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Abstract 

Referring to the Guide to the Expression of Uncertainty in Measurement (GUM), the paper proposes a 
theoretical contribution to assess the uncertainty interval, with relative confidence level, in the case of n 
successive observations. The approach is based on the Chi-square and Fisher distributions and the validity is 
proved by a numerical example. For a more detailed study of the uncertainty evaluation, a model for the process 
variability has been also developed. 
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1. Introduction 
 

As it is known, a random variable M characterizing the measurement process can be 
associated with a measurement interval and, consequently, with the quality of results, 
therefore the measure. We introduce the confidence level that can be attributed to the 
occurrence of each single event associated with the variable M in the space of all possible 
measurement results { }maxmin mMmS ≤≤= . 

So, it is possible to assign the highest confidence level, equal to one by convention, when 
we have the certainty that M belongs to S; vice versa, the confidence level is minimum, equal 
to zero by convention, when the values of M do not belong to S.    

Considering a subinterval [ma, mb] of S, it is possible to assign a probability to the 
confidence level associated with the occurrence of M in [ma, mb]. 

From these assumptions, the random variable M is characterized by a probability 
distribution, that is a function of random events that represent the probability that the 
measurement belongs to one of the possible subintervals of S. The probability distribution 
associated with M is all that is known in the measurement interval.  

According to the GUM [1, 2] we introduce: 
 

                        { }{ } { } { }{ } .M M MP M E M k u P E M k u M E M k u p− ≤ = − ≤ ≤ + =                 (1) 
 

Eq. (1) represents the probability that the measure M is between its expected value { }ME  

plus or minus a quantity given by the product of the standard uncertainty Mu and the coverage 
factor k. The parameter p, denoted as confidence level, should tend to one to have a high 
value of the occurrence of an event.  

The interval: 
                                           { } { } MM ukMEMukME +≤≤−                                           (2) 
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represents the confidence interval and it can be interpreted as that interval able to guarantee a 
high probability that it contains a large number of possible values of M. Hence a rise of the 
value of p leads to an increase of  the number of events in which M is within the interval. 

If the probability density function ( )mfM  of M is known, it is possible to evaluate the 
confidence level by means of the following expression:  

 

                                                       ( )
{ }

{ }
.

M

M

E M k u

M

E M k u

p f m dm
+

−

= ∫                                              (3) 

 

It is now possible to indicate, explicitly, the measurement result as “uncertainty interval” 
associated with a measurand with an assigned confidence level p.  

So, if we suppose to know the probability density, its distribution function FM(m) is also 
known, given by its integral. Therefore the uncertainty interval with confidence level p is 
defined by the equation:  

 

                        { } ( ) ( ) ( ) ,
pm

p M M p M

m

P m M m f m dm F m F m p
α

α

α α α α

+

+ +≤ ≤ = = − =∫              (4) 

 

where α is an appropriate value in the range [0, 1]. The extremes of the interval within which 
M is enclosed takes the name of quantiles of the distribution function FM, and we have the 
following relationship:  

                                                ( ) { } .MF m P M mα α α= ≤ =                                                 (5) 

 
2. Application  of  the  Chi-square  and  Fisher  distribution  to  the  estimation  of  the    
    uncertainty interval 
 

As introduced in [3], taking again into account n independent successive observations 
( nooo ,,, 21 ⋯ ) and assuming each observation as a normally distributed random variable with 

expected value mo and standard uncertainty uo, the chi-square distribution with (n-1) degrees 
of freedom can be represented by:  

                                                   

( )
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=−χ                                                            (6) 

being the mean of such variables 
n

o

o

n

i
i∑

== 1  also normally distributed with mean value mo and 

reduced variance 
n

u2
0  [4]. 

