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Abstract 

Weak value amplification is a measurement technique where small quantum mechanical interactions are amplified 

and manifested macroscopically in the output of a measurement apparatus. It is shown here that the linear nature 

of weak value amplification provides a straightforward comparative methodology for using the value of a known 

small interaction to estimate the value of an unknown small interaction. The methodology is illustrated by applying 

it to quantify the unknown size of an optical Goos-Hänchen shift of a laser beam induced at a glass/gold interface 

using the known size of the shift at a glass/air interface. 
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1. Introduction 

 

The theoretical notion of the weak value �
�

 of a quantum mechanical observable � was 

introduced by Aharonov et al. [1−3] nearly three decades ago. This quantity is the statistical 
result of a standard measurement procedure performed upon a pre-selected and post-selected 
(PPS) ensemble of quantum systems when the interaction between the measurement apparatus 
and each system is sufficiently weak. Unlike the standard strong measurement of a quantum 

mechanical observable which significantly disturbs the measured system (i.e., collapses 

the wave function) and yields the mean value 〈�〉 as the measured value of �, a weak 
measurement of an observable for a PPS system does not appreciably disturb the quantum 

system and yields �
�

 as the measured value of �. Unlike 〈�〉 – which is real valued and bounded 

by the eigenvalue spectral limits of the associated operator �� − �
�

 can exhibit such eccentric 

properties as being complex valued and having its real part greatly exceed ��’s spectral limits. 
While the interpretation of weak values remains somewhat controversial, several of the unusual 

properties predicted by the weak value theory have been experimentally verified, e.g. [4−6]. 
In recent years much attention has been devoted both to understanding the utility of weak 

values as a metrological resource, e.g. [7−13], and to using weak value amplification techniques 

to observe and directly measure small quantum mechanical interactions, e.g. [14−22]. This 
paper extends the metrological application of weak value amplification by introducing a new 

comparative method that exploits the linear property of weak value amplification for the 
purpose of quantifying an unknown value of small interactions using a known value of a similar 
interaction. Briefly put, measurements are used to provide a scale factor that multiplicatively 

transforms the known interaction’s value into the value of the unknown interaction. Such 
scaling has the advantage of eliminating the need to convert measurement apparatus units into 

the appropriate units for the interaction (e.g., voltages into lengths).   
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The remainder of this paper is structured as follows: the general theory of weak value 

amplification is summarized in the next section and used in Section 3 to develop 
the comparative weak value method for estimating small interaction parameters. In Section 4 
the comparative method is illustrated by applying it to experimental data to estimate 

the unknown size of a Goos-Hänchen shift at a glass/gold interface using the known value of the 
shift at a glass/air interface. Concluding remarks are comprised in the final section of this paper. 

 

2. The theory of weak value amplification 

 

Weak values arise in the context of the von Neumann description of a quantum measurement 

at time �� of a time-independent observable �� that describes a quantum system in an initial 

fixed pre-selected state |��� = ∑ ��	
���  at ��, where the set � indexes the eigenstates 	
�� of �� 
with ��	
�� = 
�	
��. In this description the Hamiltonian for the interaction between 

the measurement apparatus and the quantum system is: 
� = �������̂.                                                                

Here ���� = ���� − ��� defines the strength of the impulsive measurement interaction at �� 

and �̂ is the momentum operator for the pointer of the measurement apparatus which is in the 

initial state |��. Let �� be the pointer’s position operator that is conjugate to �̂ and assume that 
��|�� ≡ ���� is real valued with 〈�〉 ≡ ��|��|�� = 0. 

Prior to the measurement the pre-selected system and the pointer are in the tensor product 

state |���|��. Immediately following the measurement the combined system is in the state: 

|�� = ��
�
ħ
�����|���|�� = ��

�
ħ
���	
|���|��. If the state 	���, ���	��� ≠ 0, is post-selected at ��, 

the resulting pointer state is: |Ψ� = ���	�� = ������
�
ħ
���	
��� |��. 

A weak measurement of �� occurs when the interaction strength � is sufficiently small so that 
the system is essentially undisturbed by the measurement and the pointer’s position uncertainty 

∆� is much larger than the separation between ��’s eigenvalues. In this case, the last equation 

becomes |Ψ� ≈ ���	!1" − �# ħ⁄ �����̂%	���|�� or |Ψ� ≈ ���	���&������|�� , where: 

                                                              �� ≡ ���	��	��� ���	��� ≡ ��
��'                                   (1) 

is the complex valued weak value of observable � and the operator: 

                                                                       &������ ≡ ��
�
ħ
���	


                                                    (2) 

is the translation operator for |�� defined by the action ��	&������	�� = ��� − �(����  

yielding  |��|Ψ�|� ≈ 	���	���	�|��� − �(����|� as the associated pointer distribution profile.    

