2, the 
solution of (1) can be represented by a relation: 
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To increase the transparency, let, x1 = a, x2 = b, x3 = c, x4 = d. By making further transforma-

tions related to the calculation of the inverse matrix we obtain:  
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where: 
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(4) 

is a determinant of the inverted matrix. Estimation of component parameters of Prony’s model 

takes place for r ≠ 0. Finally, it can be written as: 
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In this way coefficients of a polynomial of the general form are determined: 
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for which the next step is to determine its complex roots zk: 
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It is assumed that A0 =1 [21]. For the considered case p = 2, a square polynomial of the 
general form is obtained: 
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where, knowing the coefficients A0, A1, A2 , the zero of the function can be determined using the 
commonly known Vieta’s formulas. For the polynomial (9) we can first write: 
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The estimation of the sinusoidal components of Prony’s model is obtained for complex roots, 

i.e. for ∆ < 0. For the Prony’s model with p = 2, we obtain conjugate roots describing sinusoidal 

components damped: one with a positive frequency and the other with identical amplitude, 
initial phase and damping but with a negative frequency. By further transformation of Vieta’s 

formulas, we obtain the solution:     
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The roots in the first stage of Prony’s method are complex but for further embedded 

applications the operations can be performed for real data types, as − based on the real part 

Re{z1} and imaginary part Im{z1} of selected individual root − the frequencies f1 and f2 of the 

components can be calculated according to the following relation: 

2

0

2

1

21

4A

A
zz

∆−
== ,

                                                 

(13) 














=−=

1

1

21

}Im{
arcsin

π2

1

z

z

T
ff ,

                                      

(14) 

where T is a sampling period of the analysed signal, whereby, if the estimated component is not 

damped, then |z1| = |z2| = 1. The damping coefficients α1 and α2 can be determined from the 
relation: 
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(15) 

Finally, by making simple transformations, we can determine the frequency and damping 

coefficients of an estimated component using a simple C code or Matlab:  

        a2=a*a; b2=b*b; c2=c*c; ab=a*b; 
        bc=b*c; cd=c*d; ac=a*c; bd=b*d; 
        a2_b2=a2+b2; b2_c2=b2+c2; ab_bc=ab+bc; 
        r=a2_b2*b2_c2-ab_bc*ab_bc; 
        A1=-(bc*a2_b2-ac*ab_bc+cd*a2_b2-bd*ab_bc)/r; 
        A2=-(ac*b2_c2-bc*ab_bc+bd*b2_c2-cd*ab_bc)/r; 
        del=A1*A1-4*A2; rez1=-A1/2; imz1=sqrt(-del)/2; 
        absz1=sqrt(rez1*rez1+imz1*imz1); 
        F=asin(imz1/absz1)/(2*pi*T);  
        AL=log(absz1)/T; 
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For calculation of the first stage of Prony’s model p = 2 in the original version, it is required 

to perform in total: 24 multiplications, 12 additions, 5 divisions, and additionally 2 root 
extractions and 1 arcsin operation. All operations are performed on real data types. 

 

2.2. Determination of initial stages and amplitudes 

 

In the second stage of the original Prony’s method, the first operation is to determine 
a Vandermonde matrix (16): 
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(16) 

from complex roots zk and solving the (17): 
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where: h = [h1,…,hp]T, and  x=[x1,…,xp]T. 

The determined vector h is used in the next step to calculate amplitudes amp and initial stages 

ϕ of the components of Prony’s model, according to the relation [21]: 
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When using a model with size p = 2, the number of mathematical operations to perform is 
relatively small. However, multiplications and additions on complex numbers are required, 
which greatly increases the number of operations based on real data types. For example,  

1 complex multiplication translates into 4 multiplications and 2 additions of real numbers, and 
one complex addition translates into 2 additions of real numbers. Therefore, the direct 

adaptation of the second stage of Prony’s method for embedded applications is not favourable 
in terms of the number of mathematical operations.  
 

 

 

Fig. 1. The gain characteristics and positions of zeros of an FIR filter with coefficients Crow1 calculated  

for a sinusoidal signal f = 50 Hz, α = 0 with T = 1 ms. 

 
The key to reducing the computational complexity of this stage lies in the observation that 

the term (VTV)−1VT in the relation (17) is a certain constant for the frequencies and coefficients 
of damping with a p x p matrix (C ). The last step in calculation of the relation (17) is therefore 
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the product of the matrix C and the vector of analysed signal x. For p = 2, this operation can be 

replaced by two operations of vector multiplication: 

                                                          xCh
row11

= and

 

xCh
row22

= ,                                                         (20) 

whereby, the solution h1 = conj(h2) is obtained in the same way as z1 = conj(z2). Therefore, it is 
enough to determine the parameters of a single element of vector h. Note that the operations 

from (20) are filter operations with FIR type filters with coefficients: Crow1 for h1 of signal x 
and Crow2 for h2 of signal x. However, the complex calculation of single FIR filter coefficients 
is still required, as described above. Further observations can be made by observing the 

performance characteristics of FIR filter with coefficients Crow1 – Fig. 1. 

