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Abstract 

The contribution presents a novel approach to the detection and tracking of lanes based on lidar data. Therefore, 
we use the distance and reflectivity data coming from a one-dimensional sensor. After having detected the lane 
through a temporal fusion algorithm, we register the lidar data in a world-fixed coordinate system. To this end, 
we also incorporate the data coming from an inertial measurement unit and a differential global positioning 
system. After that stage, an original image of the road can be inferred. Based on this data view, we are able to 
track the lane either with a Kalman filter or by using a polynomial approximation for the underlying lane 
model. 
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1. Introduction  
 

Driver assistance systems are common add-ons in luxury and executive cars. Over the 
time, they will also be available in the lower-price class cars as well. Commonly used sensors 
for this special kind of application are radar sensors [1], vision and night-vision sensors as 
well as lidar sensors or combinations out of them. Besides the essential problem of object 
recognition and tracking within the surrounding environment, another problem has to be 
solved concurrently: the detection and tracking of the road. Even in an only object detection 
scenario, the knowledge of the road can be essential as well. Only if an object can 
successfully be matched to the ego-lane, one can distinguish between critical and non-critical 
oncoming traffic. 

In the literature one can find a vast number of articles solving the lane tracking problem by 
using vision sensors [2−4]. But still, problems by the sensor itself occur. In case of 
overexposure, the acquired picture suffers from a significant loss of information. Moreover, a 
prerequisite is an exact and complex calibration of the vision system [5]. 

The presented approach detects and tracks the lane with the help of an active sensing 
principle. To this end, we employ a laser scanner mounted on the front bumper of the car.  
Contrary to a typical object detection scenario, the scanner is sloped towards the street. 
Consequently, the lidar-scanner senses the ground ahead of the car. In contrast to other 
methods, which require lidar scanners featuring a more expensive multi-layer technology 
[6−8], the proposed approach can also be utilized with conventional 1-D scanners. 

Our method differs from vision-based strategies in several ways. Besides the completely 
different sensing principle, the lidar sensor just delivers 1-D signals, which typically contain 
much less information as compared with images. To overcome this drawback, we have 
developed a novel spatio-temporal fusion approach. 

The other essential difference is the treatment of distance data. Through a transformation 
into a global view, the influence of the ego-motion can be suppressed, and a global 
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description of the lane is thus inferred. At the end, the method delivers at its output a set of 
parameters. These are describing the road based on a set of global parameters. 

By nature, all the acquired lidar data is relative to the sensor coordinate system [9]. Since 
the sensor is rigidly mounted on the front bumper of the test-car, the lidar data is strictly 
related to the car position. From a fixed-world coordinate's view, one can achieve an absolute 
data description through transforming the sensor coordinate system into the car coordinate 
system and performing then a transformation into a world-fixed system. The key data for 
these transformations is the exact ego-position. For this purpose, we employ an inertial 
measurement unit (IMU) combined with a differential global position system (DGPS). This 
system delivers the current direction combined with the position determined through 
longitude, latitude and altitude. With the help of this information, we can register all the 
scanner points within the global coordinate system. The sensor data is thus not longer 
dependent on the ego-motion [10, 11]. This proceeding ensures a modeling of the road as it 
actually is. 

Incorporating the reflectivity given additionally by the scanner, we can generate a map of 
the perceived environment scene based on a temporal fusion. Within this scene, we can now 
detect the lane markings by performing a local segmentation. Explicitly knowing the lane 
markings, we can now transform the scan points into a global coordinate system. As we now 
have an exact and registered representation of the lane, we are able to parameterize it globally 
as well. Assuming an underlying road-model, it is possible to fit it based on the globally 
registered data. 

The paper is organized as follows: Section 2 illustrates the basic sensor setup and gives an 
overview of the registration in a world-fixed coordinate system. Section 3 introduces the 
employed signal processing for the lane detection. In Section 4, the global data registration is 
described in detail. Section 5 characterizes the pre-defined lane model, and Section 6 shows 
the achieved tracking results. 
 
2. Sensor setup and data registration 
 

For the further development and understanding, it is important to characterize the sensor 
setup used. For the measurements, we are able to use a variable number of one-dimensional 
lidar scanners. The scanners sample their environment with an angular resolution of a half 
degree. Fig. 4 shows the chosen minimal setup consisting of only one scanner. 

