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Abstract. In recent years, moving cast shadow detection has become a critical challenge in improving the accuracy of moving object detection 
in video surveillance. In this paper, we propose two novel moving cast shadow detection methods based on nonnegative matrix factorization 
(NMF) and block nonnegative matrix factorization (BNMF). First, the algorithm of moving cast shadow detection using NMF is given and the 
key points such as the determination of moving shadow areas and the choice of discriminant function are specified. Then BNMF are introduced 
so that the new training samples and new classes can be added constantly with lower computational complexity. Finally, the improved shadow 
detection method is detailed described according to BNMF. The effectiveness of proposed methods is evaluated in various scenes. Experimental 
results demonstrate that the method achieves high detection rate and outperforms several state-of-the-art methods.
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A Gaussian shadow model [7] is put forward to parameterizing 
with several features including mean intensity, the orientation 
and center position of one shadow region. Amato et al. [8] seg-
ment each connected component of foreground into candidate 
regions by local color constancy detection.

Physical-based methods can adapt automatically to com-
plex scene conditions. However, tat requires timely updating of 
shadow models and user interactions. A physical-based model 
on a spatio-temporal albedo test and a dichromatic reflection 
model for moving cast shadow detection are presented by Na-
dimi et al. [9]. Joshi et al. [10] introduced a shadow detection 
technique which was implemented by support vector machines 
(SVMs) based on semi-supervised.

Generally, texture-based shadow detection methods [11‒18] 
assume that background image has similar texture with shadow 
regions and different texture with moving objects. Javed et 
al. [11] use color segmentation to get shadow candidate regions. 
In some cases, the employed color segmentation would make 
it more sensitive to noise. Edge correlation is used in literature 
[12] to remove shadows in normal indoor scenes. Ratio edge is 
first employed by Zhang et al. [13] as the ratio between the in-
tensity of one pixel and its neighboring pixels to detect shadows. 
Sanin et al. [14] discriminate cast shadows from moving ob-
jects by means of gradient information. Xiao et al. [15] propose 
a method of moving shadow detection based on edge informa-
tion, which can effectively detect the cast shadow of a moving 
vehicle in a traffic scene. The limitation of texture-based shadow 
detection methods is that these methods can detect shadow only 
for a small region in a frame. Moreover, it is slow as well. To 
relieve above mentioned problems, Sanin et al. [18] adopt color 
features for creation of candidate shadow regions.

In the light of the above algorithm, to improve the detection 
effect, more pattern classification methods can be applied in 
moving cast shadow detection such as [19, 20]. In this paper, 

1.	 Introduction

Moving cast shadow detection is a fundamental and critical task 
in visual application on stationary camera surveillance videos. 
In detecting the moving objects from a stationary camera video, 
usually a background subtraction technique is utilized for fore-
ground extraction. However, cast shadows always move with 
their corresponding objects such that many background subtrac-
tion methods cannot separate them accurately. The inaccurate 
separation might lead to object merging, object shape distortion, 
and even object losses. Therefore, detecting and eliminating 
shadow regions is necessary in video processing and motion 
analysis fields.

In general, existing shadow detection methods can be clas-
sified into five categories using different features [1]: chroma-
ticity, geometry, physical, textures and learning.

Chromatic-based methods are simple to implement so they 
can operate very fast. Chen et al. [2] analyze the shadow prop-
erty in YUV space. Cucchiara et al. [3] adopted color informa-
tion in HSV color space for shadow detection to improve object 
segmentation. The performances in different color spaces are 
evaluated in literature [4]. Sun et al. [5] propose a novel moving 
cast shadow detection method based on combined color models. 
Amato et al. [6] employed local color constancy property to 
detect both achromatic and chromatic shadows from foreground 
accurately.

Geometric based methods do not depend on the background 
reference but need more prior knowledge and scene limitations 
like illumination source, camera location and object shapes. 
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NMF based on block idea is adopted to detect the moving cast 
shadow. In this paper, two novel moving cast shadow detection 
methods have been presented on the basis of NMF and BNMF. 
Firstly, the algorithm of moving cast shadow detection based on 
NMF is introduced. Secondly, the key design processes of our 
method, such as moving shadow area and discriminant function, 
are specified. Then the improved shadow detection method is 
derived on the basis of BNMF. The biggest advantage of our 
algorithm is its incremental adaptation capability. That is, when 
new training samples or new categories are added, there is no 
need to perform retraining using the entire database. Therefore, 
our method has very low computational complexity. In addi-
tion, unlike conventional methods, our algorithm can not only 
effectively detect moving cast shadow area, but also classify 
different classes of objects.