Thus, after the measurement the final mean pointer position is: 

                                                        �Ψ|��|Ψ� = ��|��|�� + �(���,                                        (3) 

i.e., it is translated from its initial mean position ��|��|�� before the measurement by the amount 

�(���. When ���	��� is small, then (��� can lie far outside the eigenspectral limits of ��, in 

which case �� is said to be amplified, and the associated pointer shift is large. Observe that 

when ��, |���, and 	��� are known, then (1) can be used to compute ��. It is also interesting 

to note that under certain circumstances the imaginary part )*�� of �� can be used to control 
the variance of the pointer state [23]. 

In order for measurements to qualify as weak measurements, they must be made in the weak 
measurement regime where the following two weakness conditions are simultaneously satisfied 

by the pointer’s momentum uncertainty, e.g. [24]: 

                                                                  ∆� ≪
ħ

�
|��|�
,                                                     (4a) 
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                                                     ∆� ≪ min
����,�,⋯ �

ħ

�
� ��

�����
�
	 ��
	�⁄

 .                                        (4b) 

 

3. A comparative weak value amplification method for estimating small interactions 

 

Within the weak measurement regime, if � is fixed and ���� is considered to be an 
independent variable which acts as an amplification factor, then the relation given by (3) 

between the final pointer position and ���� is linear and can be represented by a straight line 

which has the initial mean pointer position ��|
�|�� as its “y-intercept” and � as its “slope”. 
It is this linear relationship within the weak measurement regime that provides the theoretical 
basis for the comparative weak value estimation method developed in this section. 

Suppose 
 is an apparatus used to make a series of � ≥ 2 weak measurements of the � 

mean pointer positions �Ψ|
�|Ψ�
, � = 1,2, ⋯ ,�, associated with � independent choices of the 

real part ����

, � = 1,2, ⋯ ,�, of the weak value of an observable � associated with a PPS 

system � whose interaction with 
’s pointer is �. Since each such measurement is weak, then 
��� they must each simultaneously satisfy the weakness conditions given by (4a) and (4b) and 
���� the theoretical relationship between each measured mean pointer position and 

the associated choice made for ���� is governed by (3).  

Let � = ������

, �Ψ|
�|Ψ�
� ∶ 1 ≤ � ≤ � � be the set of ordered pairs corresponding to the 

� weak measurements performed upon � using the apparatus 
. Now consider the case where 


 is also used to make �� ≥ 2 weak measurements of mean pointer positions �Ψ|
�|Ψ�
�, � =

1,2, ⋯ ,��, and associated observable weak values ����
�


, � = 1,2, ⋯ ,��, for a PPS system �� 

whose interaction with 
’s pointer is �� and let �� = ������
�


, �Ψ|
�|Ψ�
�� ∶ 1 ≤ � ≤ ��� be 

the set of ordered pairs corresponding to the measurements performed upon �� using 
. 
Because of the linear relationship given by (3) and provided the measurement errors are 

small, regression lines with large correlation coefficients can be obtained for � and �� using 

standard regression software packages. Let  �Ψ|
�|Ψ�� = ��|
�|��� + ������ and �Ψ|
�|Ψ��� =

 ��|
�|���� + �������
�  be the regression lines (denoted by “ � " ) for � and ��, respectively, 

where ��|
�|��� and ��|
�|����  are the “y-intercepts” and �� and ���  are the “slopes”. 

Note that since � and �� are obtained using the same apparatus 
, then the units of measure 

for each are the same. Thus, if the physical measurement unit for 
 is �, then the initial and 

final mean pointer positions – as well as the �����terms − are quantified in � units. 

Consequently, the slopes � are quantified in � units per unit amplification factor. For example, 

if � is �����ℎ, then the mean pointer position and ������ are in �����ℎ units. As required, 
this is consistent with the theory developed in Section 2. In particular, consider the argument 
of the exponential function in (2) that defines the translation operator. There Planck’s constant 

ħ has units: ������ ∙ ���� = �	

 ∙ �������
����

�
	

∙ ���� = �	

 ∙ 
����ℎ	/���� and the linear 

momentum operator �̂ has units: �	

 ∙ 
����ℎ/����. Because it must be the case that the ratio 

����̂ ħ⁄  has no units, then ��� must have �����ℎ as its unit of measure. 

