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Abstract 

This study describes a statistical approach of watercourses hydrological regimes in flood, taking into account 
the latter duration d and return period T. The choice of Middle Cheliff watershed as study area is linked to disas-
ters strong return period in the western region of Algeria. The Midlle Cheliff catchment basin, located in north-
west Algeria, has particularly experienced severe floods over the last years. In view of the recurrence of these 
unusual events, the estimation and the predetermination of floods extreme quantiles are a strategic axis for pre-
vention against floods in this region. The a curves are first of all locally determined, directly from a statistical 
analysis of flow continuously exceeded during a duration d (QCXd) on different durations from available data of 
the study region. Then, these curves are compared to those obtained by application of different regional models 
VFS (Vandenesse, Florac and Soyans) in which two indices of the watershed characteristic flood are taken into 
account, a descriptive duration of the flood dynamics (D) and the instantaneous maximal annual flow of 10 year 
return period (QIXA10). The final choice of the model is based on verification of certain criteria, such as: Nash 
and the root mean squared error (RMSE). The closest regional models to the local ones are Florac’s for low dura-
tion and return periods, and Vandenesse’s for large return periods, for different durations. These results could be 
used to build regional Q-d-F curves on ungauged or partially gauged Algerian basins. 
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INTRODUCTION 

Algeria is among the Mediterranean countries the 
most vulnerable to floods caused by overflowin+g 
streams crossing towns and suburbs. These unex-
pected floods; are often difficult to predict, rapid rise 
time and relatively important specific flow, these 
floods are generally linked to intense rainy episodes 
and appear on middle size basins. Several catastrophes 

caused by those floods have been listed in Algeria 
(Algiers in November 2001, Sidi Bel Abbès in April 
2007, Ghardaia and Bechar in October 2008, etc.). 

Floods are often described by three main charac-
teristics: the peak, the volume and the duration. In 
several works, this fact is linked to climate change 
[BOUCHEHED et al. 2017; GĄDEK et al. 2016; KRI-
ŠČIUKAITIENĖ et al. 2015; LJUBENKOV 2015; NOOR et 
al. 2014; WAŁĘGA 2016; WOJAS, TYSZEWSKI 2013].  
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Although some studies had to be dedicated to  
Q-d-F models; an approach that is still not much used. 
The Q-d-F models have first been developed in 1990 
in France GALÉA and PRUDHOMME [1994; 1997] The 
floods modelling by Q-d-F models among other has 
been applied to flood regionalisation of France water-
shed. Furthermore, a converging and continuous  
Q-d-F model has been proposed by JAVELLE et al. 
[1999]. It is based on properties of scale invariance of 
flood distribution applied by MEUNIER [2001] in Mar-
tinique, this model has also been combined to flood 
indices method [DALRYMPLE 1960] by JAVELLE et al. 
[2002; 2003] which brings some improvements to the 
estimation procedure and apply this corrected version 
of the model for spring floods to Quebec provinces 
and of Ontario (Canada) [CUNDERLIK, BURN 2003; 
CUNDERLIK et al. 2007].  

Moreover, the Q-d-F modelling allowed studying 
of 1.200 ungauged sites in Himalaya [SINGH et al. 
2001] and so on regions of Burkina Faso [MAR et al. 
2002], of Romania [MIC et al. 2002]. In Algeria this 
method was successfully applied on some basins 
[BESSENESSE et al. 2003; 2004; 2006; 2014; 
KETROUCI et al. 2012; RENIMA et al. 2013; 2014; 
SADEUK BEN ABBES, MEDDI 2016; SAUQUET et al. 
2004]. Application of Q-d-F modelling on three wa-
tersheds: VFS (Vandenesse, Soyans and Florac) by 
OBERLIN et al. [1989] allowed to define a regional 
typology of flow regimes which is wide spatial repre-
sentation [GALÉA, PRUDHOMME 1997]. So, it has been 
shown that flood regimes could be adequately de-
scribed with help of three regional models VFS, 
reprsentating the names of representative basins (in 
France) retained for each of the concerned regions. 
The goal of this article is to study the Q-d-F modeling 
application conditions and consequently, the determi-
nation of the corresponding curves on the Cheliff 
mean watershed in northwest Algeria. The Q-d-F 
curves are first determined locally, directly from  
 

a statistical analysis of the continuously exceeded 
during a duration d (QCXd) over different durations, 
based on the data available at the studied stations. 
These curves are then compared with those obtained 
by applying different regional models VFS, in which 
two of the catchment characteristic flood indices are 
taken into account, a descriptive duration of flood 
dynamics (D) and the instantaneous maximal annual 
flow of 10 year return period (QIXA10).  

