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Abstract  
 

This paper deals with numerical and analytical modelling of a diamond or silicon particle embedded in a metallic matrix. The numerical 

model of an elastic particle in a metallic matrix was created using the Abaqus software. Truncated octahedron-shaped and spherical-shaped 

diamond particles were considered. The numerical analysis involved determining the effect of temperature on the elastic and plastic 

parameters of the matrix material. The analytical model was developed for a spherical particle in a metallic matrix. The comparison of the 

numerical results with the analytical data indicates that the mechanical parameters responsible for the retention of diamond particles in a 

metal matrix are: the elastic energy of the particle, the elastic energy of the matrix and the radius of the plastic zone around the particle. An 

Al-based alloy containing 5% of Si and 2% of Cu was selected to study the mechanical behaviour of silicon precipitates embedded in the 

aluminium matrix. The model proposed to describe an elastic particle in a metallic matrix can be used to analyze other materials with 

inclusions or precipitates. 
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1. Introduction 
 

This paper discusses a mathematical model of an elastic 

particle in an elastic-plastic metallic matrix. The mechanical state 

of such a particle embedded in a metal matrix results from the 

cooling of the sintered or composite material required by the 

manufacturing process [1]. If the coefficient of thermal expansion 

of the particle material is lower than that of the matrix, the 

particle is compressed by the contracting matrix. The stress in the 

elastic particle is constant, while the stress around it decreases to 

zero rapidly. When the difference in the coefficient of thermal 

expansion is larger and there is a sufficient drop in temperature, 

the plastic zone around the particle is formed. 

A particularly large difference in the coefficient of thermal 

expansion is observed between diamond particles or silicon 

precipitates and metallic matrixes. For diamond and silicon, the 

coefficient of thermal expansion is very low. For metals, on the 

other hand, its value is several times higher. This is the reason 

why a diamond particle in a cobalt matrix [2] and a silicon 

precipitate in an Al5%Si alloy [3] were selected for the analysis. 

 

 

2. Numerical model of a diamond 

particle in a metallic matrix 
 

Depending on the synthesis conditions, diamond 

crystallization leads to the formation of crystals with shapes 

ranging from a cube to an octahedron [1]. Intermediate shapes of 

a diamond crystal are: a truncated cube, a cuboctahedron and a 
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truncated octahedron. The truncated octahedron is the most 

spherical object of all the Archimedean solids (semi-regular 

convex polyhedrons). 

The models of a diamond crystal embedded in a metallic 

matrix and protruding from its surface (Figure 1) were discussed 

in [1]. The values of the numerically calculated pressure inside a 

diamond particle [1] coincided with those observed in the 

experiments [4]. 

  

a) b)  

Fig. 1. Models of a diamond particle: a) fully embedded in the 

matrix, b) protruding from its surface 

 

The simulation results show that it is possible to select 

parameters that are slightly dependent on the particle shape and 

size. They are the pressure inside the diamond particle and the 

plastic zone size around it [1].  

In this study, the preliminary numerical analysis was 

conducted for a cobalt matrix. The mechanical parameters of the 

matrix were determined using the corresponding average values 

obtained for the sintered SMS (Submicron Size) and EF (Extra 

Fine) cobalt powders (Table 1, Figure 2) [2]. The elastic modulus 

E and the Poisson ratio ν of diamond were 1050 GPa and 0.1, 

respectively. The hot pressing process to produce the sintered 

materials was assumed to take place at a temperature of 850 °C 

and a pressure of 35 MPa. The average values of the coefficient of 

thermal expansion used for the cobalt matrix and the embedded 

diamond particles were 15.2∙10-6 K-1 and 3∙10-6 K-1, respectively. 

The simulations were carried out by means of the Abaqus [5] 

program. The results obtained for a truncated octahedron-shaped 

particle were compared with those registered for a spherical 

particle (Figure 3). The particles were identical in volume, which 

corresponded to that of a sphere with a radius of 172.5 μm. The 

simulation results are shown in Table 2. In this table and in the 

next tables, the radius of the plastic zone is divided by the radius 

of the sphere R. 

 

Table 1.  

Mechanical properties of the modelled cobalt matrix 

Modulus of 

elasticity  

E [GPa] 

Poisson 

ratio 

ν 

Yield 

strength 

σY [MPa] 

Tensile 

strength  

σT  

[MPa] 

Elongation 

A [%] 

205 0.3 519 1041 13.9 

 

 
Fig. 2. Stress-strain curve for the cobalt matrix 

 

          
Fig. 3. Plastic zones around a truncated octahedron-shaped (left) 

and spherical (right) particles 

 

As can be seen from Table 2, there are no significant 

differences in results between the truncated octahedron-shaped 

particle and the spherical one. The plastic zone surrounding the 

truncated octahedron particle is almost spherical and has a well 

defined radius (Fig. 3). Thus, the shape of the diamond particle in 

the cobalt matrix can be approximated as a sphere. 