If both of the slopes of the regression lines for � and �� along with the value of one 

interaction strength – say � − are known, then the proportionality ratio  
��

�
=

��
�

��
 can be used to 

estimate the value of the unknown interaction strength �� according to the scaling:  

                                                                                �� = !��
�

��
"�.                                                        (5) 
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4. Example: Estimating the size of an unknown Goos-Hänchen shift  

 
Although the law of reflection – which states that “the angle of incidence equals the angle 

of reflection” – is valid for plane waves (i.e., geometric optics), it is an incomplete description 
for transversely finite light beams which undergo total internal reflection at a dielectric 

interface. In this case – while the angles of incidence and reflection are equal − the center of the 

reflected beam is spatially translated in the plane of incidence relative to that of the reflected 
beam. This extremely small translation of the reflected beam is the optical Goos-Hänchen (GH) 

shift ∆��. If the incident beam is a superposition of linear polarizations parallel to the plane 

of incidence (� polarization) as well as perpendicular to it (� polarization), then the �	��� 
polarized photons yield a reflected beam which is translated along a small distance ��	���� and 

∆��� �� 	�� . When the angle of incidence 
 is greater than – but close to – the critical angle 

for total internal reflection, the GH shift of the beam is approximately given by [25]: 

                                               ∆��� � �

��
	 1
� ���

�√
���
���

,                                                   (6) 

where � � �� ��⁄  and �� � ������� ��⁄ . Here �� is the index of refraction for the internal 

medium containing the incident beam, �� is the index of refraction for the external medium, 

�� � ��, and ������� is the wavelength of the incident beam measured in a vacuum. 
In this section the comparative weak value amplification method will be illustrated by using 

it to estimate the value of an unknown GH shift occurring at a glass/gold interface when 

the value of the corresponding GH shift at a glass/air interface is known. A schematic of the 
apparatus used to make the necessary series of weak measurements is shown in Fig. 1. This 

apparatus is similar to that used in [26] to measure GH shifts at a glass/air interface using weak 
value amplification. 

 

 

 
 

Fig. 1. A schematic of the apparatus used to make weak value measurements of ��. 

 
 

In Fig. 1 a wave plate is used to provide an approximately equal mix of � and � polarized 
classically intense light in the Gaussian beam that is produced by a 637 nm wavelength laser 
diode with an output power of 4.8 mW. As shown in the figure, the horizontal and vertical axes 

in the apparatus reference frame are labeled � and �, respectively, with the � axis pointing 
outward from the plane of the paper. These axes correspond to the directions of the electric field 

vector that define the � and � states of linear polarized light. A pre-selection polarizer fixes 
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the initial polarization state of the light as: |��� = cos� |�� + sin � |�� , with θ = 45º.  The beam 
then interacts with the interior “rear” surface of a BK7 glass prism (with and without a 50 nm 

exterior surface layer of gold ) at an incidence angle α = 42º and undergoes a GH shifted 
reflection. After traversing quarter and half wave plates which remove undesirable phase shifts 

and � and � mixing produced by the interaction, a post-selection polarizer post-selects: 

���� = cos	 |�� + sin 	 |�� as the polarization state of the light before it is collected by a (New 

Focus 2921) quadrant detector set at a 5 mW gain. The post-selection polarizer angle is varied 

in 5º increments starting with ϕ = 90º and ending with ϕ = 110º to produce amplification of the 

operator to be measured. The mean of the Gaussian distribution of the beam serves as the 

measurement pointer of the apparatus and for each ϕ value selected a (Agilent 34401A) 
voltmeter measures the pointer translation (which is in the plane of the paper in Fig. 1 and 

transverse to the beam) as the difference in the intensities of light falling upon the left and right 
halves (facing Fig. 1) of the detector. 

The operator measured by the apparatus is the polarization operator 
� = |����| − |����| 
where |�� and |�� are orthonormal (i.e. ��|�� = ��|�� = 1, ��|�� = ��|�� = 0) eigenkets of 
� 
with respective eigenvalues ±1. Using the orthonormal property of these eigenkets, it is 
determined from (1) that: 

�� =
�cos� ��| + sin� ��|��|�	��| − |�	��|��cos
 |�	 + sin 
 |�	��cos� ��| + sin � ��|��cos 
 |�	 + sin 
 |�	� =

sin � sin 
 − cos� cos 

cos� cos
 + sin � sin 
 . 