MATERIAL AND METHODS 

STUDY AREA 

The Cheliff basin is 44.630 km2 in area, it is lo-
cated between geographic coordinates 34° and 36°30' 
of latitude North, 0° and 3°30' of longitude East and 
takes the shape of an axe-blade North-South. Middle 
Cheliff watershed is located in North-West of the na-
tional territory. It is characterized by a Mediterranean 
arid to semi-arid climate with Sahara hot influences in 
the South and cool in both northern and eastern part 
of it. Rainfalls are very regular in time and space; we 
distinguish two extreme zones, the first one is rainy 
with annual average of 658 mm at the rain-control 
station 011806 (Elanab, Dahra) and 524 mm at the 
rain station 011605 (Theniet El Had, Ouarsenis), and 
another zone (the plain included in-between) less 
rainy with annual average, 355 mm at rain control 
station 012219 (Chlef National Agency of Hydraulic 
Resources – Fr. Agence Nationale des Ressources 
Hydrauliques – ANRH).  

DATA  

They are chronicles of river station flows, the 
flows’ chronicles are at variable time step. These sta-
tions are located in Cheliff watershed code 01 record-
ed by ANRH (Tab. 1, Fig. 1). 

 

 
 
 
 
 
 
 

Fig. 1. Location of the study area; source: own elaboration 
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Table 1. Characteristics of hydrometric station 

Station 
code 

Wadi 
Lati-

tude N 
Longi-
tude E 

Z 
m 

Surface 
km2 

Available 
period 

011905 Zeddine 36°6' 1°57' 376 872.57 1990–2013 
012201 Ouahrane 36°13' 1°13' 181 262 1983–2012 
012004  Tikazel 36°11' 1°44' 262 130 1990–2009 
020207  Allala 36°28' 1°18' 120 295 1983–2009 

Source: own elaboration. 

SAMPLING METHODS 

There are two commonly used methods [SAU-

QUET, RIBATET 2004]. 
1. Selecting the annual maximum is the sim-

plest. It consists of selecting only one maximum over 
a hydrological year or a season-at-risk [ASSANI 1997]. 
The main disadvantage is that the formed sample may 
contain non-significant events (eg. no major events 
are recorded in a dry year) and lack of important ones 
happening during the same year. 

2. Sampling by value greater than a threshold 
(sup-threshold). Consists in retaining the maximum 
value of a set of independent events having exceeded 
a given threshold [LANG et al. 1997]. It offers greater 
flexibility and robustness, since it allows a greater 
number of selected events to be gathered, if the 
threshold is high enough, only the major events will 
be retained. BEZAK et al. [2014] in Serbia, FISHER and 
SCHUMANN [2014] in Germany and LANG [1999] in 
France showed this method is considered to be more 
reliable than the annual maxima method. 

ESTIMATION OF QIXA10 AND DETERMINATION 
OF THE CHARACTERISTIC DURATION D  

The concept of modelling in flood-duration-fre-
quency has been established on an objective basis 
[GALÉA, PRUDHOMME 1993; 1997] and its extension 
towards ungauged watershed, supplies a theoretical 
frequency description of multi-duration of flood quan-
tiles. It is essentially focused on hydrological varia-
bles representing basin flood regime, extracted from 
annual flows chronicle Q(t). In addition to hydrologi-
cal variables, two indices of watershed flood regime 
are essential to be determined, which are the maxi-
mum instantaneous flow of 10 year return period 
QIXA10 and flood characteristic duration of water-
shed D. 

