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Abstract. Ultrasonography has proved its usefulness in the evaluation of joint inflammations caused by rheumatoid arthritis. The illness severity 
is scored by human examiners based on their experience, but some discrepancies in the final diagnosis and treatment frequently occur. There-
fore, the main aim of this work is the elaboration of an automatic method of the localization of finger joint inflammation level in ultrasound 
images. In this paper we propose a novel, fully automated framework for synovitis region segmentation. In our approach we compare several 
bones and joint localization methods based on the seeded region growing technique, which is combined with different speckle noise filtering 
algorithms. This technique extracts a region from the image using some predefined criteria of similarity between initially selected point and 
the pixels in its neighborhood. The seed point is localized automatically as the darkest patch within a small region between two detected finger 
bones close to the joint. The region affected by synovitis is found using the adopted criterion of homogeneity based on a patch to patch similarity 
measure. The obtained results exhibit a satisfying accuracy in comparison with the annotations prepared by an expert and the results delivered 
by semi-automatic methods that require manual bones delineation.
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aminations. It shows that even the radiologists may experience 
problems with accurate evaluation of this type of data.

Synovitis is defined as an inflammation of the synovial 
membrane and is a characteristic symptom of RA [8]. Syno-
vial changes are scored from 0 to 3 by radiologists or trained 
rheumatologists based on their experience or by using stan-
dardised atlases [9, 10]. According to this semiquantitative 
scoring system, 0 means no pathological changes and 3 de-
notes synovial thickening that bulges over the line that links 
the tops of the periarticular bones with extension to at least 
one of the bone diaphyses [1]. However, such an evaluation of 
the disease involves some degree of subjectivity and therefore 
an automated method for the assessment of joint inflammation 
level in RA using ultrasound images needs to be developed. 
Exemplary ultrasound images with different degrees of sy-
novitis and manually marked ROIs (regions of interest) are 
presented in Fig. 1.

The degree of synovitis can be assessed by estimating the 
size of the dark area above the finger bones or the joint using 
a computer program. Consequently, the task of the automated 
determination of the level of synovitis can be considered as 
a problem of segmentation of low intensity image regions in 
the vicinity of the bones and the joint. In order to determine 
the synovitis position on the image domain, it is necessary to 
detect the bone, skin and joint to limit the ROI.

Among different image segmentation methods, four classes 
can be distinguished: pixel-based, region-based, contour-based 
and hybrid methods. In the category of region-based segmen-
tation algorithms, the region growing technique plays an im-
portant role. It can be implemented in two versions: with seeds 
to start the segmentation and without seeds, using the pixel ag-
gregation. In this work, we have applied seeded region growing 
(SRG) method introduced in [11] in order to detect the synovitis 

1.	 Introduction

Ultrasound imaging (US) is an inexpensive and real time 
method used for human body structures visualisation. This 
technique is also a very sensitive imaging modality that facil-
itates an accurate diagnosis at the early stages of rheumatoid 
arthritis (RA) and makes it possible to monitor the responses to 
the applied therapies [1]. Although its initial use was limited to 
the inspection of larger joints, the latest improvements in image 
resolution and contrast have enabled the evaluation of smaller 
joints [2] and the detection of RA induced pathology in the early 
stages of the disease [1, 3].

RA is a chronic inflammatory illness, whose prevalence 
is estimated as being 1% of the population [4] and its early 
screening allows to prevent its progression. Many researchers 
have reported a high sensitivity of ultrasonography that is based 
on the detection of joint effusion, synovitis or bone erosions in 
joints affected by RA [1, 5, 6].

US can be used in the evaluation of synovitis, which is 
a sensitive marker of disease activity and severity in RA. How-
ever, there are some discrepancies in the final diagnosis and 
treatment regarding its validity and reproducibility, especially 
between different examiners. It is worth to notice that according 
to the research conducted by D’Agostino et al. [7] the propor-
tions of agreement between fellow and senior radiologists in 
tagging images depicting synovitis or not is equal to 42% at 
the first evaluation, and rose progressively to 82% after 70 ex-
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region in ultrasound images. In this technique, an initial pixel 
known as seed is chosen and then at each step of the algorithm 
a pixel in a small neighborhood, for which the difference in 
intensity levels to the initial pixel is smaller than a predefined 
threshold is attached to the expanding region. This threshold 
is an important parameter of this algorithm. The initial seed 

is typically chosen manually, but in our work it is localized 
automatically as the darkest patch in a small neighborhood of 
the joint limited by the bones edges.