As mentioned above, we use − besides the distance information − the reflectivity of each 
measurement point as well. Since the reflectivity values depend on the reflection properties of 
the scanned material, the reflectivity values only yield relative local information. 
Consequently, reflectivity values cut out of their neighboring context do not represent this 
information anymore. Assuming an object or surface at a defined distance and with a certain 
pose, the reflectivity values essentially only depend on the material properties of the object. 
This fact is very important for the image processing and lane detection procedures. 

The next important item is the registration of the lidar data, i.e. the alignment of the 
measured lidar points with regard to time and space. Since it is possible to calibrate the 
employed sensors with respect to the ego-car, the data coming from the lidar describes the 
surrounding relative to the ego-car. 

For the sake of an absolute description, we incorporate an inertial measurement unit (IMU) 
combined with a high-precision differential global positioning system (DGPS). This unit 
delivers the current position characterized by latitude, longitude and altitude as well the 
current heading. Since the sampling rate of the IMU is one order of magnitude higher than the 
actual scanning rate, the delivered spatial resolution is sufficient without any interpolation. 
Including this information, we can perform all the tracking in a fixed-world coordinate 
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system. Therefore, we transform the given ego-position into UTM coordinates and, from that 
point on, convert all the relative positions into absolute UTM coordinates. 

Let egox , egoy( ) 
denote the absolute ego-position and scan,ix , scan,iy( ) the relative position of 

the i-th scan point. Then, the absolute coordinates of the lidar points are calculated as follows: 
 

fix, ix

fix, iy

 

 
 

 

 
 =

egox

egoy

 

 
 

 

 
 + R t[ ]⋅ scan,ix

scsn,iy

 

 
 

 

 
 , (1)

 

where R denotes the rotation matrix due to the ego-heading. 
Since we get the current information about the pitch and roll angle from the IMU, we can 

include this information as well. Thus, the matrix R has to be modified and is consequently 
time-variant, which is denoted by R[t]. 
 
3. Image processing for lane detection  
 
3.1. Pre-detection of the lane  
 

Now, as we already have focused on the sensor and its acquired data, we can present our 
first step to detect the lane markings. The developed method is able to detect continuous as 
well as discontinuous lane markings, which can both appear in a traffic scenario. 

In general, there are two different strategies to detect the road. As we employ a one-
dimensional laser scanner, each scan represents a scan line spanned in front of the car. Now 
one could focus on this line at the current time slot. This leads to a time-separate detection 
based only on the active scan. With regard to the carried information, a time-separate analysis 
would yield a total loss of information about the past. 

The second strategy is a flexible temporal fusion of the scan data. Fig. 1b shows the 
reflectivity data from the scanner added line by line over time. In this picture, the data is not 
registered at all. This leads to the fact that the right curve of Fig. 1a becomes nearly a straight 
line in Fig. 1b. Another important fact within this map is that the length of the lane markings 
depends on the ego-speed. As no global registration is performed, the map represents an 
integration of the environmental scene and the movement of the ego-car. Once again, it has to 
be emphasized that this spatial adding can only be done without modifying or normalizing 
reflectivity values, because the distance to the street is almost the same in each row. For a 
multi-layer scanner, one would have to normalize or to adjust the reflectivity values for scan 
points according to their varying distance. For illustrating the reflectivity map, we reduced the 
reflectivity values to one byte (grey values from 0 to 255). Normally, our calculations are 
based on two-byte values. 