2.	 Nonnegative matrix factorization

In 1999, Lee and Seung proposed the notion of NMF [21, 22], 
as a way to recover hidden nonnegative structures or patterns 
from nonnegative data. Given n data points with m features, we 
denote the input data by the matrix X 2 
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1. Introduction
Fractional calculus generalizes traditional integer order inte-
gration and differentiation onto non-integer order operators.
The idea was first mentioned in 1695 by Leibniz and de
l’Hôpital. In the end of 19th century, Liouville and Riemann
introduced the first definition of fractional derivative. How-
ever, only in late 60’ of the 20th century, the idea drew atten-
tion of engineers. Theoretical background of fractional calcu-
lus can be found in, e.g., [1, 2, 3]. Fractional calculus has been
found a convenient tool to model behavior of many materials
and systems, particularly those involving diffusion processes.
For example, ultracapacitors can be modeled more efficiently
using fractional calculus, as was demonstrated in [4, 5].

Recently, the case when order is time-varying, begun to be
studied extensively. The fractional variable order behavior can
be encountered for example in chemistry when system’s prop-
erties are changing due to chemical reactions. Experimental
studies of an electrochemical example of physical fractional
variable order system have been presented in [6]. The vari-
able order equations have been used to describe time evolu-
tion of drag expression in [7]. Numerical implementations
of fractional variable order integrators and differentiators can
be found in, e.g., [8, 9]. The fractional variable order cal-
culus can also be used to describe variable order fractional
noise [10]. In [11], the variable order interpretation of the
analog realization of fractional orders integrators, realized as
domino ladders, has been considered. Applications of variable
order derivatives and integrals arise also in control [12, 13, 14].

In [15, 16], three general types of variable order derivative
definitions have been given. Alternative definitions of variable
order derivatives were introduced in [17, 18]. Numerical and
analytical solutions of linear fractional variable order differen-
tial equations were presented, respectively in [19, 20] and [21].

In our paper, a method of finding a numerical solution of
fractional variable order control system in a state-space form
is introduced, both for time-invariant as well as time-variant
case. Moreover, the obtained results are also valid for system
of differential equations with different types of variable orders
derivatives. To validate our approach the fractional variable or-
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der state-space system was physically build and the experimen-
tal results were compared with numerical implementations.

The paper is organized as follows. At the beginning,
in Sect. 2, the few types of fractional variable order derivatives
are recalled, together with their discrete approximations and
matrix forms. In Sect. 3 the solution of linear control system
in state-space form for time-variant and time-invariant non-
commensurate fractional variable order system is presented.
An analog model of particular type of fractional variable order
state-space system is introduced in Sect. 4. The experimental
and numerical results are collected in Sect. 5. Finally, Sect. 6
summarizes the main results.

2. Fractional variable order operators
Below, we recall the already known different types of frac-
tional constant and variable order derivatives and differences.

2.1. Definitions of variable order operators The follow-
ing fractional constant order difference of Grünwald-Letnikov
type will be used as a base of generalization onto variable order

∆α xl =
1

hα

l

∑
j=0

(−1) j
(

α
j

)

xl− j, (1)

where α ∈ R, l = 0, . . . ,k, and h > 0 is a sample time.
We will consider the following four types of fractional vari-

able order derivatives and their discrete approximations (differ-
ences). We admit the order is changing in time, i.e., α(t) ∈ R

for t > 0; and in discrete-time domain αl ∈ R for l = 0, . . . ,k,
where k ∈ N.
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The B-type variable-order derivative and its discrete approxi-

1

m×n. Here, the symbol 
X 2 
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 means the real data sets with nonnegative elements. This 
collection of data is expected to be categorized or partitioned 
into c groups. Nonnegative matrix factorization (NMF) aims to 
find two non-negative matrices W 2 
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r×n, such 
that the product of them approximates the original data matrix 
as much as possible, i.e.,

	 X ¼ WH ,� (1)

where W is regarded as a basis matrix and H is a coefficient 
matrix. In practical applications, the reduced dimension r is gen-
erally much lower than the rank of X, i.e., r << m, r << n. Each 
hj( j = 1, 2, ¢¢¢, n) which is the column vector of the efficient 
matrix H is treated as the low-dimensional data representation 
of the data point wj under the new basis. NMF approximates 
it by a linear combination of r “basis” columns in W if each 
column of X represents an object. This method has found a va-
riety of real-world applications in the areas such as pattern rec-
ognition, dimensionality reduction, clustering etc.