In this work, we analyze the accuracy of bones and joint 
localization for final synovitis segmentation using two auto-
mated algorithms presented in [12, 13] and compare them with 

Fig. 1. Ultrasound images on the left and a manually delineated synovial region (solid line), bones (asterisks), skin (squares) and joint (triangle) 
on the right. The subsequent rows illustrate the level of synovitis in RA from 0 to 3
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the manually marked annotations. These algorithms can be also 
substituted by other currently proposed automated methods of 
bones, joint and skin localization [14–16].

Our main contribution is an extension of the basic SRG al-
gorithm by applying the patch-based similarity measure instead 
of standard comparisons of pixel intensities. It means that a new 
pixel is added to the region if the patch centered at this pixel is 
similar to the patch centered at the initial seed. The patch-based 
methods are widely used in many applications such as texture 
synthesis [17], image denoising [18] and image segmentation 
[19]. We also tested the influence of several state-of-the-art 
speckle denosing filters on the accuracy of the synovitis seg-
mentation.

To evaluate the novel methodology of the automated syno-
vitis localisation, a large set of ultrasound images with manu-
ally prepared annotations was collected within the MEDUSA 
project1 from patients with RA during routine visits at the 
Rheumatology Department of Helse Førde in Norway. The ob-
tained results were evaluated on the MEDUSA database, which 
contains manually annotated markers of the bone, skin, joint 
and synovitis regions. This research is a preliminary step in 
the development of a fully automated system that will support 
the diagnosis of RA.

The paper is organised as follows. The next Section pro-
vides a brief description of the proposed framework for fully 
automated synovitis detection. Section 3 presents the numerical 
results of synovitis segmentation accuracy, which was evaluated 
on manually marked regions utilising the MEDUSA database 
and Section 4 concludes the paper.

2.	 Proposed algorithm

In this work, we propose a novel framework that allows to esti-
mate the synovitis region in the ultrasound image. The proposed 
algorithm consists of several steps and the first one is the bone 
and joint localization. Then segmentation of the synovitis region 
using SRG algorithm and its modification is performed on the 
raw and denoised ultrasound images. Finally, the correction of 
the detected blobs is conducted by cutting the estimated blobs 

1MEDUSA project, http://medusa.aei.polsl.pl, Accessed: 2017‒02‒01

if they become very narrow, what may be interpreted as the 
tendon detection.

The flowchart of the proposed algorithm of synovitis region 
detection is presented in Fig. 2.

2.1. Bones and joint localization. The first step in the proposed 
pipeline is the localization of 2 finger bones and the joint. Due 
to the fact that the physicians indicated that the inflammation of 
the synovial membrane develops along the bone and it starts to 
grow in the joint capsule causing the tissue to become swollen 
and painful, the precise localization of these two characteristic 
regions is of highest importance. Therefore, in this work, we are 
comparing two recently proposed automated methods of bones 
localization. Both algorithms are related with the observed 
properties of the acoustic wave. The strength of the signal 
transmitted from the transducer into the tissue is decreasing 
exponentially according to the Lambert՚s law and the stron-
gest decrease is observed when the wave meets the obstacles, 
e.g. in form of a bone. The intensity of the signal reflected 
from the bones is represented by the brightest pixels, while the 
pixels below the bones region are darker. These properties are 
considered in two algorithms for automated bone localization 
presented in [12, 13], which are analyzed in this paper. The 
exemplary results of bones and joints localization that were 
obtained using the analyzed methods are presented in Fig. 3.

Fig. 2. The flowchart of the proposed algorithm for synovitis region 
extraction

Detect the bones and joint

Determine seed point as the center of the
darkest patch in a small neighborhood of the

detected joint to start the segmentation process

Add the pixel to the current region if the patch
around it is similar to the seed patch

If in this region a narrowness exists, then cut it

Fig. 3. Exemplary bones and joint detection – comparison of manual annotations performed by an expert (red line) with automated methods: 
Radlak et al. [13] (green line), Popowicz and Kurek [12] (blue line)
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In the first method, the bones were localized utilizing algo-
rithm proposed by Radlak et al. in [13]. In this approach, a mod-
ification of the concept of bone confidence localizer proposed 
in [20] is applied, in which from the original ultrasound image 
filtered using trimmed non-local means (TNLM) algorithm, the 
normalized values of confidence map [21] are subtracted. As 
a result, we obtain a map with the high response at the bone 
surface, because the high values in ultrasound image followed by 
a low confidence map intensities are a good indicator for a pos-
sible bone surface. Then, the obtained bone localization map is 
thresholded and two biggest blobs are detected as finger bones.