We retain as definition of the flood characteristic 
duration D, duration during which half of the peak flow 
Qs is continuously exceeded. For each observed and 
recorded flood, studied at the level of each sub-water-
shed, its characteristic duration D and its peak flow 
Qs have been determined. In a plan (Qs, ds), the char-
acteristic duration of watershed flood D according to 
SOCOSE method of Technical Center for Rural Water 
and Forest Engineering (Fr. Centre technique du génie 
rural des eaux et des forêts) [CTGREF et al. 1980; 
1982] is defined as being value of the ds conditional 
median for value of the corresponding instantaneous 
maximal annual decennial flow QIXA10. The pairs 

(Qs, ds) of the used flood periods in the Bir Ouled 
Tahar, refers the parameter D to the time when the 
mean peakflow is exceeded, when it shows the charac-
teristic duration of Bir Ouled Tahar is 3 hours as it is 
shown in Figure 2 by using the same method the char-
acteristic duration for Tikazel, Larabaa Ouled Fares and 
Sidi Akkacha are 3, 4 and 6 hours, respectively. 

 

Fig. 2. Estimation of the characteristic flood duration;  
D = flood characteristic duration of watershed, ds = duration 
flow, QIXA10 = instantaneous maximal annual flow 10 year 

return period; source: own elaboration 

THE Q-d-F CONVERGING MODEL  

The Q-d-F converging model is born from 
a property observed on a large number of treated hy-
drological chronicles: Adjustments Qd(T) are the se-
ries of sup-threshold flows values, over a given dura-
tion d that can be derived from an instantaneous 
streamflow time series Q(t) l likely to meet in the 
same point towards the weakest return periods. 

 dd xTaqTVd ,0)ln()(    (1) 

Where: aqd = flows Gradex or even scale parameter of 
adjustment law: x0,d = position parameter of adjust-
ment law or: simultaneously on the whole durations 
by adjustment of a mathematical function V(d, T) 
and/or Q(d, T) on samples, Vd and Qd knowing that: 
Vd is the average volume on a continuous duration d, 
maximal during flood episode, Qd represents the 
threshold flow, continually exceeded on the duration 
d during the flood episode (Fig. 3). 

The first manner to reach V(d, T) and/or Q(d, T) 
consists therefore in using mathematical expressions 
of a dimensionless bookshelf model named “Refer-
ence Model”. It comes to choose the best model 
among the three VFS available according to meteoro-
logical criteria and to distort formulations with help of 
two characteristics: one in flow and another in dura-
tion, all of them obtained from study zone’s interest-
site.  The second possibility  is to apply the  “converg- 
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Fig. 3. The variables under consideration of flood episode; 
source: SAUQUET et al. [2003], modified 

ing Q-d-F”, this formulation is based on a property 
observed on a great number of treated hydrological 
chronicles: adjustments Vd(T) have tendency to meet 
in the same point towards the weakest return periods 
and on orthogonal affinity property of theoretical laws 
of probability of relative quantiles of different dura-
tions [SAUQUET et al. 2004]. The converging Q-d-F 
model allows synthesizing in unique analytical formu-
lation, quantiles of flood relating to different dura-
tions, independently of retained-probabilities laws. 
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Where: V(0,T) = theoretical distribution of peak flows 
(QIX) consolidated by modelling: ∆ = parameter to be 
set, homogeneous to a time and linked to flood dy-
namics.  

One speaks of consolidated adjustment V(0, T) 
because all durations participate in parameters estima-
tion of the theoretical distribution. Distributions of 
duration d (2) are deducted from modelled distribu-
tion of the peak flows V(0, T) knowing ∆. Several 
approaches may be considered to evaluate ∆ and to 
simultaneously obtain a consolidated distribution  
V(0, T) [JAVELLE et al. 2003; KOUTSOYIANNIS et al. 
1998; MEUNIER 2001]. The preferred procedure intro-
duces a ∆ setting process by using successive itera-
tions on the principle of the least squares. It presents 
an advantage of a simple and economical application 
in hypothesis.

 From expression (2), and taking account of the 
following property: 
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We deduct an expression of quantiles estimations of 
threshold flows Q(d, T): 
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In case of adjustment V(d, T) for exponential law, 
it comes: 
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Where parameters a0, x0 and ∆ are to be determined. 