The uncertainty interval can be introduced by considering the Chi-square probability 
distribution with associated ν degrees of freedom. With the pre-arranged confidence level p, 
this interval is defined as: 
 

                                    { } ( ) ( )2 2 2 2 2 ,ppP F F pα αα ν α ν νχ χ χ χ χ++≤ ≤ = − =                                   (7) 
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where α is a value in the range from zero to (1− p); the extremes of the interval 2αχ  and 2
p αχ +  

are, respectively,  the α- and (p+α)-quantiles of the distribution function of 2νχ , whose 

cumulative distribution is given by: 
 

                                                  ( ) { } ( )2

0

,
m

F m P m f z dzν ν νχ= ≤ = ∫                                          (8)                             

where: ( )
1

2
2

2

, 0 .

2
2

z
z

f z e z

ν

ν ν ν

−  − 
 = ≤ < +∞

 Γ  
 

        

 

A β-quantile is an mβ value so that ( ) ββν =mF . Such quantiles are tabulated for different 

values of degrees of freedom ν corresponding to the respective β but they can be obtained 
more efficiently by means of specific statistic software. 

Table 1 summarizes the results concerning the amplitude of the uncertainty interval with α 
= 0.025 ÷ 0.005 and ν = 1 ÷ 100 according to Eq. (7). Consequently, four histograms of 105 
random generated observed values for different degrees of freedom fitted with Gaussian 
distribution can be obtained, as shown in Fig. 1. For each case, the mean and the standard 
deviation are also computed [3, 6]. 
 

Table 1. Uncertainty interval amplitude in function of ν and α. 
 

νννν 
2
0.025χ  

 

2
0.975χ  

2
0.005χ  

2
995.0χ  

1 0.000982 5.024 0.0000393 7.879 

2 0.0586 7.378 0.01 10.597 

5 0.831 12.832 0.412 16.750 

10 3.247 20.483 2.156 25.188 

20 9.951 34.170 7.434 39.997 

50 32.357 71.420 27.991 79.490 

100 74.222 129.561 47.328 140.169 

 
The ratio of two independent chi-square variables, each divided by its respective degrees of 

freedom, is a random variable 
21,ννF  defined as follows: 

 

                                               ( ) 1

1 2
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The probability density function of 
21,ννF  can be represented by: 
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Fig. 1. Four histograms of 105 random generated observed values for different degrees of freedom (DOF) 
fitted with Gaussian distribution. Mean and standard deviation is also computed in each case. 
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It can be observed that the distribution is asymmetric and, in this case, the β-quantiles 
( )21,m ννβ  defined as: 

                                 ( ) ( ){ }
( )

( )
1 2,

1 2 1 2 1 2

0

, , , , .
m

P F m f m dm
β ν ν

βν ν ν ν ν ν β≤ = =∫                  (11) 

 

This can be verified, considering that 222
2121 νννν χχχ +=+  and 222

1212 νννν χχχ −=−
. 

Therefore it is possible to write the following expression: 
 

                                                  ( ) ( ) ( )2 11
1 2

1
, .

,
m

mβ
β

ν ν
ν ν− =                                            (12) 

 
3. Numerical examples 

 
The numerical example presented in this section takes into consideration the evaluation of 

the number of wrong words transmitted in an automatic measurement system. In Table 2 the 
number of wrong words acquired in six different acquisition phases for two qualified error 
levels, equal to 8 and 9 LSB respectively, is shown. 
 

Table 2. Experimental wrong words measurement . 
 

# Test Wrong words in 107 samples  
(8 LSB) 

Wrong words in 107 samples 
(9 LSB) 

1 77 2 
2 76 4 
3 64 3 
4 86 2 
5 71 8 
6 61 4 

Total number of 
wrong words 

435 23 

 
The following values for both the mean and variance have been calculated: 
Variable Mean Variance 
wrong words 8LSB 72,50 84,30 ( 2

1s ) 

wrong words 9LSB 3,833 4,967 ( 2
2s ) 

 
The idea behind this example is that if the standard deviation of the population is unknown 

in the calculation of the confidence interval for the wrong words mean of a high-dimension 
sample, it can be replaced with the sample standard deviation [3−5]. Therefore it can be very 
useful to determine confidence intervals for the variance and standard deviation, because in 
many practical applications the interval estimation for the variance σ 2 and standard deviation 
σ of the population are based on the sample variance s2 and the sample standard deviation s. 