In the method proposed by Popowicz and Kurek [12], the 
intenisties of the original image pixels is decreased by the 
maximum gray level of samples located in a rectangular re-
gion below the analyzed image point. In order to diminish the 
artifacts in original image, the median filtering is applied. Next, 
the obtained image is thresholded and the largest blobs are se-
lected as final bones region and all pixels below and above these 
regions are removed from further analysis.

In our pipeline, the joint is localized utilizing the concept 
presented in [12], so that the joint position is estimated as the 
maximum in the signal obtained by calculating the difference 
between the y-coordinates of currently processed pixel of bone 
surface and the sum of the maximum values of the pixels on 
the left and right sides.

2.2. Speckle noise reduction. In computer vision systems we 
usually are dealing with images distorted by noise. In digital 
images, there are many types of noise e.g Gaussian noise, salt 
and pepper noise, shot noise, film grain, anisotropic noise, etc. 
The noise also relates to a device for image acquisition e.g. ef-
fects of sensor size, fill factor, temperature, etc. The occurrence 
of noise in images makes their analysis difficult and may lead 
to incorrect medical imaging diagnosis. In the USG we have to 
deal with the speckle noise which is a granular disturbance and 

severely degrades the quality of USG images. To minimize the 
effect of noise, edge preserving smoothing is performed with the 
previously selected filter corresponding to the type of distortion.

In this article the following filters were used for evalua-
tion purposes: Wiener Filter [22], speckle reducing anisotropic 
diffusion (SRAD) [23], non-local means (NLM) [24], opti-
mized Bayesian non-local means (OBNLM) [25], probabi-
listic patch-based weights (PPBW) [26] and trimmed nonlocal 
means (TNLM) [27]. The application of these methods requires 
a proper setting of the parameters according to the suggestions 
of their authors. Examples of some filtering results are shown 
in Fig. 4, in which a part of the test images was cropped and 
zoomed. As can be observed, using the TNLM filter the bone 
boundary becomes sharper sharper and synovial region is quite 
homogeneous. Filtering quality was evaluated in Section 3 in 
terms of the final results of segmentation utilizing quality in-
dices.

2.3. Seeded region growing segmentation. Segmentation is the 
process of image division into regions with similar properties 
such as gray level, color, texture, brightness or contrast [28]. 
The basic segmentation techniques can be divided into several 
groups: thresholding, clustering, region growing, edge detec-
tion, active contour, etc. [29, 30]. The role of segmentation is 
to identify homogeneous regions in an image that represent 
objects or their meaningful parts. Automatic segmentation of 
ultrasound images is a difficult task due to the complex nature 
of this kind of data and the influence of speckle noise. Further, 
the output of any segmentation algorithm is affected by: (i) 
partial volume effect, (ii) intensity inhomogeneity, (iii) presence 
of similar gray levels of different soft tissues [28]. In the rich 
literature hundreds of methods have been proposed, but none 
of these techniques can be considered as universal for different 
type of images and very often a single algorithm does not work 
well for an image class for which it was developed.

Fig. 4. Comparison of the noise filtering results
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Region growing method is a technique that extracts a region 
from the image using some predefined homogeneity criteria. It 
is a typical bottom-up technique. The easiest way is to select 
the seed point manually, attaching to it the next pixel on the 
basis of the adopted criterion of homogeneity and updating the 
obtained region attributes (e.g. average intensity, area etc.). The 
choice of homogeneity criterion is therefore crucial for the suc-
cess of segmentation. The seed can be selected manually or 
semi-manually (seeded region growing method, eg. [11]) or in 
an automatic way (unseeded region growing method, e.g. [31]).

Seeded region growing method was initially proposed in 
[11] and its features such as robustness, low computational 
complexity, lack of tuning parameters makes it suitable for 
large range of images. In this approach, initially the seeds or 
regions are to be specified by the user. The choice of the seed 
is very crucial, since the overall success of the segmentation 
is dependent on the seed input. For the given set of seeds, the 
algorithm adds pixels to one of them. The input seed points can 
be determined automatically for example as the centroids of the 
segmented regions obtained using other type of segmentation 
algorithm. Next, the pixels are connected to the seeds using 
some predefined criteria. The simplest criterion might be to 
grow the region until the difference in intensity level between 
the new pixel and the seed is below an assumed threshold. 
During the growing process the concept of 4-connectivity or 
8-connectivity can be used.