MODEL TYPE OF “REFERENCE BASIN” 

With help of Q-d-F model, supposed to represent 
the considered-watershed floods regime. The choice 
of this model among three other referenced in France 
is based on local rainfall and of instantaneous maxi-
mal annual flow of 10 year return period QIXA10 
[GALÉA, PRUDHOMME 1997].  

A Q-d-F model type of reference basin allows 
translating under an operational synthetic shape, the 
watershed large spatio-temporal variability of flows 
QCXd, observed or not [GALEA, PRUDHOMME 1994]. 
The formal representation of Q-d-F models in QCX 
is: for 0.5  ≤  T(yr)  ≤  20: generalization of an expo-
nential law with two parameters adapted to extreme 
values, according to d/D (continuous duration/charac-
teristic duration) and QIXA10:  
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For 20  <  T(yr)  ≤  1  000 : generalization of ex-
trapolation shape of esthetic Gradex by Gradex of 
maximal rains [MICHEL 1982] according to d/D and 
QIXA10:  
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With QCXdT is the quantiles of maximum flow, 
for a duration d and of return period T, QCX10d, de-
cennial quantile of volume flow is obtained from 
Equation 3. Aq, B and Ap are respectively: Gradex of 
the flows (is the Gradex of the maximum discharges 
provided by the convergent model for the duration d), 
position parameter of exponential law and rains 
Gradex; they are explained according to d/D by Equa-
tion (9, 10 and 11):  
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To determine x1, x2, …, x9, three watersheds have 
been chosen including long series of quality data at 
variable time step and representing recognized re-
gimes. These basins allow approaching a typology of 
flood regime:  
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– station of Dragne at Vandenesse, region of Bour-
gogne (Vandenesse), 

– station of Roubion at Soyans, region of Rhône-
Alpes (Soyans), 

– station of Mimente at Florac, region of Languedoc-
Roussillon (Florac). 

These stations have been chosen by the Cemagref 
[GILARD 1998] for reliability and quality of their pro-
vided data, and due to hydro-meteorological context 
to which they belong. The Vandenesse model is rep-
resented by a station widely set under oceanic influ-
ence. The Soyans model based on a station located 
not far away from the Rhone valley and it takes into 
account more continental influences. As for Florac 
model, it is based on a station placed under Mediter-
ranean influence. According to availability of rainfall 
data at level of the three watersheds VFS, parameters 
x1, x2, x3, …, x9 have been defined for each Q-d-F 
model in QCX (Tab. 2). 

The Vandenesse model characterizes a sustained 
flood hydrologic regime on observable frequencies. 
The exceptional events are not very different from the 
rare ones, and the floods are rather voluminous than 
flash. The Florac model defines a fast-flow regime, 
with some rainfall storage. This leads to very common 
events, different from the average ones, which are 
themselves very different from the rare events. The 
floods are flash, not voluminous, but are part of the 
duration (storage restoration during floods). The 
Soyans model defines a fast flow regime, but with 
very low storage on the watershed. The exceptional 
events are very different from the average ones, the 
floods being very sharp and not that large. In general, 
the flood duration is relatively low. 

Table 2. Parameter xi for Q-d-F models in threshold flow 
QCX 

Model’s 
type 

x1 x2 x3 x4 x5 x6 x7 x8 x9 

Florac 3.050 3.530 0.000 2.130 2.960 0.010 2.780 1.770 0.040
Soyans 2.570 4.860 0.000 2.100 2.100 0.050 1.490 0.660 0.017
Vandenesse 3.970 6.480 0.010 1.910 1.910 0.097 3.674 1.774 0.013

Source: own elaboration. 