3.	 NMF based moving shadow detection

3.1. Determination of moving shadow areas. Before using 
NMF based detection algorithm, some key points such as the 
determination of moving shadow areas and the choice of param-
eter r and discriminant function must be considered. Normally, 
the distinction between shadow points and non-shadow points is 
on the basis of the features of brightness, color and so on. These 
features in matrix X will be reflected by the matrixes W and H 
after NMF. However, the dimensions of W and H are different 
with X. The classification is meaningless if the shadow points 
in original image can not be effectively located in the detection 
process. As a result, we propose the detailed solution as follows:

Firstly, we divide image matrix into several image pieces 
with the same size. Then each piece is decomposed by NMF. 
According to the classification process, the corresponding 
image piece is treated as shadow area or non-shadow area. The 
key point of the second solution is the size of the image piece. 
If the size is too large, the detection error becomes large. On the 
contrary, if the size is too small, the calculation becomes huge. 
In our experiment, original matrix is divided into small pieces 
with N£N size. Then shadow is detected by NMF algorithm. 
If some piece can not be classified correctly, we divide it into 
smaller piece with (N/2)£(N/2) size and shadow detection is 
executed again. Above process are continually implemented 
until all pieces are classified properly. According to a large 
number of pre-experiments, we adopt the piece with size 8£8 
generally in the detection process generally.

3.2. Discriminant function. There is no ideal solution about 
how to choose the parameter r. the value of r represents the 
dimension of the feature subspace. If r and the feature space 
dimension of actual dataset have the equal size, the feature 
subspace of the NMF would have the best press from both sides 
to the data. In fact, we choose the most suitable r according to 
multiple tests.

The choice of discriminant function is very important in 
the classification process. Generally, the discriminant function 
is given as g′(x, Li) = kHi ¡ H̃ik2. In our method, considering 
the characteristic of NMF, we choose the discriminant func-
tion as

	 g(x, Li) = k1kx ¡ WiHik2
 + k2kHi ¡ H̃ik2

,� (2)

where	 H̃i = Wi+x = ((Wi)
TWi)

¡1
(Wi)

Tx,� (3)

x represents the test sample and Li represents the subspace of 
i-th class. In the process of shadow detection, we divided the 
objects in the scene into different classes such as building, 
shadow, person and so on.

According to the Eq. (2), the discriminant function g′(x, Li) 
takes into account not only the decomposition accuracy of NMF 
in the part of kx ¡ WiHik2, but also the classification condition 
of shadow and non-shadow in the part ofkHi ¡ H̃ik2. As a con-
sequence, the detection effect using g′(x, Li) is better than that 
using g′(x, Li) inevitably.

3.3. NMF based shadow detection. We introduce a method 
of shadow detection using NMF. Shadow detection can be re-
garded as a recognition problem. It can be realized as long as 
the shadow region is recognized. So we propose the following 
algorithm.

Algorithm 1. NMF based shadow detection method
1)	 Divide the training images into blocks with the same size 

and form the training image block set.
2)	 According to the different objects in the blocks, classify the 

training block set into c class (in this paper, we divide the 
training samples into 2 classes: shadow block and non-shad-
ow block.)
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3)	 Extract the color and brightness features of each training 
sample. Obtain the each class sample feature X1, X2, ¢¢¢, Xc 
according to simple feature weighted fusion, where c is the 
number of class.

4)	 Obtain the subspace basis matrix W1, W2, ¢¢¢, Wc and the 
corresponding coefficient matrix H1, H2, ¢¢¢, Hc of the each 
class training samples X1, X2, ¢¢¢, Xc using basic NMF de-
composition algorithm [21, 22].

5)	 Denote Wi+ be the generalized inverse matrix of Wi where 
Wi = [Wi

1, Wi
2, ¢¢¢, Wi

r] is the vector space basis of samples 
in i-th class.

6)	 Calculate the coefficient matrix H̃i of the test samples x with 
respect to the corresponding vector space basis using Eq. (3)

7)	 Compute the Euclidean distance of test sample x with re-
spect to each class according to the discriminant function 
as shown in Eq. (2)

8)	 According to the following formula,  determine the class 
which x belongs to
j = arg min g(x, Li), C(x) = j

4.	 Block NMF (BNMF) based moving  
shadow detection

4.1. Block NMF. In order to overcome the disadvantages of 
NMF,  Block NMF (BNMF) is introduced. According to BNMF,  
the training samples in the same class are collected to form a 
block matrix. Then,  every block matrix is factorized by NMF. 
We can get the final NMF using NMF of all block matrices.

We define X = [X1, X2, ¢¢¢, Xc], where Xi = [x1
(i), x2

(i), xn
(i

i

)], 
x j

(i) is the training sample belong to the i-th class, ni is the 
number of training samples in the i-th class, c is the number of 
class, i = 1, 2, ¢¢¢, c, j = 1, 2, ¢¢¢, ni.