In this work we tested the basic seeded region growing al-
gorithm adjusted for the finger ultrasound images and we chose 
only the single seed point within the inflammation area as the 
pixel for which the patch centered at this pixel has the lowest 
sum of the intensity levels. This algorithm is defined as follows:
1.	Determine seed points to start the segmentation process.
2.	Add the pixel in the neighborhood to the current region if 

all conditions are fulfilled:
a)	 the pixel intensity is within the range of the assumed 

threshold,
b)	 the spatial distance between the analyzed pixel and the 

seed does not exceed a predefined maximum value,

c)	 the region can grow up only in limited range, this as-
sumption is based on the physical properties of this 
kind of ultrasound images, because the texture below 
the bones should be treated as noise.

4.	Finally fill the holes in the generated region.
This algorithm can be extended introducing a patch compar-

ison instead of simple pixel intensities analysis. In this approach 
local intensity context around the pixel can be used to perform 
a robust comparison of samples.

Let us consider an ultrasound image I as a set of pixels xi, 
where i determines the position of the pixel on the image do-
main, i = 1, 2, …, N, and N denotes the number of image pixels. 
Let xs represent the pixel chosen as the seed and R denotes the 
segmented synovitis region. Let Wi = (xi, 1, xi, 2, …, xi, n) stands 
for the set of pixels from a small square window centered at 
pixel xi, with n denoting the number of pixels and p denoting 
the size of the patch Wi so that n = p£p. We tested three patch 
sizes: n = 1£1 for SRG method, n = 3£3 for SRG3£3 and 
n = 5£5 for SRG5£5 method. The distance d(Wi, Ws) between 
patches Wi and Ws is defined as

	 d(Wi, Ws) =  1
n

n

j
∑ jxi, j ¡ xs, jj.� (1)

In the proposed modification, a new pixel xi is attached 
to the region R if d(Wi, Ws) < t, where t is some predefined 
threshold. In this way, we consider not only the pixel intensity, 
but we also take into account the texture properties in the vi-
cinity of the seed and the currently processed pixel.

2.4. Tendon line estimation. In our work, we also noticed that 
sometimes the segmentation of finger joints depicted in ultra-
sound images is very hard, because the textural properties of the 
synovitis and the region near the skin are almost the same and 
they are merged by the algorithm. To cope with this artifact, we 
found that we are able to cut the obtained blob based on its con-
tour profile. As has been presented in Fig. 5, the detected region 

Fig. 5. Example of the division of the segmented region. The red color depicts the left profile of the blob (blue is used for the right one) and 
the plus sign denotes the detected local extremum in the left and right boundary of the blob transformed to 1 D. The cyan represents the line, 

where the blob is cut off
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can be cut at points, in which the strongest narrowness between 
the left and right blob edges is observed. The transformation 
of the boundary to the 1D function is defined as the maximal 
column index for left profile and minimum column index for the 
right profile in each row. Therefore, the search for the points, 
in which the blob will be cut was reduced to the problem of 
searching for the local minima and maxima of 1D function. To 
recognize if the division is necessary, we also assume that the 
difference between the lowest extremum (depends on which 
side of contour is analyzed) and the extrema in their neigh-
borhood have to be bigger than a predefined threshold. In this 
work we use a fixed value of threshold, which is equal to 20, 
assuming 8-bit image. This post-processing step significantly 
improves the localization of the synovitis region by removing 
the incorrect part of the detected blob.

The border of the synovitis region is also limited along 
the tendon line by physicians in their analysis, however this 
structure was not annotated in the MEDUSA database. Thus, 
this post-processing procedure can be used for the tendon lo-
calization.