 
                         a)                                                                      b) 
 

 
 

Fig. 1. Original scene taken by a camera (a) positioned at the driving mirror and a temporally fused reflectivity 
map (b). 
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Within this map, one can visually clearly identify wrong measurements or noise, especially 
between the lane markings in the middle of the street. Considering the statistics of one scan 
line, the majority of the scan points belong to the road surface. Since neither the lane 
markings nor the road surface generate reflectivity values near zero or near the maximum 
reflectivity value, we can truncate these values within a certain interval through substituting 
them by the estimated intensity for the road surface. For that, we assume that the maximum of 
the reflectivity histogram or the probability density function corresponds to the reflectivity of 
the road surface: 

road surfacer =
r

max p r t[ ]( ){ }. (2)
 

After that, we perform a binarisation to distinguish and improve the contrast between road 
surface and lane markings. To this end, we calculate a dynamic threshold based on the 
maximum of the histogram. Normally, the reflectivity difference between the road surface and 
the lane markings is significant and − due to our fixed sensor setup − nearly constant. 
However, to ensure a high robustness, the threshold value is chosen depending on the 
standard deviation. The values estimated for the road surface are subtracted from the 
histogram within a one-sigma interval. Thereafter, the mean value is recalculated. This value 
serves in the proceeding as threshold value for the binarisation step. For better lane detection, 
we finally apply a Canny filter to the binary map. Fig. 2 shows the result of the binarisation 
and edge filtering. One can clearly identify the markings and the road surface. But 
nevertheless, the roadsides are classified as markings as well.  
 
3.2. Individual lane detection  
 

After that step, the essential lane detection process can start. Therefore, we define two 
vertical detection windows within the map, which consist of a variable number of rows m and 
a certain number of columns n ( m× n). Since the ego-car should normally be in the middle of 
the map, we shift these two windows starting from the middle to the left and to the right. With 
each shifting step, the number of white pixels within the window is calculated. If this number 
exceeds a velocity-dependent threshold windowth , a lane detection is assumed. Through 
incorporating more than one row, i.e., m > 1, we incorporate the measurements from the past 
as well. The decision is then strongly related to the past and to the present measurement.  
 
                                 a)                                                          b) 
 

 
 

Fig. 2. Two images showing the original scene after having performed different transformations: 
a) image after binarisation; b) image after Canny filtering. 

 
In the further development, we use these pre-detected lane markings in a consecutive 

manner. Based on the current row, we shift again two windows ( 2m × 2n , whereas 2m << 1m ), 
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but this time only in a small region around the pre-detected lane markings. This proceeding 
ensures that the final decision of a newly detected lane marking is still an individual step (i.e. 

2m =1), which is applied scan by scan, but the past is incorporated as well. Consequently, 
measurement outliers are efficiently filtered. For the sake of real-time processing, the portion 
of pre-detection based on the current scan as well as on the past 1m × 1n , and the windowing 
based on the current frame 2m × 2n

 
can be adjusted. As the result, integrated errors through 

the consecutive detection can be reset by a new pre-detection. 
 
                            a)                                                          b) 
 

   
 

Fig. 3. Windowing within the binary reflectivity map: a) start of shifting stage; b) end of shifting stage. 
 
4. Data registration and global map  
 

After having detected the lane markings in the current frame, the points can be translated 
into a fixed-world coordinate system. This way, the effect of the ego-movement is completely 
suppressed. Since all detected lanes within the reflectivity map are characterized through their 
relative position in regard to the test car, we transform the lidar points as well as the current 
ego-position according to formula (1) into the UTM coordinate system. Fig. 4 shows the car 
and the specific distances. 

 

 
Fig. 4.Test-car with mounted sensors. 

 
Here, dist t,α[ ]

 
denotes the appropriate measured distance from the scanner at the angle α. 

The INS-point shows the reference point of the car. As we apply pitch compensation, we have 
to incorporate the pitch difference ∆pitch t[ ]

 
as well. With origh , i.e., the original height of the 

mounted scanner, we can know calculate the current height h[t] caused by the pitch difference 
by: 

h t[ ] = origh − tan ∆pitch t[ ]( )⋅ b
 
. (3)
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Now we can infer the distance $a$ by: 
 

a t,α[ ] = sin arccos
h t[ ]

dist t,α[ ]
 

 
 

 

 
 

 

 
 

 

 
 ⋅ dist α[ ]. (4)

 

As we have done so far, we can calculate the point coordinates with respect to the car: 
 

carx t,α[ ]
cary t,α[ ]

 

 
 

 

 
 =

−cos(α)

sin(α)

 

 
 

 

 
 ⋅ a+

0

b

 

 
 
 

 
 , (5)

 

and finally apply the transformation to the absolute map coordinates: 
 

mapx

mapy

 