Suppose: n0 is set up as the number of the training sample 
in each class. The total number n of the training samples is 
cn0. According to NMF,  we can factorize each Xi as follows: 

(Xi)m×n0
 ¼ (Wi)m×r0

(Hi)r0×n0
; i = 1, 2, ¢¢¢, c

Then we have

	[X1 X2 ¢¢¢ Xc] ¼  [W1 W2 ¢¢¢ Wc]



H1			 
	 H2		
		  	
			   Hc 




.� (4)

Let Wm×r  = [W1 W2 Wc], Hr×n = diag(H1, H2, ¢¢¢, Hc), 
where r = cr0. According to Eq. (4), we can get the block 
non-negative matrix factorization (BNMF) Xm×n ¼ Wm×r Hr×n. 
By the Eq. (4), it is easy to see that the column vectors of dif-
ferent class in Hr×n are orthogonal and it can eliminate the 
correlation between the different classes. As a result, the fea-
tures of different class can be extracted perfectly by BNMF 
algorithm. If the new classes or samples are added, we can get 
the decomposed results of BNMF according to the following 
rules.
1)	 If new T samples xi1, xij, ¢¢¢, xiT are added into the i-th class, 

we just need to calculate X̃i ¼ W̃iH̃ i according to NMF, 

where X̃i = [Xi, xi1, xij, ¢¢¢, xiT] is the new i-th class. Then 
the result of BNMF is given as

X̃ ¼ W̃H̃ = [W1 ¢¢¢ W̃i ¢¢¢ Wc]



H1			 
	 			 
		  H̃i		
			   	
				    Hc 




.� (5)

2)	 If new class Xc+1 is added into sample space, the training 
sample matrix changes to X̃ = [X1, X2, ¢¢¢, Xc, Xc+1]. We 
just need to calculate Xc+1 ¼ Wc+1Hc+1 according to NMF. 
Then the result of BNMF is given as

	X̃ ¼ W̃H̃ = [W1, ¢¢¢, Wc, Wc+1]



H1			 
	 		
	 	 Hc	
			   Hc+1 




.� (6)

4.2, Improved shadow detection algorithm. From the Eq. (6) 
and (7), the main advantage of BNMF based method is that the 
new training samples and new classes can be added constantly 
with lower computational complexity in the detection process. 
The new training samples will help to improve the accuracy of 
detection. The new classes in detection process will contribute 
to multi-class classification. We can detect the other classes 
of objects such as persons, buildings, etc in detection process. 
Algorithm 2 shows the outline of our approach, which we refer 
to as BNMF based moving shadow detection algorithm. Mean-
while, the flowchart of this method is given in Fig. 1.

Algorithm 2. BNMF based moving shadow detection method
1)	 Divide the training images into blocks with the same size 

and form the training image block set.
2)	 According to the different objects in the blocks, classify the 

training block set into c class (in this paper, we divide the 
training samples into 3 classes: shadow block, non-shadow 
block, and the building.)

3)	 Extract the sample features of shadow areas, non-shadow 
areas and other classes such as building, person and so on. 
For gray images, the sample features are gray values. For 
color images, the samplefeatures are the fusion of bright-
ness features and color features. Then each class samples 
are represented by matrix Xi, where i is the number of class 
and i = 1, ¢¢¢, c.

4)	 Decompose each Xi by NMF and compute the correspond-
ing Wi and Hi.

5)	 Obtain the matrixes W̃ and H̃ using the Eq. (4) and (5) if 
new samples or classes are added.

6)	 Compute the coefficient matrix of the test sample x with 
respect to the corresponding vector space basis W̃ using the 
formula as H = W̃+x = (W̃TW̃)–1W̃T x where x represents 
the test sample, W̃+ is the generalized inverse matrix of W̃.
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7)	 Calculate the distances between the test sample x and the 
training samples of each class using the formula as 

d(H ̂ i, H) = kH ̂ i ¡ Hk2, 

�where H ̂ i = W̃+ x–i, ¢¢¢, c. x–i is the sample mean of the i-th 
class.

5.	 Experimental results

In this section, we evaluate the proposed method with real data 
sets, both qualitatively and quantitatively. In order to evaluate 
the performance of our method effectively and systematically, 
we compare our method with several state-of-the-art methods 
[16–18] to prove the superiority from the aspects of quality 
and quantity. The test sequences and related ground truths in 
experiment are all publicly available1 and used in algorithm 
evaluation frequently. In each sequence, we randomly choose 
20 frames as the training samples to learn the model of the ob-

jects and shadows. In each training sample, we get the objects 
and shadows in the same class manually. In the test process, all 
frames in each sequence are implemented by NMF and BNMF 
to evaluate the performance of detection rate and operation 
speed. The sample frames of these test sequences are showed 
in Fig. 1. In our experiments, the methods labeled Proposal 1 
and Proposal 2 represent the shadow detection algorithms based 
on NMF and BNMF, respectively.