2.5. Segmentation evaluation. The evaluation of segmen-
tation methods typically involves comparing the results ob-
tained with the manual segmentation carried out by an expert 
[32, 33]. To evaluate the obtained segmentation results we 
used two similarity coefficient indices: Jaccard’s similarity 
coefficient [34]:

	 J(Iseg, Iref) = 
jIseg \ Iref j
jIseg [ Iref j

,� (2)

and Dice’s similarity coefficient (Sørensen index) [35, 36]:

	 D(Iseg, Iref) = 
2jIseg \ Iref j
jIsegj + jIref j

,� (3)

where: jIseg \ Iref j denotes the area of the intersection be-
tween automatically and manually delineated synovial region, 
jIseg [ Iref j is the size of their union. jIsegj and jIref j are the 
number of pixels in these two regions. Both similarity coeffi-
cients have a range of 0 to 1 with higher scores indicating better 
segmentation result.

3.	 Results

In this paper, we tested our automated segmentation methods 
on images from the MEDUSA project. The database contains 
267 images with manually annotated bones, joint, skin and sy-
novitis region. The proposed segmentation methods was com-
pared with manually delineated synovial regions. The images 
were acquired using the LOGIQ S8 by GE Healthcare (USA) 
with 8 bit depth.

We examined the influence of several parameters on seg-
mentation accuracy: the choice of the denoising algorithm, 

bone and joint detection methods and parameters connected 
with SRG algorithm (threshold t and size of the of the pro-
cessing window p). The results of these tests were evaluated 
using the Dice and Jaccard indices. The influence of these 
factors on Dice index for different filtering algorithms is shown 
in Fig. 6.

Some results with the highest Jaccard and Dice indices are 
presented in Fig. 7, where the obtained regions of RA are very 
close to manually delineated areas. Three segmentation results 
of RA are presented: manually delineated regions, semi-auto-
mated segmentation and automated segmentation. For semi-au-
tomated segmentation we used bones and joint localization 
performed by an expert. In automated segmentation method, 
localization of bones and joint are found automatically based 
on the method proposed by Radlak et al. [13]. The results of 
both automatic detection methods of the joint and the bones 
are very close to the manual annotations and allow to obtain 
satisfying results. However, the application of confidence map 
slightly increases the segmentation quality indices.

The results obtained with semi-automated segmentation 
method based on manually annotated bones and joint are slightly 
better than the fully automated methods based on automatically 
localized bones and joint. The t parameter providing the highest 
Dice index is dependent on the applied filtering algorithms and 
size of patch p. We tested the t parameter values from 25 to 65. 
Detailed Dice and Jaccard indices for the range of t parameter 
from 35 to 45 are shown in Tabs 1, 2. Outside this range both 
index values were smaller. For the six tested filters, the TNLM 
filter most improves the segmentation result for the SRG and 
the t parameter equal 35. With the increase of the t parameter, 
the TNLM filtering stops correcting the index values. In the 
absence of filtering, the increase of the t parameter results in an 
improvement of index values for all cases. Tables 1, 2 contain 
the average values and 95% confidence intervals for Dice and 
Jaccard indices for all tested filtering algorithms and segmen-
tation methods.

For the basic SRG method with manually annotated bones 
we obtained the best mean Dice index equal to 0.684 and Jac-
card index equal to 0.552 using TNLM filter. The application 
of the automated bones and joint detection methods causes 
that the best mean Dice index decreased to 0.617 and Jac-
card index to 0.486. The proposed patch-based modification 
of SRG algorithm improves the segmentation results mainly 
for unfiltered images. The use of image filtering removes 
speckle noise, smoothes texture and enhances boundaries of 
the synovial region. Therefore the proposed modification of 
the SRG algorithm improves the results only for the raw, 
unfiltered images.

Figure 8 presents difficult cases for segmentation where we 
obtained lowest similarity coefficients. This situation occurs for 
both the original and filtered images.

4.	 Conclusions

This work presents a novel fully automated approach to the 
synovitis segmentation, which is based on the basic seeded 
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Fig. 6. Influence of the threshold t on mean values of Dice index
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Fig. 7. Comparison of manually delineated regions (yellow lines) with semi-automated segmentation (red line) and with automated segmentation 
results of RA  (green line). The subsequent rows illustrate different US images and subsequent columns illustrate methods: ORIGINAL & SRG1£1, 

ORIGINAL & SRG5£5, TNLM & SRG1£1

Fig. 8. Examples of manually delineated regions of RA (yellow lines) with semi-automated segmentation (red line) and with automated segmen-
tation results of RA (green line). The subsequent rows illustrate different US images and subsequent columns illustrate methods: ORIGINAL &, 

