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Abstract

The contribution presents a novel approach to #teation and tracking of lanes based on lidar détarefore
we use the distance and reflectivity data comiognfa onedimensional sensor. After having detected the
through a temporal fusion algorithm, we register lidar data in a worldixed coordinate system. To this e
we also incorporate the data cagnifrom an inertial measurement unit and a difféa¢rglobal positionin
system. After that stage, an original image ofribed can be inferred. Based on this data view, \weahble t
track the lane either with a Kalman filter or byingsa polynomialapproximation for the underlying la
model.
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1. Introduction

Driver assistance systems are common add-ons myluand executive cars. Over the
time, they will also be available in the lower-griclass cars as well. Commonly used sensors
for this special kind of application are radar sgagq1], vision and night-vision sensors as
well as lidar sensors or combinations out of th&msides the essential problem of object
recognition and tracking within the surrounding ieomment, another problem has to be
solved concurrently: the detection and trackinghef road. Even in an only object detection
scenario, the knowledge of the road can be essesiawell. Only if an object can
successfully be matched to the ego-lane, one dimgliish between critical and non-critical
oncoming traffic.

In the literature one can find a vast number atles solving the lane tracking problem by
using vision sensors {2]. But still, problems by the sensor itself occum. case of
overexposure, the acquired picture suffers frongaificant loss of information. Moreover, a
prerequisite is an exact and complex calibratiothefvision system [5].

The presented approach detects and tracks thewdhethe help of an active sensing
principle. To this end, we employ a laser scanneumted on the front bumper of the car.
Contrary to a typical object detection scenarie Htanner is sloped towards the street.
Consequently, the lidar-scanner senses the grobeddaof the car. In contrast to other
methods, which require lidar scanners featuring aenexpensive multi-layer technology
[6-8], the proposed approach can also be utilized gativentional 1-D scanners.

Our method differs from vision-based strategiesemeral ways. Besides the completely
different sensing principle, the lidar sensor jdslivers 1-D signals, which typically contain
much less information as compared with images. Veramme this drawback, we have
developed a novel spatio-temporal fusion approach.

The other essential difference is the treatmerdisthnce data. Through a transformation
into a global view, the influence of the ego-motican be suppressed, and a global
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description of the lane is thus inferred. At thelethe method delivers at its output a set of
parameters. These are describing the road basadeof global parameters.

By nature, all the acquired lidar data is relatiwghe sensor coordinate system [9]. Since
the sensor is rigidly mounted on the front bumpkthe test-car, the lidar data is strictly
related to the car position. From a fixed-world rchoate's view, one can achieve an absolute
data description through transforming the sensardinate system into the car coordinate
system and performing then a transformation intwoald-fixed system. The key data for
these transformations is the exact ego-positiom. tRis purpose, we employ an inertial
measurement unit (IMU) combined with a differentigdbal position system (DGPS). This
system delivers the current direction combined wilie position determined through
longitude, latitude and altitude. With the helpthfs information, we can register all the
scanner points within the global coordinate systdime sensor data is thus not longer
dependent on the ego-motion [10, 11]. This procegénsures a modeling of the road as it
actually is.

Incorporating the reflectivity given additionally bhe scanner, we can generate a map of
the perceived environment scene based on a temfosrah. Within this scene, we can now
detect the lane markings by performing a local sagation. Explicitly knowing the lane
markings, we can now transform the scan pointsangfiobal coordinate system. As we now
have an exact and registered representation datlee we are able to parameterize it globally
as well. Assuming an underlying road-model, it asqible to fit it based on the globally
registered data.

The paper is organized as follows: Section 2 itatsts the basic sensor setup and gives an
overview of the registration in a world-fixed coordte system. Section 3 introduces the
employed signal processing for the lane detectioisection 4, the global data registration is
described in detail. Section 5 characterizes tleedefined lane model, and Section 6 shows
the achieved tracking results.

2. Sensor setup and data registration

For the further development and understandingg itnportant to characterize the sensor
setup used. For the measurements, we are ableta variable number of one-dimensional
lidar scanners. The scanners sample their envirohmigh an angular resolution of a half
degree. Fig. 4 shows the chosen minimal setup stimgiof only one scanner.