 
 

 

 
 =

egox t[ ]
egoy t[ ]

 

 
 

 

 
 + R t[ ]⋅ carx t,α[ ]

cary t,α[ ]
 

 
 

 

 
 . (6)

 

Eq. (6) describes the calculation rule for transforming each lidar point, characterized by its 
specific angle α and measured distance dist t,α[ ], into a global coordinate system. This 
proceeding ensures a global description independent of the ego movement. To save 
calculation time, this transformation is performed only for the detected lane marking points. 
In order to handle the data efficiently within computer memory, the values are rounded and 
assigned to the appropriate grid cell. The grid cell dimensions − in our case 1 cm − are adjust-
able.

  
5. The underlying lane model and parameter extraction stage  
 
5.1. The lane model 
 

This paragraph firstly focuses on the assumed lane model. As our central goal is a 
parametric lane description for attached control modules, an underlying road model has to be 
defined.  

As widely used in literature, we assume a clothoid road model. That means, the road itself 
forms a clothoid and can therefore be described by a set of clothoid parameters. Starting from 
the original equation characterizing a clothoid: 

 

x

y

 

 
 
 

 
 = a π

cos
π 2t
2

 
 
 

 
 
 

sin
π 2t
2

 

 
 

 

 
 

 

 

 
 
 
 

 

 

 
 
 
 
dt

0

k

∫
 
,   k =

l

a π
,  (7)

 

one can infer a commonly-used third order polynomial approximation for the x-coordinate 
parametrized by y: 

x ≈ 0x +
1

2
0c

2y +
1

6
1c

3y . (8)

 

For a model with constant curvature, Eq. (8) can be simplified to: 
 

x ≈ 0x +
1

2
0c

2y . (9)

 

Another way to express the road model on a clothoidal basic is a parabolic, polynomial 
model: 
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x ≈ 0A + 1A y + 2A
2y
 
, (10)

 

which does not incorporate the third order component. 
 
5.2. Tracking 
 

Now we have discussed all the ingredients to track the road, i.e., on the one hand the 
continuous detection of the appropriate lane markings and their transformation into world-
fixed coordinates, and on the other hand a suitable road model. Combining these two 
elements, the road can be fully parametrized by the clothoid parameters. These parameters are 
based on the present and past lane markings, but with their help one can predict the future 
course of the lane. 

 

Fig. 5. Schematic overview of  the complete tracking procedure. 
 

Since such a prediction always suffers from errors due to mismodeling or measurement 
noise, the prediction accuracy will be analyzed by comparing the predicted lane to its actual 
course. 

In the following, two different strategies to track the lane will be presented. The first one is 
based on a least-squares method. The second one is an extended Kalman filter solution, which 
enables to model both the process and the sensor noise explicitly. 
 
5.3. Least-squares fitting 
 

The central goal of this method is to find the best-approximated curve through the given N 
sets of coordinates. To find this curve, we have to find a global error measurement: 
 

2χ = iw
i =0

N −1

∑
2

iy − iY c, ix( )( ) . (11)

 

Therefore, the accumulative error or the residuum 
2χ  can be determined by the squared 

difference of the real y-coordinate iy
 
and the resulting y-value Y (...) out of the approximation 

Eq. (8).   iY (K )can now be transferred into a matrix representation: 
 

0 1 2

1 1 1 0

0
0 1 2

11 1 1

( , ) .

N N N

x x x x
c
cx x x− − −

         = ⋅ = Ψ           

y c x c⋮ ⋮ ⋮

 
 (12)

 

Minimizing Eq. (11) yields the desired parameter vector optc : 
 

optc =
−1

TΨ Ψ( ) TΨ y . (13)

This formula can easily be computed by the help of linear algebra libraries. The only 
computationally crucial parameter is the number N of points. 
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5.4. Extended Kalman filtering 
 
5.4.1. Process model 
 

Interpreting Eq. (8) as well as Eq. (9) in the sense of a process model, the state variables 
are 0x , 0c  and 1c . This leads to the following expression for the process model: 

 

c k +1[ ] = F⋅ c k[ ]+ σ =
1 0 0

0 1 0

0 0 1

 

 

 
 
 

 

 

 
 
 
⋅

0x k[ ]
0c k[ ]
1c k[ ]

 

 

 
 
 

 

 

 
 
 

+
xσ

0cσ

1cσ

 

 

 
 
 

 

 

 
 
 
. (14)

 

The spatial difference is only modeled by the process noise vector σ. This is intuitively not 
obvious. But as we track the road globally, there is no need to change parameters. However, 
since we cannot model the real road without errors, the parameters will change.  
 