ORIGINAL & SRG5£5, TNLM & SRG1£1
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Table 1 
Mean value of Dice index and confidence intervals for segmentation of original and filtered images from the MEDUSA database using 

manual and automated bones and joint localization for different values of threshold t

	 Manual	 Radlak et al. [13]	 Popowicz and Kurek [12]
	 SRG	 SRG3£3	 SRG5£5	 SRG	 SRG3£3	 SRG5£5	 SRG	 SRG3£3	 SRG5£5

t = 35
ORIGINAL	 0.590 ± 0.025	 0.600 ± 0.024	 0.615 ± 0.023	 0.514 ± 0.027	 0.530 ± 0.025	 0.544 ± 0.025	 0.472 ± 0.029	 0.475 ± 0.029	 0.506 ± 0.028
TNLM	 0.684 ± 0.020	 0.680 ± 0.020	 0.677 ± 0.020	 0.617 ± 0.025	 0.602 ± 0.025	 0.598 ± 0.025	 0.570 ± 0.028	 0.557 ± 0.028	 0.558 ± 0.028
NLM	 0.656 ± 0.021	 0.654 ± 0.021	 0.646 ± 0.023	 0.589 ± 0.025	 0.587 ± 0.025	 0.586 ± 0.026	 0.547 ± 0.028	 0.546 ± 0.028	 0.548 ± 0.028
OBNLM	 0.649 ± 0.021	 0.643 ± 0.022	 0.650 ± 0.021	 0.570 ± 0.026	 0.558 ± 0.027	 0.569 ± 0.026	 0.533 ± 0.028	 0.525 ± 0.029	 0.533 ± 0.029
PPBW	 0.614 ± 0.025	 0.617 ± 0.025	 0.642 ± 0.021	 0.532 ± 0.027	 0.547 ± 0.027	 0.565 ± 0.025	 0.499 ± 0.029	 0.499 ± 0.029	 0.518 ± 0.029
SRAD	 0.664 ± 0.019	 0.658 ± 0.020	 0.659 ± 0.020	 0.580 ± 0.025	 0.575 ± 0.026	 0.574 ± 0.026	 0.550 ± 0.028	 0.546 ± 0.028	 0.541 ± 0.028
WIENER	 0.624 ± 0.022	 0.629 ± 0.022	 0.630 ± 0.022	 0.552 ± 0.025	 0.561 ± 0.025	 0.562 ± 0.026	 0.504 ± 0.029	 0.512 ± 0.028	 0.519 ± 0.028

t = 40
ORIGINAL	 0.626 ± 0.022	 0.634 ± 0.022	 0.643 ± 0.022	 0.552 ± 0.026	 0.566 ± 0.026	 0.578 ± 0.025	 0.528 ± 0.028	 0.530 ± 0.028	 0.535 ± 0.028
TNLM	 0.649 ± 0.024	 0.645 ± 0.025	 0.647 ± 0.024	 0.585 ± 0.027	 0.584 ± 0.027	 0.581 ± 0.026	 0.552 ± 0.028	 0.545 ± 0.028	 0.537 ± 0.028
NLM	 0.651 ± 0.023	 0.648 ± 0.024	 0.635 ± 0.025	 0.584 ± 0.026	 0.583 ± 0.026	 0.582 ± 0.026	 0.545 ± 0.028	 0.542 ± 0.028	 0.542 ± 0.028
OBNLM	 0.655 ± 0.022	 0.647 ± 0.023	 0.643 ± 0.024	 0.591 ± 0.025	 0.582 ± 0.026	 0.585 ± 0.026	 0.535 ± 0.029	 0.542 ± 0.028	 0.549 ± 0.028
PPBW	 0.653 ± 0.022	 0.664 ± 0.020	 0.661 ± 0.020	 0.581 ± 0.024	 0.587 ± 0.024	 0.592 ± 0.025	 0.543 ± 0.028	 0.548 ± 0.028	 0.553 ± 0.028
SRAD	 0.657 ± 0.022	 0.660 ± 0.022	 0.643 ± 0.025	 0.585 ± 0.026	 0.591 ± 0.026	 0.579 ± 0.026	 0.545 ± 0.028	 0.543 ± 0.029	 0.542 ± 0.028
WIENER	 0.651 ± 0.020	 0.651 ± 0.021	 0.652 ± 0.021	 0.580 ± 0.025	 0.586 ± 0.025	 0.582 ± 0.026	 0.541 ± 0.027	 0.541 ± 0.028	 0.548 ± 0.028