As mentioned above, we usebesides the distance informatierthe reflectivity of each
measurement point as well. Since the reflectivalues depend on the reflection properties of
the scanned material, the reflectivity values onfield relative local information.
Consequently, reflectivity values cut out of thegighboring context do not represent this
information anymore. Assuming an object or surfata defined distance and with a certain
pose, the reflectivity values essentially only depen the material properties of the object.
This fact is very important for the image procegsand lane detection procedures.

The next important item is the registration of iidar data,i.e. the alignment of the
measured lidar points with regard to time and sp&aece it is possible to calibrate the
employed sensors with respect to the ego-car, éte coming from the lidar describes the
surrounding relative to the ego-car.

For the sake of an absolute description, we ingateaan inertial measurement unit (IMU)
combined with a high-precision differential globabsitioning system (DGPS). This unit
delivers the current position characterized bytdde, longitude and altitude as well the
current heading. Since the sampling rate of the iB10ne order of magnitude higher than the
actual scanning rate, the delivered spatial remoius sufficient without any interpolation.
Including this information, we can perform all theacking in a fixed-world coordinate
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system. Therefore, we transform the given ego-fposinto UTM coordinates and, from that
point on, convert all the relative positions intisalute UTM coordinates.

Let (xego, yego) denote the absolute ego-position afdean. Y.y the relative position of
thei-th scan point. Then, the absolute coordinates of the lidarspmiatcalculated as follows:

Xfix, i Xego Xscani
yfix, i yeg yscsni
whereR denotes the rotation matrix due to the ego-heading.
Since we get the current information about the pitch and roll angtetire IMU, we can

include this information as well. Thus, the matRxhas to be modified and is consequently
time-variant, which is denoted IR[t].

3. Image processing for lane detection
3.1. Pre-detection of thelane

Now, as we already have focused on the sensor and its acquired elaia) wresent our
first step to detect the lane markings. The developed methodeigoalietect continuous as
well as discontinuous lane markings, which can both appearaffia scenario.

In general, there are two different strategies to detect the road. Asnpi®y a one-
dimensional laser scanner, each scan represents a scan line spanmedonthe car. Now
one could focus on this line at the current time slot. This leadstime-separate detection
based only on the active scan. With regard to the carried informattong-separate analysis
would yield a total loss of information about the past.

The second strategy is a flexible temporal fusion of the scan Eigtalb shows the
reflectivity data from the scanner added line by line over timehis picture, the data is not
registered at all. This leads to the fact that the right curve ofLRipecomes nearly a straight
line in Fig. 1b. Another important fact within this maphsttthe length of the lane markings
depends on the ego-speed. As no global registration is pedortne map represents an
integration of the environmental scene and the movement of the egdnacaragain, it has to
be emphasized that this spatial adding can only be done withadifying or normalizing
reflectivity values, because the distance to the street is alnesathe in each row. For a
multi-layer scanner, one would have to normalize or to adjustflextivity values for scan
points according to their varying distance. For illustratirggréflectivity map, we reduced the
reflectivity values to one byte (grey values from 0 to 255). Ndymalr calculations are
based on two-byte values.

Fig. 1. Original scene taken by a camera (a) ot at the driving mirror and a temporally fusefliectivity
map (b).
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Within this map, one can visually clearly identifyong measurements or noise, especially
between the lane markings in the middle of theestr@onsidering the statistics of one scan
line, the majority of the scan points belong to tlead surface. Since neither the lane
markings nor the road surface generate reflectivéjpes near zero or near the maximum
reflectivity value, we can truncate these valuethiwia certain interval through substituting
them by the estimated intensity for the road s@f&or that, we assume that the maximum of
the reflectivity histogram or the probability deysiunction corresponds to the reflectivity of

the road surface:
I road surface— mrax{ p(r[t])} (2)

After that, we perform a binarisation to distingquasnd improve the contrast between road
surface and lane markings. To this end, we caleutatdynamic threshold based on the
maximum of the histogram. Normally, the reflecymuitifference between the road surface and
the lane markings is significant ard due to our fixed sensor setup nearly constant.
However, to ensure a high robustness, the threstalde is chosen depending on the
standard deviation. The values estimated for thed reurface are subtracted from the
histogram within a one-sigma interval. Thereaftbe, mean value is recalculated. This value
serves in the proceeding as threshold value fobih&risation step. For better lane detection,
we finally apply a Canny filter to the binary mdpg. 2 shows the result of the binarisation
and edge filtering. One can clearly identify the rkirags and the road surface. But
nevertheless, the roadsides are classified as ngaskis well.