VALIDATION CRITERION 

Having regard to the unavailability of rain-gradex 
for different durations, performances of one of the  
Q-d-F models of reference basin type are estimated in 
a framework using validation-setting. Two criteria 
have been used:  
– criterion of Nash [NASH, SUTCLIFFE 1970]; the 

Nash‘s criterion can vary of ∞ to 1; optimal value 
is 1 (perfect setting); an upper value to 0.7 is usual-
ly considered as satisfactory; this criterion is ex-
pressed by equation: 
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– the criterion of average root-mean squared error 
(RMSE), translates the average error between flows 
estimated or modelled, and flows calculated by one 
of the Q-d-F models (VFS), it is expressed by 
Equation (14): 
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RESULTS AND DISCUSSION  

LOCAL DISTRIBUTIONS AND FLOOD QUANTILES 

Figure 3 shows Q-d-F modelling obtained for 
floods of low or large return period, as well as sam-
ples observed or estimated by sampling of events 
above the threshold. 

We recorded two or three exceptional events in 
peak of theoretical return period close to the centenni-
al for all the studied stations and which flow on the 
large durations are rather scarce, or even very rare for 
one of them. As for time step, the relative extrapola-
tion verifies the rare experimental quantiles estimated 
from sup-threshold samples adjustment by exponen-
tial law (Fig. 4). The calculations results are flows and 
flood hydrographs values. Each sampling duration has 
respective results: the average annual flow, maximum 
flows, threshold, adjustment parameters (scale param-
eter and position) and so number of flood correspond-
ing events, at last, estimated theoretical quantiles. In 
effect, all values and flows diagrams are set in func-
tion of sampling duration or of the return period.      

The sup-threshold events are well adjusted with 
the QdF curves for the Zeddine basins (Fig. 4a), 
Ouahrane (Fig. 4b) and Allala (Fig. 4d) except for the 
Tikezal basin events (Fig. 4c), the duration Q 1.5 
hours to 15 hours (T). 

CONVERGING DISTRIBUTIONS AND FLOOD 
QUANTILES 

Six durations are considered, giving six series of 
threshold flows Qd with d included between 1.5 and 
15 hours for Rouina basin, between 2 and 20 hours for 
Ouahrane basin, between 1.5 and 15 hours for Tikazel 
basin and between 3 and 30 hours for Allala basin. 
The converging model Q(d, T) is applied to series 
with sup-threshold values of flows Qd (Fig. 5).  
Chronicle examination of raw data of Rouina shows 
that water flows on durations less than 24 hours are 
substantially equivalent to peaks values. This is trans-
lated into distributions of quantiles Q(1.5 hours, T) 
and Q(15 hours, T) relatively close (Fig. 5a). How-
ever, adjustments obtained for basin of Ouahrane and 
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Fig. 4. Application of local model to threshold flows Qd(T) of stations: a) Bir Ouled Tahar, b) Larabaa Ouled Fares, 
c) Tikazel, d) Sidi Akkacha; d = continuous duration; source: own study 

 

 

Fig. 5. Application of converging model to threshold flows Qd(T) of stations: a) Bir Ouled Tahar, b) Larabaa Ouled Fares,  
c) Tikazel, d) Sidi Akkacha; d = continuous duration; source: own study 
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Tikazel for a range of lower durations less than 24 
hours are very distinct and reveal a rapid collapse of 
water flows with duration (Fig. 5b, c). The quantile 
Q(1.5 hours, T) is the double of Q(24 hours, T) for 
this station. Parameter ∆ gives shape of hyperboles 
defining quantiles Q(d, T) for T fixed. If ∆ is weak, 
hyperboles are much curved. Reversely, if ∆ is strong, 
hyperboles are much flattened. Whereas is schema-
tized by (Fig. 5), the shape of hyperboles is linked to 
those of the floods observed.  

In effect, the whole studied flood is rapid, more is 
the difference between peak flows and average maxi-
mum flows on a duration d (for instance over one day, 
on figure 5d) is large. This difference between peaks 
flows and middle flows is translated for Q-d-F curves 
(in function of T, for d fixed) by more or less strong 
Q-d-F highly-arched curves (Fig. 5b, c). Reversely, if 
it is characterized by slow floods, its Q-d-F curves are 
more flattened (Fig. 5a). Parameter ∆ is used to de-
scribe shape of hyperboles (Fig. 5), its value informs 
us thus, on the dynamics of studied floods. ∆, which 
has a time dimension, may therefore be considered as 
a characteristic duration of the studied basin’s flood. 
On the other hand, duration ∆ may also be translated 
by the following way. Distribution of threshold flows 
relative to this duration is at half-distance between 
instantaneous flows distribution Q(0, T) and the right 
being ordinate of convergence point. This relation is 
checked whatever be T due to convergence property 
of distributions. Duration ∆ obtained for the four stud-
ied sub-basins, with rapid dynamics, is lower at 12 
hours (Tab. 3). It is then necessary to calibrate the 
convergent model into a regional one according to the 
3 basins of references (VFS). 