So if we assume a normal distribution for the population of random variables that represent 
the wrong words transmitted, by extracting samples of size n (with n = 6) it is possible to 

write the Chi-square distribution, considering Eq. 6, as 
( )

2
1

2
12 1

σ
χ sn−= . 

This is an important hypothesis because it leads to deal confidence intervals in non-

symmetrical distribution. Using distributions with the same tail areas and indicating with 
2

α  
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the area of each tail (see Fig. 2), the confidence interval for the variance of the population, 
with a confidence level, as percentage, equal to (1  − α)·100%, is defined as: 
 

                                                      
( ) ( )

2

2
1

2
12

2

2

2
1 11

αα χ
σ

χ
−

−<<− snsn
.                                                (13) 

 

 
Fig. 2. A detail of the Chi-square distribution and its tails, used in this example. 

 
For a confidence level equal to 95% and a degree of freedom 516 =−=ν , we obtain 

831.02
975.0

2

2
1

==
−

χχ α  and 832.122
025.0

2

2

== χχα . Consequently, recalling Eq. 13, we 

deduce the following confidence interval for the population variance in terms of wrong words 
and confidence level of 95% as: 2

1 1 132.85 505.42; 5.73 22.48 6 22σ σ σ< < < < ≅ < < . 

From the results so obtained it is possible to observe that the interval, with the above 
mentioned confidence level, is quite wide: this is due to the fact that the sample dimension, 
for this particular experiment, can never be too high, which obviously would allow us to 
reduce the interval size. A possible solution is to decrease the confidence level to 90% with 
the aim to find a compromise between the interval dimension and the correlated confidence 
level.  

Another frequent situation is represented by two populations with variances unknown. 
However, if the sample variances are known, it is possible to compare the variances of two 
populations, always assuming a normal distribution for the two populations and that the 
samples, with size equal to n1 and n2 respectively, can be extracted independently. Introducing 
the sample variances as 2

1s  and 2
2s  respectively, with 2

1s  > 2
2s , the Eq. (9) can be written as 

2
2

2
2

2
1

2
1

σ
σ

s

s
F = , that is an F distribution with parameters 111 −= nν  e 122 −= nν . 

Using, also in this case, distributions with the same tail areas and denoting with 
2

α  the area 

of each tail, the confidence interval for the ratio between the variances of each population, 
with a confidence level equal to (1 − α)·100%, is defined as: 
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For a confidence level equal to 95% and two degrees of freedom respectively  
5161 =−=ν  and 5162 =−=ν , respectively, we obtain 140.0975.0

2
1

==
−

FF α  and 

146.7025.0

2

== FFα . 

From Eq. 14, it is possible to evaluate the confidence interval for the ratio of the variances 
concerning  two populations in terms of wrong words with a confidence coefficient of 95%: 

2
1 1 1
2
1 2 2

2.375 121.23; 1.54 11.01 2 11.
σ σ σ
σ σ σ

< < < < ≅ < <  

Also in this case, the interval dimension could be further reduced, not increasing the 
sample size, which proves quite complex in this particular experimental condition, but 
decreasing the coefficient to 90%, in order to find an optimal relationship between interval 
dimension and confidence level.  
 
4. A statistical model for the process variability 
 

As an application of 
21,ννF distribution, the paper takes into consideration the example 

presented in the GUM par. H5, [1].  
Let us consider a set of n repeated observations throughout each day and suppose that such 

a set is reproduced in the following m days. We denote as vjk the random variable associated 
with k-observation throughout the j-day. 