3.2. Individual lane detection

After that step, the essential lane detection m®a=an start. Thereforgje define two
vertical detection windows within the map, whicmsist of a variable number of rowsand
a certain number of columms(m x n). Since the ego-car should normally be in the teidd
the map, we shift these two windows starting fréwve middle to the left and to the right. With
each shifting step, the number of white pixels mitthe window is calculated. If this number
exceeds a velocity-dependent threshald,w., @ lane detection is assumed. Through
incorporating more than one rowe., m> 1, we incorporate the measurements from the past
as well. The decision is then strongly relatechepast and to the present measurement.

pEaT——=ra o

(o
lJI.
b 2

Fig. 2. Two images showing the original scene dftariing performed different transformations:
a) image after binarisation; b) image after Canltgring.

In the further development, we use these pre-dmdetne markings in a consecutive
manner. Based on the current row, we shift agamwimdows (m, X n,, whereasm, << m,),
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but this time only in a small region around the-getected lane markings. This proceeding
ensures that the final decision of a newly detetdad marking is still an individual stepe(

m. =1), which is applied scan by scan, but the pashésrmporated as well. Consequently,
measurement outliers are efficiently filtered. Bog sake of real-time processing, the portion
of pre-detection based on the current scan asasetin the pasin, x n;, and the windowing
based on the current fram®, X n, can be adjusted. As the result, integrated erfo@ugh
the consecutive detection can be reset by a nexdgiesetion.

EJ *
E| :
|
E-‘ b

Fig. 3. Windowing within the binary reflectivity rpaa) start of shifting stage; b) end of shiftingge.
4. Data registration and global map

After having detected the lane markings in the enirframe, the points can be translated
into a fixed-world coordinate system. This way, #fiect of the ego-movement is completely
suppressed. Since all detected lanes within thectafity map are characterized through their
relative position in regard to the test car, wagfarm the lidar points as well as the current
ego-position according to formula (1) into the UTdordinate system. Fig. 4 shows the car
and the specific distances.

Fig. 4.Test-car with mounted sensors.

Here, dist[ t,a] denotes the appropriate measured distance frosctieer at the angte
The INS-point shows the reference point of the Aarwe apply pitch compensation, we have
to incorporate the pitch differenagpitch[t] as well. Withhgg, i.€., the original height of the
mounted scanner, we can know calculate the cuheighth[t] caused by the pitch difference
by:

h[t] = horg — tan{Apitch[ )b . 3)
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Now we can infer the distance $a$ by:

alta] = sir(arcco%iﬁtblist[a] : (4)

dist[t,a]

As we have done so far, we can calculate the poiotdinates with respect to the car:

Xcar[t,a] _ _COS(O') 0
(ycar[t,a]j _( sin(@) jEBJ{b]’ (5)

and finally apply the transformation to the abselnap coordinates:

(Xmaj :(Xego[t]J + R[t]E{Xcar[tua]]' (6)
yma yego[t] ycar [t’ a]

Eq. (6) describes the calculation rule for transiioig each lidar point, characterized by its
specific anglea and measured distanagist|t,a], into a global coordinate system. This
proceeding ensures a global description independénthe ego movement. To save
calculation time, this transformation is perfornmdy for the detected lane marking points.
In order to handle the data efficiently within camgr memory, the values are rounded and

assigned to the appropriate grid cell. The gridl diehensions- in our case 1 cm are adjust-
able.

5. The underlying lane model and parameter extractin stage
5.1. Thelane model

This paragraph firstly focuses on the assumed laoeel. As our central goal is a
parametric lane description for attached controtlotes, an underlying road model has to be
defined.