5.1. Quantitative evaluation. The performance is estimated 
quantitatively to obtain a systematic and objective evaluation 
of the proposed algorithm. Commonly, any one metric cannot 
be competent to evaluate the overall detection performance. 
According to literature [23], detection rate η and shadow dis-
crimination rate ξ are employed. In our paper, we calculate the 
average of shadow detection rate and shadow discrimination 
rate simultaneously.

The quantitative comparison results are presented in Table 1, 
in which the best experimental results are emphasized in bold. 
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Fig. 1. The flowchart of the Algorithm 2

Table 1  
Quantitative comparison results

Sequence Highway Room Lab Campus

method η ζ η ζ η ζ η ζ

SNP 44.87 69.88 83.87 73.78 61.29 74.52 82.04 70.28

DNM 87.30 54.92 83.99 76.20 86.54 80.28 84.19 77.61

ICF 83.11 59.61 83.50 82.58 79.58 86.37 80.15 85.33

CCM 90.60 39.44 85.10 83.22 89.56 91.05 89.27 87.25

Proposal 1 93.22 81.69 93.18 87.27 92.14 93.13 92.64 91.39

Proposal 2 94.55 85.19 95.36 91.37 96.23 95.21 95.10 94.24
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From Table 1, it can be easily concluded that proposed methods 
perform better that others, achieving  the highest shadow detec-
tion rate and the highest shadow discrimination rate. In a word, 
our methods show the best detection performance, followed by 
CCM. Other methods provide relatively worse detection per-
formance.

From the experiments, we can also find that the detection 
results of BNMF method is better than that of the NMF method. 
The reason is that the decomposition results of BNMF include 
basis matrixes and coefficient matrixes of all class which can 
be seen from (5‒7). The coefficient matrix of BNMF is a diag-
onal matrix which elements are the coefficient matrixes of all 
classes. So the column vectors of various coefficient matrices 
are mutually orthogonal and the relevance of different class 
is eliminated. As a result, the recognition effect is improved.

5.2. Qualitative evaluation. To prove the effectiveness of the 
proposed algorithms, qualitative evaluation is implemented by 

four state-of-the-art shadow detection methods and our methods 
for comparisons clearly.

The qualitative evaluation is performed in four scenes: 
(i) Highway I, (ii) Room, (iii) Lab, (iv) Campus, which are 
representations of outdoor scenes with camouflages, indoor 
scenes with more than one source lights, indoor scenes with 
one light, and outdoor scenes with a lot of shadows respec-
tively.

We illustrate the visual comparison results in Fig. 2 in which 
each row shows detection result obtained by different methods 
and our two proposed methods. For comparison, the detection 
results of our algorithms on the four diverse applied scenes are 
given in rows (d) and (e). The corresponding results of other 
three state-of-the-art methods are also presented in rows (a-c) 
of Fig. 2. As shown in the figure, moving cast shadows can be 
detected correctly by all methods in a certain degree. Obviously, 
it can be seen that the proposed method performs better on the 
four diverse applied scenes.

Fig. 2. The visualized comparison results of two frames in different 4 videos (a) [16], (b) [17], (c) [18], (d) Proposal 1, (e) Proposal 2

(a)

(b)

(c)

(d)

(e)
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6.	 Conclusions

In this paper, two novel moving cast shadow detection methods 
have been presented on the basis of NMF and BNMF. Firstly, 
the algorithm of moving cast shadow detection based on NMF 
is introduced. Then the key points of our method such as the 
determination of moving shadow areas and the choice of dis-
criminant function are specified. Finally, the improved shadow 
detection method is derived according to BNMF. The biggest 
advantage of our algorithm is that when new training samples 
are added into a certain class or a new class is added into da-
tabase, BNMF need not to be re-executed so that it can get 
lower computational complexity. In addition, unlike conven-
tional methods, our algorithm can not only effectively detect 
moving cast shadow area, but also classify different classes of 
objects. In a word, the BNMF based method is that the new 
training samples and new classes can be added constantly with 
lower computational complexity in the detection process. The 
new training samples will help to improve the accuracy of de-
tection. The new classes in detection process will contribute 
to multi-class classification. We can detect the other classes of 
objects such as person, building and so on in detection process.
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