The model adopted can be represented as: 
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(15) 

 

Gjk and Tj denote the random errors, with expected values zero, which distinguish 
respectively the variability within a day (within variability) and the variability between days 
(in periods of time such as, for example, weeks, months, years – between variability). We 
hypothesize as normal the distribution of the model, so that: 

 













 

( )2,0 Gjk NG σ= ; ( )nNG Gj
2

. ,0 σ= ; ( )2,0 TJ NT σ= ; ( )22,0 TGJj nNTG σσ +=+⋅  

( )nmNG G
2,0 σ=⋅⋅ ; ( )mNT T

2,0 σ=⋅  

( )mnmNTG TG
22,0 σσ +=+ ⋅⋅⋅  

(16) 

 

Due to the hypothesized independence among the observations, the random errors of the 
model are independent also in their mutual behavior. 

Consequently, we deduce the following property: 
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





 ( )⋅− jjk VV  is independent from ⋅jV  and therefore from ⋅jG  

( )⋅⋅⋅ −VV j  is independent from ⋅⋅V  and therefore from ⋅⋅⋅ + TG  

    (17.1) 
 

(17.2) 

 

Now it is possible to consider the following equation: 
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with the Chi-square associated with j day and ν degrees of freedom. 

Summing up Eq. (18) with respect to j, bearing for the property 
222

2121 νννν χχχ +=+  

that ( )
2

m

1j

2
1n,j 1nm −=∑

=
− χχ  due to the independence from day to day and dividing by the degrees 

of freedom m(n-1), we assume: 
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 Taking into account that { }2 ,E νχ ν=  we can observe that the first member of Eq. (19) is 

an unbiased estimator 2G
~σ  of 2

Gσ , being { } 22~
GGE σσ = . 

Again, we introduce another important quantity, that is: 
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where the property 17.2 has been taken into account. 
By analogy with Eq. (19) we can introduce the quantity: 
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affirming that the first member represents an unbiased estimator of 











+ 2

T

2
G
n

σσ . 

Considering the estimators of Eqs. (19) and (21), we can also introduce an unbiased 
estimator 2~

Tσ  for 2
Tσ , as: 
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Recalling the variable 
21,ννF  defined in Eq. (9) and considering the unbiased estimators of 

Eq. (19) and (21), the random variable 
21,ννF  can be represented as: 

 



 
Metrol. Meas. Syst., Vol. XVII (2010), No. 2, pp. 195−204 

                                          [ ]( )
2

2
2

22
2

1 , 1 .

G
T

G

GG
T

nF m n m

n

σ σ σ
σσ σ

+
− − =

+

ɶ

ɶ
ɶ

                                  (23) 

 

In the particular case where the contribution of between-group variability (from day to 

day) is null, therefore 02
T =σ , Eq. (23) can be simplified as:  
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Eq. (24) can also be useful to test the hypothesis of the insignificance of the variability 
from day to day  ( 2 0Tσ = ). For this purpose, in Eq. (24), the estimators are substituted by the 

corresponding values obtained in any specific measurement. If the value of 
21,ννF ( · , · ) so 

obtained is superior to 0,95-quantile of the 
21,ννF  distribution (for example), it allows to reject 

the hypothesis and therefore to maintain that the variability from day to day is statistically 
significant with a risk of 5%. 
 
5. Conclusions 

 
The aim of this paper is to estimate the uncertainty interval, in the case of inherent 

variability of the measurement process, using Chi-square and Fisher distributions, that have 
not yet found a role in the GUM [1] as well as the supplement [2]. 

Simulations with a software that generates random values observed for different degrees of 
freedom and some practical examples were also developed in order to prove the theoretical 
approach. 

In addition, the cases of within and between variability have been also studied, assuming a 
model for the process variability associated with the observations in different days. A test to 
assess the significance of the daily variability through the use of the distributions introduced 
in this paper complete this work. 
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