 

Table 2.  

Simulation results for the truncated octahedron-shaped and 

spherical-shaped particles 

Shape of 

particle 

Pressure  

inside 

particle 

[MPa] 

Coefficient 

of plastic 

zone   

rp / R 

Elastic 

energy of 

particle  

[mJ] 

Truncated 

octahedron 
1081 1.85 0.0298 

Sphere 1121 1.80 0.0319 

 

 

3. Mathematical model of a diamond 

particle in a metallic matrix 
 

An analytical model of a spherical elastic particle in an elastic 

ideally plastic matrix was presented in [1]. The elastic stresses in 

the particle and the matrix were determined using the Lame 

solution [6]; the plastic zone around the particle was defined from 

the results provided in [7]. The radius of the plastic zone was 

calculated using the following equation [1]: 

 

https://en.wikipedia.org/wiki/Convex_polyhedron
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where: 

 E − elastic modulus, ν − Poisson ratio, index p − particle 

parameters, index m − matrix parameters, R − radius of the 

diamond particle, rp  − radius of the plastic zone around the 

particle  (Figure 4), αm  and  αp  − coefficients of thermal 

expansion of the matrix and the particle, respectively, ΔT − drop 

in temperature during cooling after hot pressing and σ0  −  yield 

stress of the matrix. 

The radial and hoop stresses in the plastic zone can be written 

as follows: 
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Since the stress in a spherical particle is constant, the pressure 

inside can be calculated immediately from [1] 

 

 
Fig. 4. Model of a matrix-embedded particle 
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The stress in the elastic region outside the plastic zone (r > rp at 

Fig. 3) decreases as 1/r3 
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where the constant b is defined as follows 
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The mathematical model was verified by comparing the 

analytical results with the simulation results for the 2D numerical 

model of the spherical particle (Table 3).  
 

 

Table 3.  

Simulation results for the numerical and analytical model for the 

cobalt matrix 

Type of 

model 

Pressure  

inside 

particle 

 [MPa] 

Coefficient 

of plastic 

zone  

rp /R  

 Elastic 

energy of 

particle 

[mJ]   

Density 

of energy 

 

[mJ/mm3] 

Numerical 1121 1.80 0.0319 1.421 

Analytical 1118 1.70 0.0307 1.368 

 

The numerical analysis involved studying the effect of 

temperature on the elastic and plastic parameters of the cobalt 

matrix. The change in the modulus of elasticity with temperature 

was determined in the same way as for steels [8]. The modulus E 

was assumed to change linearly from 205 GPa at 20 °C to 135 

GPa at 900 °C. The stress-strain curve (Fig. 2) was plotted 

assuming that, at 927 °C, the yield strength decreased 5.3 times 

and the tensile strength decreased 4.6 times [9]. The calculation 

results of the temperature-independent model and the 

temperature-dependent model were compared in Table 4. 

 

Table 4.  

Temperature-independent model vs. temperature-dependent 

model 

Type of 

model 

Pressure  

inside 

particle 

[MPa] 

Coefficient 

of plastic 

zone  

rp /R 

 Elastic 

energy 

of 

particle 

[mJ]   

Maximum 

PEEQ * 

[%] 

Temperature-

independent 

1121 1.80 0.0319 1.68 

Temperature-

dependent 

1116 1.86 0.0316 1.66 

* the Abaqus variable PEEQ  [9] is the equivalent plastic strain 

      222

9

2
IIIIIIIIIIII    

with εI , εII and εIII being the principal strain components. 

 

The parameters analyzed in Table 4 are meaningly dependent on 

the mechanical properties at ambient temperature. 
 

 

4. Model of a silicon particle in an 

aluminum matrix 
 

The structure and tensile strength of AlSi5Cu2 alloy 

containing 5% of silicon and 2% of copper by weight were 

analysed in [3]. The material was produced in accordance with 

PN-EN 1706:2001. The alloy was annealed for 3 h at a 

temperature of 500 °C. The tensile tests were performed using an 

Instron universal testing machine. Both smooth and U-notched 

specimens were employed. 

The structure of the material was examined by means of a 

JEOL JSM 5400 scanning electron microscope equipped with an 

ISIS 300 X-ray spectrometer (Figure 5). The chemical 

compositions of the silicon precipitates and the aluminium matrix 

are shown in Table 4. As can be seen from Fig. 5, the silicon 
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particles are not uniformly distributed throughout the structure; 

they form clusters. 