Table 3. Estimation of characteristic duration of flood and 
QIXA10 

Station 
code 

D 
hour 

QIXA10 
m3ꞏs–1 

∆ 
hour 

Qmax 
m3ꞏs–1 

011905 3 108 10.08 164 
012004 3   33   6   40 
012201 4   76 12   79 
020207 6 220 12 214 

Source: own study. 

CHOICE OF REGIONAL MODEL “REFERENCE 
BASIN” TYPE  

Results of the three regional models (Fig. 6, 7, 8) 
show that Florac’s model is better adjusted to quan-
tiles compared to that of Soyans and Vandenesse, 
quantiles obtained by Florac model are closest to 
those locally estimated by adjustment of exponential 
law, then sup-threshold events follow regional curves 
of Florac model for all return periods and for majority 
of considered durations. So, adjustments carried out 
present a hyperbolic shape and all converging towards 

low durations (Fig. 4, 5). By contrast, curves of 
Soyans and Vandenesse’s models (Fig. 7, 8) are very 
flattened; experimental quantiles do not follow re-
gional curves excepted for return periods upper to 10 
years for majority of the stations. The regional Q-d-F 
models VFS represent correct distributions of flows 
characteristics, whatever variables and used proce-
dures are.  

Also, results of criteria (Nash and RMSE) Figures 
9 and 10, and Table 4 show that the best values for the 
whole of the studied stations are obtained by Q-d-F 
Florac model and notably for observable frequencies 
field (0.5  ≤  T(yr)  ≤  50) while beyond frequencies 
(T(yr) > 50 years), Vandenesse and Florac Q-d-F 
models present similar values with light difference. 
Similar studies showed robustness of Florac model in 
Mediterranean contexts characterized by intense rain-
fall in Alcaucin du Vinuela basin (South Spain), Q-d-
F of Vandenesse in basin of Tevere in Ponte Nuovo 
(Italia), and in France by GALÉA and PREDHOMME 

[1994], in Algeria, works conducted on Tafna basin 
show that Florac Q-d-F model is the most adapted for 
pre-determination of floods from watershed of Wad 
Isser. This result is similar to that one found by YA-

HIAOUI et al. [2011] during study of Mekerra flood 
regime, being a watershed neighbouring that of wadi 
Isser [KETROUCI 2014]. These results reinforce per-
formance of the regional model of “Reference Basin” 
type in pre-determination of extreme flood flows.  

Besides of these criteria, there is also the hydro-
climatologic context where we found Middle Cheliff 
Watershed where region is influenced by local Medi-
terranean climate, and according to NOUACEUR et al. 
[2013], the response of pluviometry at The North At-
lantic Oscilliation (NAO) shows that period of strong 
drought corresponds to positive indices NAO of strong 
intensity, which witnesses a reinforcement of anti-
cyclone in the Azores and widening a depression in 
Iceland. In these conditions, depressions track moves 
towards Northern latitudes which favours implemen-
tation of dry and soft weather around the Mediterra-
nean basin, notably in Maghreb. 

Furthermore, several studies showed that varia-
tions of pluviometry regime in Mediterranean basin 
are linked to the general atmospheric circulation such 
as the North Atlantic Oscillation (NOA) [BRANDI-
MARTE et al. 2011] El Nino South Oscillation (ENSO) 
[MEDDI et al. 2010]. 

