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OPERATIONAL PROPERTIES OF VIBRATORY CONVEYORS OF THE ANTIRESONANCE TYPE 

WŁAŚCIWOŚCI EKSPLOATACYJNE PRZENOŚNIKA WIBRACYJNEGO 
TYPU ANTYREZONANSOWEGO

The hereby paper is devoted to the analysis of operational properties of vibratory conveyors, which 
principle of operations is based on the Frahm’s dynamic elimination effect (Den Hartog, 1971). These 
conveyors, according to the data given by their producers have several advantages, among others, higher 
vibrations amplitudes at the same drive and exceptionally low dynamic forces transmitted to the foundation. 
The simulation model of such conveyor loaded with a feed was created in this work and investigations 
of the transport efficiency and forces transmitted to the foundation at stationary states as well as at start 
up and coasting periods were performed. Analytical tests of vibrations during unsteady motion periods 
were also performed and the method of determining maximum amplitudes of conveyors in the transient 
resonance during coasting was proposed. The research results indicate the possibility of a wide application 
of this type of machines in loose materials handling in various industry branches.
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W pracy zbudowano model matematyczny i symulacyjny nowego typu przenośnika wibracyjnego, 
którego schemat dynamiczny jest oparty na zasadzie działania eliminatora dynamicznego Frahma. Przeno-
śniki takie są obecnie dostępne w handlu i według producentów posiadają szereg zalet, m.inn. możliwość 
zastosowania mniejszych jednostek napędowych i znikome przekazywanie drgań na podłoże. W pracy 
przeprowadzono badania symulacyjne podstawowych właściwości eksploatacyjnych tych maszyn przy 
różnym obciążeniu nadawą, przy czym w modelu uwzględniono wpływ nadawy sypkiej na ruch maszyny 
i bieg wibratorów napędowych i ich synchronizację.
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1. Introduction

Vibratory conveyors have several properties suitable in using them for materials handling 
in various industry branches. Among such properties the following can be mentioned: the re-
sistance to high temperatures (of the order of 1000°C), possibility of heat acceptance from the 
transported material, possibility of transporting materials which are emitting poisonous gases and 
dusts, possibility of cooling and heating of feed materials and performing chemical reactions, etc. 

New structures, which dynamic scheme is based on the dynamic elimination effect (Fig. 1) 
called (according to (Jiao, 2012)) antiresonance conveyors, are presently very popular in the 
vibratory conveyors market. 

Fig. 1. Scheme of operation of antiresonance vibratory conveyors

Where:
 m1 — conveyor body mass, 
 m2 — conveyor trough mass, 
 P0sin(ωt) — excitation force of the set of vibrators, 
 k1,2 — coefficients of elasticity of suspensions, 
 x1,2 — mass displacements in the motion direction, respectively.

The dynamic damper theory (Den Hartog, 1971) indicates that in case when the spring k2 – 
on which mass m2 is assembled – is tuned in such way as to have a partial frequency ω2, being 
the natural vibrations frequency of mass m2 on spring k2, equal to the excitation frequency (1): 

 2

2
2 m

k   (1)

the amplitude of mass m1 vibrations, in the steady state of the system without damping, is zeroing. 
This leads to the zero value of dynamic forces transmitted to the foundation.
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Thus, this feature constitutes an advantage of this solution over classic structures. In ad-
dition, in the described structure, the mass of vibrators does not increase the vibrating mass, 
which allows to achieve – by means of the same vibrators – higher amplitudes of the vibrations 
of the trough, while the drive engines and elements of body supports are related – in the steady 
state – to an immobile mass which prolongs their service life. The idea of operations in the 
antiresonance state is used currently in constructing other vibratory machines, as e.g. vibrating 
screens shown in Fig. 2.

Fig. 2. Antiresonance screen of the VDL Industrial Process Company

Apart from patents of conveyors structures based on the Frahm’s eliminator, e.g. (Long, 
1960; Carmichael, 1982) there are only a few works considering dynamics of these machines, 
e.g. (Jiao, 2012; Liu, 2006; Czubak, 2012). Especially there is a lack of works investigating be-
haviour of this type of machines when their feed load is changing, or these works contain errors 
such as e.g. (Liu, 2012), which was indicated in (Czubak, 2013).