t = 45
ORIGINAL	 0.641 ± 0.023	 0.642 ± 0.023	 0.633 ± 0.025	 0.582 ± 0.026	 0.583 ± 0.026	 0.573 ± 0.027	 0.529 ± 0.029	 0.539 ± 0.029	 0.550 ± 0.028
TNLM	 0.619 ± 0.026	 0.604 ± 0.027	 0.601 ± 0.027	 0.567 ± 0.028	 0.565 ± 0.028	 0.557 ± 0.028	 0.524 ± 0.028	 0.510 ± 0.028	 0.514 ± 0.028
NLM	 0.631 ± 0.025	 0.631 ± 0.025	 0.635 ± 0.024	 0.574 ± 0.027	 0.568 ± 0.027	 0.579 ± 0.026	 0.526 ± 0.029	 0.522 ± 0.028	 0.533 ± 0.028
OBNLM	 0.650 ± 0.024	 0.639 ± 0.024	 0.643 ± 0.024	 0.595 ± 0.025	 0.578 ± 0.026	 0.565 ± 0.027	 0.541 ± 0.028	 0.537 ± 0.028	 0.544 ± 0.028
PPBW	 0.659 ± 0.021	 0.653 ± 0.022	 0.641 ± 0.025	 0.589 ± 0.025	 0.595 ± 0.025	 0.593 ± 0.026	 0.561 ± 0.027	 0.561 ± 0.027	 0.553 ± 0.028
SRAD	 0.644 ± 0.024	 0.645 ± 0.024	 0.634 ± 0.025	 0.581 ± 0.026	 0.582 ± 0.026	 0.570 ± 0.027	 0.538 ± 0.028	 0.546 ± 0.027	 0.546 ± 0.027
WIENER	 0.641 ± 0.024	 0.638 ± 0.025	 0.638 ± 0.025	 0.591 ± 0.025	 0.590 ± 0.025	 0.583 ± 0.026	 0.553 ± 0.028	 0.548 ± 0.028	 0.548 ± 0.028

Table 2 
Mean value of Jaccard index and confidence intervals for segmentation of original and filtered images from the MEDUSA database using 

manual and automated bones and joint localization for different values of threshold t

	 Manual	 Radlak et al. [13]	 Popowicz and Kurek [12]
	 SRG	 SRG3£3	 SRG5£5	 SRG	 SRG3£3	 SRG5£5	 SRG	 SRG3£3	 SRG5£5

t = 35
ORIGINAL	 0.590 ± 0.025	 0.600 ± 0.024	 0.615 ± 0.023	 0.514 ± 0.027	 0.530 ± 0.025	 0.544 ± 0.025	 0.472 ± 0.029	 0.475 ± 0.029	 0.506 ± 0.028
TNLM	 0.684 ± 0.020	 0.680 ± 0.020	 0.677 ± 0.020	 0.617 ± 0.025	 0.602 ± 0.025	 0.598 ± 0.025	 0.570 ± 0.028	 0.557 ± 0.028	 0.558 ± 0.028
NLM	 0.656 ± 0.021	 0.654 ± 0.021	 0.646 ± 0.023	 0.589 ± 0.025	 0.587 ± 0.025	 0.586 ± 0.026	 0.547 ± 0.028	 0.546 ± 0.028	 0.548 ± 0.028
OBNLM	 0.649 ± 0.021	 0.643 ± 0.022	 0.650 ± 0.021	 0.570 ± 0.026	 0.558 ± 0.027	 0.569 ± 0.026	 0.533 ± 0.028	 0.525 ± 0.029	 0.533 ± 0.029
PPBW	 0.614 ± 0.025	 0.617 ± 0.025	 0.642 ± 0.021	 0.532 ± 0.027	 0.547 ± 0.027	 0.565 ± 0.025	 0.499 ± 0.029	 0.499 ± 0.029	 0.518 ± 0.029
SRAD	 0.664 ± 0.019	 0.658 ± 0.020	 0.659 ± 0.020	 0.580 ± 0.025	 0.575 ± 0.026	 0.574 ± 0.026	 0.550 ± 0.028	 0.546 ± 0.028	 0.541 ± 0.028
WIENER	 0.624 ± 0.022	 0.629 ± 0.022	 0.630 ± 0.022	 0.552 ± 0.025	 0.561 ± 0.025	 0.562 ± 0.026	 0.504 ± 0.029	 0.512 ± 0.028	 0.519 ± 0.028