In Algeria, a study conducted by MEDDI et al. 
[2010] shows that temporal variability of annual rain-
falls in West of Algeria is influenced by ENSO. TAIBI 
et al. [2015] have also found a significant relation 
between monthly rains of Algeria North-West includ-
ing the Cheliff and indice MO. Which bring us to say, 
that the Q-d-F model is the most adapted for prede-
termination of floods of Algerian ungauged or partly 
gauged basins. 
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Fig. 6. The regional model of Florac for stations: a) Bir Ouled Tahar, b) Larabaa Ouled Fares, c) Tikazel, d) Sidi Akkacha;  
d = continuous duration; source: own study 

 

Fig. 7. The regional model of Soyans for stations: a) Bir Ouled Tahar, b) Larabaa Ouled Fares, c) Tikazel, d) Sidi Akkacha;  
d = continuous duration; source: own study 
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Fig. 8. The regional model of Vandenesse for stations: a) Bir Ouled Tahar, b) Larabaa Ouled Fares, c) Tikazel,  
d) Sidi Akkacha; d = continuous duration; source: own study 

 

Fig. 9. Coefficient of Nash between local model and Q-d-F reference model for stations: a) Bir Ouled Tahar,  
b) Larabaa Ouled Fares, c) Tikazel, d) Sidi Akkacha; d = continuous duration, F = Florac watershed model,  

S = Soyans watershed model, V = Vandenesse watershed model; source: own study 
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Fig. 10. Criterion of root mean squared error (RMSE) between local model and Q-d-F reference model for stations:  
a) Bir Ouled Tahar, b) Larabaa Ouled Fares, c) Tikazel, d) Sidi Akkacha; F, S, V as in Fig. 9; source: own study 

Table 4. Coefficient of Nash and criterion of RMSE (root-mean squared error) between local model and Q-d-F reference 
model VFS (Vandenesse, Florac and Soyans watersheds) for all stations  

T, year Nash F RMSE F Nash S RMSE S Nash V RMSE V 

1 2 3 4 5 6 7 
Zeddine basin (station of Bir Ouled Tahar) 

1 0.94 7.94 –0.22 35.18 –2.69 61.16 
2 0.96 9.37 0.51 34.29 –0.24 54.60 
5 0.98 11.27 0.79 33.11 0.59 45.91 
10 0.98 12.70 0.87 32.22 0.80 39.34 
20 0.98 14.14 0.91 31.33 0.90 32.77 
30 0.93 30.15 0.82 49.75 0.90 36.31 
50 0.84 51.39 0.70 71.06 0.91 38.61 

100 0.59 92.93 0.40 112.70 0.91 44.99 
Tikazel basin (Tikazel station) 

1 0.69 4.72 –1.39 13.05 –5.24 21.08 
2 0.97 2.80 0.53 10.40 –0.22 16.69 
5 1.00 0.25 0.92 6.90 0.79 10.90 
10 1.00 1.67 0.98 4.25 0.95 6.51 
20 0.99 3.60 1.00 1.59 1.00 2.13 
30 1.00 1.45 0.98 5.83 1.00 1.81 
50 1.00 0.45 0.95 10.71 1.00 0.87 

100 0.99 4.17 0.84 21.06 1.00 0.41 
Ouahrane basin (Larabaa Ouled Fares station) 

1 1.00 1.76 0.70 15.72 –0.29 32.54 
2 0.98 6.77 0.96 9.18 0.76 22.37 
5 0.96 13.39 1.00 0.54 0.98 8.93 
10 0.95 18.40 1.00 5.99 1.00 1.24 
20 0.95 23.41 0.98 12.52 0.99 11.41 
30 0.97 19.47 1.00 4.20 0.99 12.65 
50 0.98 16.20 1.00 5.32 0.98 15.33 

100 1.00 9.37 0.97 26.05 0.99 17.26 
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cont. Tab. 4 

1 2 3 4 5 6 7 
Allala basin (Sidi Akkacha station) 

1 0.49 37.02 –1.39 79.93 –4.55 121.75 
2 0.67 47.65 –0.07 86.51 –1.04 119.30 
5 0.76 61.73 0.42 95.24 0.14 116.08 
10 0.79 72.31 0.58 101.77 0.48 113.58 
20 0.81 83.10 0.67 108.51 0.65 111.28 
30 0.74 106.24 0.53 142.82 0.66 121.66 
50 0.67 131.79 0.37 183.99 0.67 132.33 

100 0.57 172.19 0.03 259.16 0.67 150.87 

Source: own study. 