2. Aim of the work 

The aim of this investigation was creating the dynamic model of the system, with taking 
into account the feed layered model, allowing to determine the transport efficiency dependence 
on a trough load as well as the dependence of the unit power and forces transmitted to the foun-
dation on a trough load. 

3. Vibratory conveyor model

The assumed a discrete dynamic scheme of the conveyor, with 6 degrees of freedom (x, y, α, 
f, φ1, φ2) for machine and with 24 degrees of freedom for 3-column and 4-layered feed is shown 
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in Fig. 3. The correctness of the theoretical principles of building calculation models of the ma-
chine body and the feed was based on experimental verification (Czubak & Michalczyk, 2001).

Fig. 3. Model of the vibratory conveyor, where f – relative displacement Mr in relation to Mk

The following constant values were assumed in simulations:
L = 2 m, H = 0.48 m, l = 3d = 8 m – the length of gutter,
L1 = 0.97 m, h1 = 0.33 m, L2 = 0.77 m, h2 = 0.67 m, hr = 1.1 m, Lr = 1.92 m, 

kx = ky = 2328000 N/m, kf = 10962000 N/m – coefficients of elasticity, 

ψ1 = 0.13, ψ2 =0.4, 
cycleperstoredenergy
cycleperdissipatedenergy
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bkb  – coefficients of viscous damping

m1.2 = 50 kg, Mr = 1000 kg, Mk = 2500 kg – unbalanced mass of the vibrator, of the trough 
and body, respectively, 

mn = 12 – 2000 kg – total feed mass (variable), 
Jk = 12200 kgm2, Jr = 5000 kgm2, J1 = J2 = 0.18 kgm2 – central moments of inertia of the 

body, trough and rotating mass of the electrovibrator, respectively,
e = 0.06 m – radius of a vibrator unbalance,
Rt = 0.005 – coefficient of restitution of collisions between the first layer of the feed and  

the trough,
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R = 0.01 – coefficient of restitution of collisions between successive layers of the feed,
μtn = 0.4 – coefficient of friction between the first layer of the feed and the trough,
μnn = 0.7 – coefficient of internal friction of the feed, 

P = 4 kW – asynchronous engine power,
Mst = 97.4 Nm – stalling torque of the drive engine, 
ωs = 104.7 rad/s, ωst = 79.6 rad/s – angular velocity of the synchronous running and of the 

stall, respectively.

The set of equations describing the machine motion can be written in a form:

 M · q·· = Q (2)
where:
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The feed model was created on the basis of (Michalczyk, 2008):
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 Fj, (j –1,k) — normal component of the j-th layer pressure on the j –1 layer in the k-th column,
 Tj ,(j–1,k) — tangent component of the j-th layer pressure on the j –1 in the k-th column, being 

the friction force.

When the successive feed layers: j-th and j –1 (in the given column) are not in contact, the 
pressure force between these layers in the normal Fj, (j –1,k) and tangent direction Tj ,(j–1,k) is equal 
zero. Equations of motion in x and y directions of individual feed layers, with taking into account 
the conveyor influence on lower feed layers, are of a form:

 ),(,1),1(,, kjjkjjknj TTm   (8)

 ),(,1),1(,,, kjjkjjknjknj FFgmm   (9)

4. Analysis of steady states – simulation results 

4.1. Conveyor not loaded with a feed – the process of vibrations 
steadying after the machine was switched on

Fig. 4. Vertical displacement of the conveyor body mass as a time function
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Fig. 5. Displacement of the trough f versus the body as a time function

Fig. 6. Angular velocity of the vibrator 1 as a time function

Fig. 7. Difference of angular displacements Δφ of vibrators 1 and 2 as a time function
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4.2. Conveyor loaded with a feed of a total mass of 840 kg 
– the process of vibrations steadying after the machine 
was switched on

Fig. 8. Vertical displacement y as a time function

Fig. 9. Relative displacement f of the trough versus the body, as a time function

Comparison of Fig. 4. and Fig. 8. indicates a significant influence of the feed on limiting 
the transient resonance and on increasing the amplitudes of vertical vibrations in the steady state.