It is convenient to write 
� as a function of an offset angle 
 referenced to the fixed pre-

selection angle � = 45�. Using 
 = 	 − � = 	 − 45� in the last equation yields 
� = tan 
 

as the amplification factor. Also, from [26] it is found that the interaction strength is � =

�1 2⁄ �∆�� in which case the pointer translation is ���
� =
�

�
∆�� tan
 .  

Thus, for each offset angle ω = 45º, 50º, 55º, 60º and 65º, the interaction strength is amplified 

by the weak value tan ω = 1.000, 1.192, 1.428, 1.732 and 2.144, respectively. 

It is necessary to obtain the weakness condition that must be satisfied in order that 

the measurements of 
 are sufficiently weak so that (3) applies. Observe from (4b) that when 

� is odd, �
	�� = 
� and when � is even, �
	�� = 1. Applying these results and the 

Heisenberg uncertainty relation ∆� ∆� ≥ ħ 2⁄  to (4�) and �4�� gives ∆� ≫
�



∆�� tan
  and  

∆� ≫

�

�

� �

�
∆�� ,� ���

�

�
∆�� � min

���,�,	,⋯
�tan��� 
����⁄ ��� ,� ���� 

, 

respectively, where ∆� is the uncertainty in the pointer’s (horizontal) position. Since 1.000 ≤ 

tan ω ≤ 2.144, then it is clear that the single inequality  ∆��≪ 4 ∆� cot
 simultaneously 
satisfies (4a) and (4b)  and defines the weak measurement regime. Using in this inequality 

the reasonable assumption that the pointer’s position uncertainty ∆� is to a good approximation 

the ∼ 1 mm = 106 nm width of the laser beam yields the following weakness condition that must 

be satisfied by the Goos-Hänchen shift for measurements made in the offset angle range 45º ≤ 

ω ≤ 65º: 

                                                              ∆��≪ 4 × 10� cot
  ��.                                                 (7) 

Before performing the desired series of measurements for both the glass/air and 
the glass/gold cases, the zero reference voltage was determined by centering the laser beam 

intensity distribution on the quadrant detector using θ = ϕ = 45º. The results for each series 
of measurements relative to the associated zero reference voltages are presented in Fig. 2.  
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Fig. 2. Average measurement values �Ψ|��|Ψ������������  vs. �
�

 and regression lines. 

 

 
 

Fig. 3. The ranges for the dispersion of pointer position measurements  

around average pointer positions �Ψ|��|Ψ������������ vs. �
�

. 

 
Each measurement result is an average �Ψ|��|Ψ������������ of ∼185 distinct pointer positions, where 

each pointer position corresponds to a single voltage reading provided by the paired 

voltmeter/quadrant detector used in the apparatus. The ∼185 pointer positions comprising all 

averages were collected during a 60 second time interval (this interval was selected based upon 
previous experience using this voltmeter/quadrant detector pair since it was found that 

increasing the interval had a negligible effect on measurement results). The average 

measurement value �Ψ|��|Ψ������������, along with the minimum and maximum pointer position values 
used in the average, were automatically generated by the voltmeter. These minimum and 
maximum values provide a measure of the dispersion of the pointer position values used to 

compute the associated average. They were converted into range brackets 	
�, 
�� for each 
average measurement value and indicate that all measurements used to compute a measurement 

average �Ψ|��|Ψ������������ had values in the range 
�Ψ|��|Ψ������������ � 
�, �Ψ|��|Ψ������������ � 
�� mV. Since this range 

for each measurement average is smaller than the symbols used to represent the data points 
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in Fig. 2, they are reported separately in Fig. 3 as vertical bars representing the dispersion 

of pointer position measurements around the average measured value �Ψ|��|Ψ������������.  