5.4.2. Observation model 
 

In contrary to the just introduced linear process model, the observation model turns out 
non-linear. This is due to the non-linear clothoid model, which combines the state variables c 
and the measurement value y: 

y k[ ] = H c k[ ],k( )+ w k[ ], (15)
 

whereH(...)
 
represents a time-variant non-linear function. The time-variance is due to the x-

coordinate movement of the ego car, which is inferred by the transformation into global 
coordinates. The measurement noise is modelled by the noise valuew k[ ].

 
 

According to the extended Kalman filter proceeding, the scalar functionH(...) in equation 
(15) has to be differentiated and evaluated in the operating point. This leads to the desired 
time-variant matrix H k[ ]: 

H k[ ] =
dH c k[ ],k( )

dc  
. (16)

 
6. Tracking results  
 

In this section, results corresponding to the overall lane tracking are presented. The 
performance of the developed tracking system was successfully tested with our test car 
configuration. The car drove autonomously by controlling its position based on the given 
clothoidal set of parameters. 
 
6.1. Global map 
 

First of all, we want to show the registered map within fixed-world coordinates. Fig. 6 
shows the map on the right side. Within this map, one can notice the real distance between the 
scanner points due to the fusion with the IMU data. Within the map, the red points marked in 
red indicate the detected lane. The green dots show the ego-car path. 
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Fig. 6. Global registered grid. Points in red signal detected lane markings. 
 
6.2. Road parameters 
 

Based on these detected points, we can now apply the polynomial fitting or the Kalman 
approach to track and extract the lane parameters. To this end, we take the half of the data N/2 
= 25 measurements in our example) to feed the tracking method, and the other half to prove 
the performance of the chosen approach. Within Fig. 7a, the raw data is shown. The blue part 
of the data serves to feed the tracking, and the red part for the preview.  

Fig. 7b shows the result for a polynomial fitting. Fig. 7c shows the result using the 
presented Kalman filter. Both results show a precise prediction capability, which is sufficient 
for the attached controller modules, which are responsible to follow the lane. To define a 
possible measure of error, we use the lateral average error defined by the N/2 predicted road 
points: 

 

                 a)                                                  b)                                                   c) 

 
 

Fig. 7. Lane tracking results.: a) measured and detected lane data; b) polynomial fitting; c) Kalmann tracking.  
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( )
2

/2 1
measure, predicted,

1
  

i N

i N
i ierr

N x x
=

= +

= −∑ , (17)

 

Using this measure of error, we can determine the resulting error dependent of the chosen 
tracking method and the chosen underlying road model. Additionally, we can calculate − 
according to formula (17) − the error for the past and present value as well. Fig. 8 contrasts 
the errors. One can clearly identify that the Kalman approach minimizes the error due to 
explicitly modeling the inherent noise.  
 
              a)                                                                                b)  

 
 

Fig. 8. Average errors. In blue: error based on current and past measurements, in red: error for the lane 
prediction: a) average errors for Kalmann tracking; b) average errors for polynomial fitting. 

 
7. Conclusion and outlook  
 

The contribution introduced a lidar-based method to detect and track the lane. The 
detection is performed independently of continuous or incontinuous lane markings. We 
showed how a spatio-temporal fusion strategy can serve to accumulate data arising from the 
one-layer scanner. Within the fused map, one can detect the lane on the basis of current and 
past information. Parametrizing the detected lane to a widely used clothoidal model closes the 
article. 

In future work, we want to fuse our method with visual sensors. To this end, a fusion 
scenario at an abstract parameter level can be compared to a low-level signal-based approach. 
Further, we also will incorporate the information from a laser scanner placed planar to the 
ground level to detect and track objects, as was shown, e.g., in [9]. 
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