CONCLUSIONS  

Modelling of flood regime has been established 
according to quantiles of threshold flows coming from 
a statistic adjustment which are compared, taking into 
account characteristics of watershed flood regime 
(QIXA10 and D), to different counterparts quantiles 
from Flow-Duration-Frequency (Q-d-F) models of 
reference basin type of VFS. 

The relative quantiles to low flows are better re-
constituted than equivalent or superior quantiles to 
QIXA10. The converging model applied to tested ba-
sins, constitutes equivalent values to those which 
could be obtained by adjustment on each duration 
taken separately In general terms, using approach of 
Q-d-F, seems to be well adapted, it is able to take into 
account duration, which is the essential notion when 
we are speaking about flood; it therefore considers 
“Variable time step”. So the description in Q-d-F, 
whatever be the formulation, has several uses: estima-
tion of floods quantiles in middle flows or threshold 
flows for estimate of hydraulic works, insertion in 
a typology of flood regime, definition of hydrologic 
scenarios of reference for flood risk estimation, vali-
dation of outputs of hydrologic models, characteriza-
tion of regime evolution of high water level. 

According to criteria of Nash and of RMSE, on 
the first hand, and the hydro-climatologic context of 
watershed, on the other hand, the Florac model is 
more adapted, which allows to have a general over-
view and deepen the obtained knowledge as well as 
hydrometric observations and simulations by concep-
tual models. We could use these results to determine 
flood regime on the middle Cheliff watershed and 
neighbouring sub-basins in the case where there is an 
inadequacy action or rating curves. However, it is 
necessary to spread this study to basins for which we 
dispose chronic flows of over 40 years, in order to 
build a regional model more forthright and adapted to 
Algerian context. 
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Modelowanie regionalne z wykorzystaniem metody powódź–czas trwania–częstotliwość  
w zlewni środkowej rzeki Cheliff 

STRESZCZENIE 

W pracy opisano statystyczne podejście do reżimu hydrologicznego cieków w trakcie powodzi z uwzględ-
nieniem czasu trwania d i okresu powtarzalności T. Wybór zlewni środkowej rzeki Cheliff wiąże się z krótkim 
okresem powtarzalności katastrof w zachodnich regionach Algierii. Zlewnia środkowej rzeki Cheliff usytuowana 
w północnozachodniej Algierii doświadczała w ciągu ostatnich lat silnych powodzi. Ze względu na powtarzal-
ność tych ekstremalnych zjawisk ich ocena i przewidywanie mają znaczenie strategiczne dla zapobiegania po-
wodziom w tym regionie. Krzywe a są najpierw oznaczane w skali lokalnej bezpośrednio w wyniku analizy sta-
tystycznej przepływu o czasie trwania d(QCXd) w warunkach różnego czasu trwania z wykorzystaniem dostęp-
nych danych z regionu. Następnie krzywe te są porównywane z krzywymi uzyskanymi z zastosowania różnych 
modeli regionalnych VFS (Vandenesse, Florac i Soyans), w których bierze się pod uwagę dwa wskaźniki: opi-
sowy przebieg dynamiki powodzi (D) i chwilowy maksymalny roczny przepływ o okresie powtarzalności 10 lat 
(QIXA10). Ostateczny wybór modelu opiera się na weryfikacji pewnych kryteriów, takich jak Nash i pierwiastek 
ze średniego błędu kwadratowego (RMSE). Modele regionalne najbliższe lokalnym to Florac dla krótkiego czasu 
trwania i okresu powtarzalności oraz Vandenesse dla długich okresów powtarzalności w warunkach różnego 
czasu trwania. Wyniki badań mogą być zastosowane do zbudowania regionalnych krzywych Q-d-F dla algier-
skich zlewni bez lub z częściową siecią punktów wodowskazowych. 

Słowa kluczowe: Algieria, charakterystyczny czas trwania, powódź, powódź–czas trwania–częstotliwość, zlew-
nia środkowa rzeki Chelif 