4.3. Feed velocity as a function of the feed amount 
on the conveyor

These findings confirm the results achieved in papers: (Czubak, 2007, 2012), where it was 
proved that regardless of loading the conveyor with a significant feed amount, at the properly 
selected (of a value app. 3) coefficient of throw (ratio of amplitude of vertical component of 
acceleration of the trough to the gravitational acceleration), the conveyor still maintains high 
transport velocities. 
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4.4. Efficiency as the feed amount function

The function allowing to determine the conveyor efficiency, in dependence of the feed 
amount being on the conveyor and the average transport velocity, is of a form: 

 s
kg,tr

n v
l
mQ   (10)

where: Q — efficiency, mn — mass of the feed being on the conveyor trough, l — length of the 
trough, vtr — average transport velocity.

As can be seen from the diagrams of Fig. 10.11, in the examined range, along with the 
increase in the amount of feed on the conveyor, the efficiency gets bigger, while this increase 
decreases with the increase in the weight of the feed.

4.5. Maximum dynamic force transmitted to the foundation 
as the efficiency function

Maximum dynamic force transmitted to the foundation as the function of efficiency Fig. 12, 
was obtained on the basis of numerical simulation of conveyor’s vibrations and the formula (11).

The method of calculating the average value of the foundation load at the steady state:

 N,)()( 22
max yx RRR   (11)

where:
 ∑Rx — total dynamic force acting on the supporting springs in direction x, 
 ∑Ry — total dynamic force acting on the supporting springs in direction y. 

Fig. 10. Dependence of the average transport velocity vtr (averaged in layers) of the conveyor loaded 
with the feed mn
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As can be seen from the graph Fig. 12, the vibrator synchronization gets disturbed during 
the conveying process (Gajowy, 2018) and it causes the increase of vibrations of the body and 
forces transmitted to the foundation.

Fig. 11. Conveyor efficiency Q as a function of the feed mass being on the conveyor trough mn

Fig. 12. Maximum force transmitted to the foundation as the efficiency function
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4.6. Ratio of the power demand to the efficiency as the efficiency 
function 

Fig. 13. Ratio of the power demand to the efficiency as the efficiency function obtained 
on the basis of simulation

The graph in Fig. 13 shows that the energy consumption for transporting the unit amount of 
feed is decreasing with the increase of efficiency. Transport becomes the most cost-effective if 
the efficiency exceeds Q = 25 kg/s. Maximum efficiency was not specified in the work. However, 
it has limitations due to the dynamic load on the ground and strength parameters of the gutter 
and the whole conveyor and it is associated with the appropriate selection of the drive power.

5. Analysis of non-stationary states

The conveyor behaviour during the transient resonance at start-up and coasting is important 
from the point of view of technological applications. That time multiple increases of vibration 
amplitudes can lead to machine damages or to an excessive loading of the supporting structure. 
Since the start-up is rather fast, a higher threat is related to the vibrator free coasting after the 
engine switching-off. In order to investigate this problem for the case of antiresonance conveyor 
the frequencies and forms of its natural frequencies should be determined. 

5.1. Analysis of natural frequencies and forms of vibrations

Due to a small energy scattering in springs – originated mainly from material and structural 
damping – it is possible to analyse natural vibrations of the system as undamped vibrations. Re-
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maining non-linearities of the machine model, without a feed, are related to the influence of body 
vibrations on the vibrators motion and with the Coriolis acceleration in the trough complex motion. 
Dimension to mass ratios – in typical structures of vibratory machines – generally allow to omit, 
in the analysis, motion of the vibrator and its mass concentration in the axis of rotation (Blech-
man, 1994). In a similar fashion, when analysing the Coriolis acceleration values, it is possible 
to omit them – for typical dimensional relations of the machine – in comparison to the remaining 
acceleration components. Thus, it is possible to reduce dynamic equations (2) to (5) to a form:

 M · q·· + K · q = 0 (12)

where: 0 — zero value, M — mass matrix, K — elasticity matrix.

The general solution of the homogeneous equation assumes a form:

 q = qo sin(ωt + γ) (13)

where: qo — vector of coordinates amplitudes: x, y, α, f, ω — natural frequency, γ — phase 
angle of vibrations.