t = 40
ORIGINAL	 0.626 ± 0.022	 0.634 ± 0.022	 0.643 ± 0.022	 0.552 ± 0.026	 0.566 ± 0.026	 0.578 ± 0.025	 0.528 ± 0.028	 0.530 ± 0.028	 0.535 ± 0.028
TNLM	 0.649 ± 0.024	 0.645 ± 0.025	 0.647 ± 0.024	 0.585 ± 0.027	 0.584 ± 0.027	 0.581 ± 0.026	 0.552 ± 0.028	 0.545 ± 0.028	 0.537 ± 0.028
NLM	 0.651 ± 0.023	 0.648 ± 0.024	 0.635 ± 0.025	 0.584 ± 0.026	 0.583 ± 0.026	 0.582 ± 0.026	 0.545 ± 0.028	 0.542 ± 0.028	 0.542 ± 0.028
OBNLM	 0.655 ± 0.022	 0.647 ± 0.023	 0.643 ± 0.024	 0.591 ± 0.025	 0.582 ± 0.026	 0.585 ± 0.026	 0.535 ± 0.029	 0.542 ± 0.028	 0.549 ± 0.028
PPBW	 0.653 ± 0.022	 0.664 ± 0.020	 0.661 ± 0.020	 0.581 ± 0.024	 0.587 ± 0.024	 0.592 ± 0.025	 0.543 ± 0.028	 0.548 ± 0.028	 0.553 ± 0.028
SRAD	 0.657 ± 0.022	 0.660 ± 0.022	 0.643 ± 0.025	 0.585 ± 0.026	 0.591 ± 0.026	 0.579 ± 0.026	 0.545 ± 0.028	 0.543 ± 0.029	 0.542 ± 0.028
WIENER	 0.651 ± 0.020	 0.651 ± 0.021	 0.652 ± 0.021	 0.580 ± 0.025	 0.586 ± 0.025	 0.582 ± 0.026	 0.541 ± 0.027	 0.541 ± 0.028	 0.548 ± 0.028

t = 45
ORIGINAL	 0.641 ± 0.023	 0.642 ± 0.023	 0.633 ± 0.025	 0.582 ± 0.026	 0.583 ± 0.026	 0.573 ± 0.027	 0.529 ± 0.029	 0.539 ± 0.029	 0.550 ± 0.028
TNLM	 0.619 ± 0.026	 0.604 ± 0.027	 0.601 ± 0.027	 0.567 ± 0.028	 0.565 ± 0.028	 0.557 ± 0.028	 0.524 ± 0.028	 0.510 ± 0.028	 0.514 ± 0.028
NLM	 0.631 ± 0.025	 0.631 ± 0.025	 0.635 ± 0.024	 0.574 ± 0.027	 0.568 ± 0.027	 0.579 ± 0.026	 0.526 ± 0.029	 0.522 ± 0.028	 0.533 ± 0.028
OBNLM	 0.650 ± 0.024	 0.639 ± 0.024	 0.643 ± 0.024	 0.595 ± 0.025	 0.578 ± 0.026	 0.565 ± 0.027	 0.541 ± 0.028	 0.537 ± 0.028	 0.544 ± 0.028
PPBW	 0.659 ± 0.021	 0.653 ± 0.022	 0.641 ± 0.025	 0.589 ± 0.025	 0.595 ± 0.025	 0.593 ± 0.026	 0.561 ± 0.027	 0.561 ± 0.027	 0.553 ± 0.028
SRAD	 0.644 ± 0.024	 0.645 ± 0.024	 0.634 ± 0.025	 0.581 ± 0.026	 0.582 ± 0.026	 0.570 ± 0.027	 0.538 ± 0.028	 0.546 ± 0.027	 0.546 ± 0.027
WIENER	 0.641 ± 0.024	 0.638 ± 0.025	 0.638 ± 0.025	 0.591 ± 0.025	 0.590 ± 0.025	 0.583 ± 0.026	 0.553 ± 0.028	 0.548 ± 0.028	 0.548 ± 0.028
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region growing algorithm and bones and joint localization tech-
nique. The proposed framework allows to obtain high-quality 
segmentation results. For many images, the detected synovitis 
area coincides very well with manually delineated regions, 
which confirms the ability of the presented system to support 
the diagnosis of rheumatoid arthritis.
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