It turns out that for the original Prony’s method with p = 2, if α = 0, we can write equality 

roots(Crow1) = z1 and roots(Crow2) = z2, but for α ≠ 0 angle(roots(Crow1)) = angle(z1) and 

angle(roots(Crow2)) = angle(z2). Based on these observations, regarding the assumptions of the 
model order, the second stage of Prony’s method can be simplified. This simplification will 
enable to determine the initial stages of the components. 

In the first stage, on the basis of a previously determined single zero position z1 we determine 

the coefficients of a certain polynomial Ψ(z) of first degree; let: 
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Having the root z1 of this polynomial, based on the relation describing the zero of the 

equation of the straight line: 
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we can write down: 
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In the next step, we can create a vector with the coefficients of the searched FIR filter: 
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However, the parameter B1 is still unknown. Exact knowledge of this parameter would 

enable estimation of the amplitude and phase of the desired components. It turns out, however, 
that to obtain the correct estimation of only the initial phase, it is enough to accept the value 

from the example shown, i.e.: 0−3.236 for B1 or another value with a zero real part and a 
negative imaginary part. For further transformations for simplicity, it was assumed that B1 = – i. 

In this way, substituting B1 = – i in the formula (24) and next in the formula (20), and 
substituting x1 = a and x2 = b after transformations, it can be written down as a simple relation 

to the real and imaginary parts of the parameter h1: 
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By substituting the determined parameter in (19), a valid initial phase of a single component 

can be determined. The number of operations required for this purpose is small and is based on 
real data types. However, another solution should be used to determine the correct amplitude 
of Prony’s model. The easiest way is to use the relation: 
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If we make calculations for time t1 = 0, with the substitution x1 = a we will obtain: 
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Ultimately, the calculation of the initial stage and the amplitude of Prony’s model can be 

reduced to just a few lines of code in C or Matlab: 

 reh1=-imz1*a; 

 imh1=rez1*a-b; 

 absh1=sqrt(reh1*reh1+imh1*imh1); 

 FI=asin(imh1/absh1); 

 AMP=a/cos(FI). 

The second stage of Prony’s method requires a total of 4 multiplications, 2 additions, 2 
divisions, and 1 root extraction operation, 1 arcsin and 1 cosine operation. All operations are 
performed on real data types.  

 

3. Implementation of method in embedded device 

 

The C-code method described in Section 2 was implemented in embedded devices with 
microprocessors of different architectures. These were the following microprocessors:  

1) NUC140VE3CN in module Nuvoton Nu-LB-NUC140 [22]; 

2) LM4F120H5QR in module Stellaris LM4F120 LaunchPad Evaluation Kit [23]; 

3) TMS320C28027 in module C2000 Piccolo LaunchPad LAUNCHXL-F28027 [24]; 

4) MSP430G2553 in module MSP-EXP430G2 TI LaunchPad [25]. 
The execution times of the method were analysed for selected hardware platforms. 

The results are shown in Table 1. All calculations, except for the selected case, were made for 
64-bit double numbers. 
 

Table 1. Comparison of computation times for different processor systems. 
 

Processor clock [MHz] computation time [µs] 

LM4F120H5QR 80 215.1 

TMS320C28027 60 275.4 

NUC140VE3CN 50 337.1 

MSP430G2553 (32bit) 16 1161.1 

MSP430G2553 (64bit) 16 3733.0 

 

The execution times of individual instruction groups were also analysed in relation to the 
execution time of the entire algorithm. The analysis was performed for the Nuvoton Nu-LB-
NUC140 platform and the results are presented in Table 2.  

 
Table 2. A summary of the numbers of operations and their execution times by the original Prony’s method 

with p = 2, for Nuvoton Nu-LB-NUC140, with fCLK = 50 MHz. 

 

 

operation 

number of 
operations 
I stage 

number of 
operations 
II stage 

operations in 
total 
 

execution time 
1 instruction 

[µs] 

execution time 
instructions 

[µs] 
instruction 
percentage 

* 24 4 28 4.2 117.6 35% 

+ 12 2 14 2.3 32.2 10% 

/ 5 2 7 7.7 53.9 16% 

 
2 1 3 11.7 35.1 10% 

arcsin 1 1 2 25.0 50.0 15% 

cos 0 1 1 25.0 25.0 7% 

ln 1 0 1 23.3 23.3 7% 

total: 45 11 56  337.1 100% 
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4. Conclusions 

 

A modification of Prony’s method presented in the paper enables simple implementation 
of the original Prony’s second-order method in embedded devices with a low computing power. 

The optimization of the algorithm enabled to use short algorithms in a wide range 
of measurement devices that perform measurement of a single sine component of an analysed 

signal and in security devices that have a short response time to specific events. Because the 
order of the model is limited in the algorithm to one real component for practical applications 
in which the analysed signal contains different distortions, the best results of the method can be 

achieved using an additional bandpass filter  in the algorithm prior to the analysis by Prony’s 
method [26]. The basic parameters of the bandpass filter, such as bandwidth, waving, and 

stopband damping should be chosen in accordance with a specific implementation. Examples 
of implementation of the method for specific measurement applications along with the selection 
of a bandpass filter will be the subject of further publications. 
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