From that the matrix equation is obtained :

 (K – ω2 · M) · q = 0 (14)

When the matrix: (K – ω2 · M) is a singular one, i.e. 

 det (K – ω2 · M) = 0 (15)

there is a possibility of non-zero solution of this equation.

The above dependence constitutes the 4-th degree equation for ω2 and leads to determin-
ing 4 natural frequencies (not necessary different). Frequencies – ω are rejected, since they are 
without any physical sense. After taking into account forms of mass and elasticity matrices, the 
left member of the equation assumes a form:

 
sr

rr

rr
rr

rr

rr

rrrr

rk

yx

rrrrx

rrrrky

rrrxrkx

kM
hM
LM

MM

hM
LM

hMLM

JJ

LkHk

MLMhHk

MMLMMk
MMhHkMMk

2222

2
2

22

22

22

222

222

2

)cos(
)sin(

)sin()cos(

)cos(
)sin(

)sin()(0
)cos(0)(

MK

 
(16)

After substituting the previously assumed numerical values, the solution in the form of 
4 natural frequencies is obtained:

ω1 = 18.4 rad/s,
ω2 = 25.6 rad/s,
ω3 = 29.6 rad/s,
ω4 = 125 rad/s.
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Since zeroing of the main matrix determinant means that equations are linearly dependent, 
it is not possible to obtain exact values of amplitudes. Substituting – into the matrix – the given 
natural frequency will allow to determine forms of vibrations, it means ratios of amplitudes of 
individual coordinates.

The following forms of vibrations were obtained for exact frequency values: 

 D
C
B
A

oq   (17)

Calculation of the first form of vibrations for ω1 = 18.427 rad/s
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Using the matrix distribution LU the vibration form referred to the relative displacement 
amplitude f was obtained: 

• for ω1 = 18.4 rad/s,
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  (19a)

• for ω2 = 25.6 rad/s,

 

D

D
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  (19b)

• for ω3 = 29.6 rad/s,
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  (19c)
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• for ω4 = 125 rad/s,

 

D

D
C
B
A

1
000924.0

149.0
259.0

 (19d)

Determining the amplitude at coasting by means of the energy balance method 

Due to a loss of a cophasal running of vibrators occurring in the circum-resonant range 
of the system (Fig. 14), other methods of assessing maximum amplitudes in the transient reso-
nance cannot be applied (Cieplok, 2009), since they assume the cophasal running of vibrators 
and without such running they do not allow to determine the maximum amplitudes of angular 
vibrations of the machine. 

Fig. 14. Difference of angular displacements of engines 1 and 2 at coasting

Therefore the energy balance method was applied for the analysis of maximum amplitudes 
(Michalczyk, 2012).

This method is based on the assumption that the energy of the set of vibrators, with which 
they enter the transient resonance, is mainly transformed into the body vibration energy increase. 
This effect causes an abrupt decrease of the vibrators angular frequency within the circum-resonant 
range, shown in Fig. 15.

Thus, the energy balance is as follows:

 maxi
T
maxi qMq

2
1

2
1 2

0izrJn   (20)

where: 
 n — number of vibrators,
 Jzr — moment of inertia of the drive system reduced to the rotor shaft,
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 ω0i — angular velocity at which the energy transfer occurs (in approximation: the i-th 
natural frequency of the system),

 qmax i — coordinates vector describing vibrations of the system with the i-th vibration form,
 M — mass matrix of the linearised vibrating system, determined on the basis of (21).

The kinetic energy of the body for small vibrations, near the balance point is of the ap-
proximate form:
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which allows to determine the mass matrix M (22).
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For harmonic vibrations of frequency ω0i the vector of maximum velocities is related to the 
vector of maximum amplitudes of displacements by the following dependency: 

 q· max i = ω0i qmax i (23)

After substituting (22) into (20) and the reduction:

 nJzr = qT
max i Mqmax i (24)

For each i-th natural frequency we know the modal vector (19a-d) allowing to determine 
the dependence between vibration amplitudes, i.e. vibration forms:

 Ψi (ωi) = col{Ai, Bi, Ci, Di} 

Fig. 15. Effect of loosing the vibrator angular frequency in the circum-resonant range
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Thus, the vector determining the vibration amplitudes in the i-th resonance can be presented 
e.g. as below: 

 
imaxi aq i
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Acol 1,,,,,,   (25)

where: Di is the maximum amplitude of coordinate f, while ai is the vector of ratios of amplitudes 
of the system coordinates x, y, α to the coordinate amplitude f during the i-th resonance.