 

Table 5.  

Al, Si and Cu concentrations in Si precipitates and aluminium 

matrix 

Element Al Si  Cu   

Silicon 

precipitate 
3.50 96.50  

Al matrix  95.34 1.01 2.28 

 

 
Fig. 5. Microstructure of the Al-5%Si alloy etched with 3% HF, 1 

- Si precipitates, 2- Al matrix 

 

The numerical and analytical calculations were performed for 

a 10 μm silicon particle embedded in an aluminum matrix. A drop 

in temperature from 500 °C to 20 °C was assumed. The numerical 

and analytical calculations were based on the material data from 

Table 6. The calculation results are provided in Table 7. 

 

Table 6.  

Properties of the aluminum and silicon phases 

Phase E  

[GPa] 

ν σY / σT 

[MPa] 

 A  

[%] 

α[K-1] 

Silicon 

precipitate  

107 0.4   4.35∙10-5 

Al matrix 70 0.33 273/320 2.24 2.41∙10-5 

 

Table 7.  

Numerical and analytical results for the Al5%Si alloy 

Type of 

model 

Pressure  

inside 

particle 

[MPa] 

Coefficient 

of plastic 

zone  

rp /R 

 Elastic 

energy of 

particle 

[mJ]   

Density 

of energy 

[mJ/mm3] 

Numerical 454 1.70 0.300∙10-7 0.0573 

Analytical 468 1.69 0.322∙10-7 0.0615 

 

The research presented in [3] was supplemented with a 

numerical failure analysis conducted with the Abaqus program 

ver. 6.14 [6]. A computer simulation of the stress state in notched 

specimens was carried out using the Gurson-Tvergaard-

Needleman model (GNT model) for a porous solid [11,12] 
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where red is the stress reduced according to the Huber-Mises 

hypothesis, m is the mean stress and σ(ε) is the stress resulting 

from the actual stress-strain curve. The function f* represents a 

rapid decrease in the transmitted load with increasing void 

volume fraction 
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where f is the void volume fraction, fc is the critical value of the 

void volume fraction above which the process of void coalescence 

occurs and the material strength drops rapidly. The parameter fF is 

the void volume fraction at fracture [13]. 

 

The model assumes that an increase in the void volume 

fraction f occurs as a result of the growth of voids present in the 

material and the formation of voids on the Si particles (cracking 

and decohesion of the particles) with increasing plastic strain [14]. 

In the numerical approach, the nucleation of new voids was 

determined using the following formula 
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where the coefficient A represents the nucleation of voids in the 

form of normal distribution around a certain value of the mean 

strain [15]  
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where fN  represents the volume fraction of void-nucleating 

particles, N  is the mean plastic strain at which nucleation occurs 

and sN is the standard deviation of nucleation.  

 

The simulation conducted with Abaqus [5] using the GNT 

model (7) aimed at reconstructing the stress-strain curves for 

notched specimens. The theoretical stress-strain curves were 

compared with the experimental stress-strain curves taking into 

consideration the following parameters: the initial volume fraction 

f0, the volume fraction of void-nucleating particles fN, the mean 

nucleation strain εN, the standard deviation of nucleation sN, the 

critical void volume fraction fC and the void volume fraction at 

fracture fF. The best results were obtained for the values presented 

in Table 8. 
The parameters provided in columns 3-6 of Table 8 were 

selected to best match the computer simulation results to the 

experimental curve [3]. For the analyzed system of silicon 

precipitates in the aluminum-silicon alloy, the parameters can be 

determined using the model of an elastic particle in a metallic 

matrix described in Section 3.  

Previous simulations conducted for a system of Si precipitates 

in an AlSi alloy [14] did not take into account the initial state of 

the particle (Table 7). 
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Table 8.  

Material parameters used in the computer simulation 

f0 fN εN sN  fC fF 

0.02 0.046 0.022 0.01 0.045 0.25 

 

 

5. Conclusions 
 

An elastic particle located inside a metal matrix can be 

characterized by the following parameters:  

• the pressure inside the particle,  

• the elastic energy of the particle or density of the energy, 

• the radius of  the plastic zone. 

 

The pressure inside the particle and the density of the elastic 

energy are parameters independent of the particle size. They can 

be used to determine the mechanical properties of the elastic-

particles metallic-matrix system. Similarly, the radius of the 

plastic zone reduced to the radius of the particle R can be 

employed. All these parameters can be applied as indices of the 

diamond particle retention in the metal matrix. 

The model proposed to describe an elastic particle in a 

metallic matrix can be used to analyze other materials with 

inclusions or precipitates when their coefficient of thermal 

expansion is lower than that of the metallic matrix. 
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