The regression line �Ψ|��|Ψ��
�����/��� = −13.4 + 7.30 tan�  mV with a correlation 

coefficient of 0.968, a slope uncertainty of 	� = 0.89 mV, and a y-intercept uncertainty of 

	� = 1.4 mV was obtained for the five point glass/air measurement data set and the regression 

line �Ψ|��|Ψ��
�����/�	�
  = −42.2 + 17.6 tan�  mV with a correlation coefficient of 0.982, a 

slope uncertainty of 	�
� = 1.6 mV, and a y-intercept uncertainty of 	�

′ = 2.4 mV was obtained 
for the five point glass/gold data set. These regression lines are presented along with the 

measurement data in Fig. 2. Note that the y-intercepts −13.4 (±1.4) mV and −42.2 (±2.4) mV 
of the two regression lines correspond to the theoretical average initial pointer positions for the 
glass/air and glass/gold measurement sets. However, recall from above that the experimental 

zero reference voltage for the pointer position was obtained by centering the intensity of the 
laser beam on the quadrant detector. 

Thus, the slopes expressed in apparatus measurement units are ������/��� = �� ± �� = 7.30 ±

0.89 mV and ������/���	 = ��
 ± ��
 = 17.6 ± 1.6 mV. 

Since α = 42º is near but greater than the critical angle for the glass/air interface (i.e., ∼41.8º), 

(6) can be used to estimate ∆�
,�����/��� = 1786 nm. (It is important to note that: (6) should not 

be used to evaluate ∆�
,�����/�	�
 because the associated critical angle is not near 
; and 

∆�
,�����/�	�
 is likely enhanced by a surface plasmon resonance effect occurring at α ≈ 44º , 

e.g. [27]). Application of (5) provides the desired estimated result (the 1 2⁄  factors in � and �� 

cancel one another): ∆��,�����/���	= �
�.� ��

�.�� ��
� �1786 nm� = 4304 nm.  

It remains to verify that the weakness condition (7) is satisfied for both series 

of measurements. For the range of offset angles � used in both series of measurements, 

the smallest value for the right hand side of (7) occurs at ω = 65º so that ∆��≪ 1869 × 10� nm. 

By inspection it is readily seen that both ∆�
,�����/���  and  ∆�
,�����/�	�
 satisfy this inequality. 

Consequently, both series of measurements qualify as weak measurements. 

It is important to point out that although the weakness condition (7) is not violated for ω = 
65º, amplification factors greater than 2.14 were not used here. This is because the average 
measurement values begin to sharply depart from the linear behavior associated with weak 

value measurements when ω = 65º. This is primarily a consequence of the fact that the pointer 

distribution profile – which is effectively a broad Gaussian peaked at � 
��� = �

�
∆�
 tan � 

when ω ≤ 65º − starts to become bimodal when ω > 65º with a second peak appearing to the 

left of the original peak. As � approaches 90º the light becomes more equally distributed around 
each peak and the detector voltage difference approaches zero. This behavior can be seen 

in Fig. 2 in [5] and Figs. 2−4 in [28] and is discussed in [29] from a statistical mixture 
perspective for projection operators as the measurement interaction strength increases.  

 

5. Concluding remarks 
 

This paper introduces a new weak value based methodology that can be used to estimate 
the unknown value of a small quantum mechanical interaction from an interaction with a known 

value. The method is straightforward, eliminates the need to convert measurement units into 
interaction units (as is generally the case for direct measurements of the interaction), and 
capitalizes upon the linear translation of the pointer of the measurement apparatus as the weak 

value of the observable is amplified. It requires: (�) a series of weak value measurements of an 
observable for the case where the interaction is known and for the case where it is unknown; 

(��) knowledge of the operator that represents the observable to be measured, as well as the 
associated PPS states, in order to evaluate the amplification factor and weakness condition 
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for each measurement; (���) that each such measurement qualifies as a weak measurement 

by satisfying an associated weakness condition; and (��) fitting the slopes of the regression 
lines to each series of measurements. The estimate of the value of the unknown interaction 

is obtained by scaling the known interaction value by the ratio of these slopes. It can also be 
used to establish ratios of interaction values when both their values are unknown or 
unobtainable (in certain applications it may be the case that ratios are adequate). The method is 

illustrated by using it to estimate the optical Goos-Hänchen shift at a glass/gold interface using 
the known shift at a glass/air interface. 

In closing, it is interesting to entertain the possibility that a methodology similar to that 

discussed in this paper might be developed for non-linear theories of order ��, � > 1. Although 

theories for all orders have been studied for PPS systems, e.g. [29−31], due to the apparent 
additional complexities associated with such methodologies, the advantage of applying non-

linear theories to comparatively determine small interactions is not obvious. It is clear that 
additional research is needed to evaluate the metrological utility of such an approach.  
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