After introducing the above dependencies into the energy balance we finally obtain the equa-
tion for the maximum coordinate amplitude f when the system is passing through the resonance 
with the i-th vibration frequency:

 i
T
i Maa

zr
i

nJD   (26)

The remaining amplitudes Ai, Bi, Ci in the i-th resonance can be determined knowing their 
ratio to Di (from 19a,b,c,d).

The maximum amplitudes of vibrations determined in this way in successive resonances 
are listed in Table 1.

For comparing reasons, values of maximum amplitudes obtained by means of numerical 
simulations of the model formulated in item 3, without differentiation which resonance they 
concern, are also placed in this Table. Due to a vicinity of successive resonances such differen-
tiation is not possible (Fig. 16).

The calculation error was determined as a difference between maximum values out of suc-
cessive resonances obtained by means of the energy balance method and maximum values for 
the whole coasting process obtained by means of the simulation.

TABLE 1

Vibration amplitudes at coasting with using the energy balance (Michalczyk, 2012) 
with individual resonance frequencies of vibrators (maximum amplitudes for the given degree 

of freedom are marked by a thickened font). The resonance amplitude was not determined 
for the coordinate f, because in relation to it the circum resonant amplification of vibrations 

does not occur – Fig. 16d, since the system is not passing through the resonance 
with the highest natural frequency ω4 = 125 rad/s

ω1 = 18.4 rad/s ω2 = 25.6 rad/s ω3 = 29.6 rad/s Simulation Relative error
x [m] 0.00426 0.00574 0.00711 0.013 45%
y [m] –0.00184 0.00815 –0.00612 0.012 32%
α [rad] –0.00323 0.000069 0.00264 0.0038 15.9%
f [m] 0.00009 0.000575 0.00027 — —

A relatively low accuracy of the analytical method is caused by the fact that individual 
natural frequencies ω1, ω2, ω3, through which the system is passing, are very close – one to 
another – and the method assumption concerning separate occurrences of successive resonances 
is not met (Michalczyk, 2012).
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a)

b)

Fig. 16. Free coasting of the machine (the drive was switched off in the 100-th second of the simulation): 
a) Horizontal displacement of the body, b) Vertical displacement of the body

6. Conclusions

Operational properties of antiresonance vibratory conveyors were analysed in the paper. The 
mathematical model of such conveyor was created taking into account a limited drive power, 
vibrators selfsynchronisation effect and the feed influence. Simulation investigations of the vi-
bratory transport efficiency and dynamic forces transmitted to foundations as a function of the 
conveyor loading with a feed, were performed. Analytical tests of vibrations during unsteady 
motion periods were also performed and the method of determining maximum amplitudes of 
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conveyors in the transient resonance during coasting was proposed. Some other important find-
ings are given below.

1o. Average transport velocity of the feed on the antiresonance conveyor, except for very 
small and very large (when the feed mass exceeds the trough mass) loads is a slowly 
decreasing function of the feed mass on the trough (Fig. 10). Thus, the antiresonance 
conveyor efficiency in this zone in a approximate linear fashion depends on the feed 
mass being on the trough (Fig. 11).

2o. Maximum dynamic force transmitted to the foundation is – in approximation – propor-
tional to the actual conveyor efficiency (Fig. 12).

c)

d)

Fig. 16. Free coasting of the machine (the drive was switched off in the 100-th second of the simulation): 
c) Angular displacement of the body, d) Relative displacement of the trough
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3o. The energy balance method (Michalczyk, 2012), as giving in this particulary case not 
very accurate results because of close vicinity of resonant frequencies, should be modi-
fied (Gajowy, 2018). 

4o. On the bases of the performed investigations it can be stated that antiresonance con-
veyors constitute a favourable alternative for classic solutions, in case when there is 
a need of limiting dynamic forces transmitted to the foundation at the stationary state 
and at transient periods.
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