As widely used in literature, we assume a clothhomd model. That means, the road itself
forms a clothoid and can therefore be described bgt of clothoid parameters. Starting from
the original equation characterizing a clothoid:

m ( C"{%ZJ

_ !
y—a ﬂ{)s“{r[_tzjdt, k—aﬁ, (7)
2

one can infer a commonly-used third order polyndéraggproximation for thex-coordinate
parametrized by:

1 > 1 3
X=Xo+=CoY +-c1Y’. 8
Xo 200y 6C1y (8)

For a model with constant curvature, Eq. (8) casibwlified to:

1
X= xO+§cOy2- 9)

Another way to express the road model on a clotididsic is a parabolic, polynomial
model:
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X= Aot Aty + Ay, (10)

which does not incorporate the third order companen
5.2. Tracking

Now we have discussed all the ingredients to tithekroad,i.e., on the one hand the
continuous detection of the appropriate lane mgskiand their transformation into world-
fixed coordinates, and on the other hand a suitabé&l model. Combining these two
elements, the road can be fully parametrized bykbihoid parameters. These parameters are
based on the present and past lane markings, Iblutteir help one can predict the future
course of the lane.

o ]
(X1,X2,...,XN) ¢ Tracking $ y
0 (XO,CO,C[)

( Road Parameters )

Fig. 5. Schematic overview of the complete tragkinocedure.

Since such a prediction always suffers from erdus to mismodeling or measurement
noise, the prediction accuracy will be analyzedcbgnparing the predicted lane to its actual
course.

In the following, two different strategies to traitle lane will be presented. The first one is
based on a least-squares method. The second aneeidended Kalman filter solution, which
enables to model both the process and the senisar explicitly.

5.3. Least-squaresfitting

The central goal of this method is to find the kgproximated curve through the givien
sets of coordinates. To find this curve, we havinid a global error measurement:

X = Té}lwi (yi =Yi (c,xi))z. (11

Therefore, the accumulative error or the residuAfzm:an be determined by the squared
difference of the reat-coordinatey, and the resulting-valueY (...) out of the approximation

Eqg. (8).Yi(K )can now be transferred into a matrix representation

X, X X |[%
y(c,X)=| : : L Co| =Y (12)
0

1 2
) D (R (W C.
Minimizing Eq. (11) yields the desired parametectoe Copt:
—1
con = (WTW) Wy, (13)

This formula can easily be computed by the heldiredar algebra libraries. The only
computationally crucial parameter is the numearf points.
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5.4. Extended Kalman filtering
5.4.1. Process model

Interpreting Eq. (8) as well as Eqg. (9) in the geaba process model, the state variables
are xo, cg andc;. This leads to the following expression for theqass model:

1 0O xo[k] Ox
c[k+1] =Fle[k]+o=]0 1 0 co[K] |+| og, |- (14)
0 0 1 [cfKl] |og,
The spatial difference is only modeled by the pssaaoise vectog. This is intuitively not
obvious. But as we track the road globally, ther@o need to change parameters. However,
since we cannot model the real road without erttbies parameters will change.

5.4.2. Observation modéd

In contrary to the just introduced linear processdel, the observation model turns out
non-linear. This is due to the non-linear clothoiddel, which combines the state varialdes
and the measurement valyie

y[K] = H(c[K].k)+w[K], (15)

whereH(...) represents a time-variant non-linear function. Tilhree-variance is due to the
coordinate movement of the ego car, which is ieférby the transformation into global
coordinates. The measurement noise is modelleHébgdise value[k].

According to the extended Kalman filter proceeditig, scalar functioRi(...) in equation
(15) has to be differentiated and evaluated indperating point. This leads to the desired
time-variant matrixH[K]:

H[K] =%[Ck]’k) | (16

6. Tracking results

In this section, results corresponding to the dideme tracking are presented. The
performance of the developed tracking system wasessfully tested with our test car
configuration. The car drove autonomously by cdhhg its position based on the given
clothoidal set of parameters.

6.1. Global map

First of all, we want to show the registered maphini fixed-world coordinates. Fig. 6
shows the map on the right side. Within this mayg ocan notice the real distance between the
scanner points due to the fusion with the IMU d&¥éthin the map, the red points marked in
red indicate the detected lane. The green dots shewgo-car path.
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Year

Fig. 6. Global registered grid. Points in red sigietected lane markings.

6.2. Road parameters

Based on these detected points, we can now apelpdlynomial fitting or the Kalman
approach to track and extract the lane paraméferthis end, we take the half of the dilif2
= 25 measurements in our example) to feed theitrgakethod, and the other half to prove
the performance of the chosen approach. Within Fagthe raw data is shown. The blue part
of the data serves to feed the tracking, and ttigpagt for the preview.

Fig. 7b shows the result for a polynomial fittingig. 7c shows the result using the
presented Kalman filter. Both results show a peepiediction capability, which is sufficient
for the attached controller modules, which are oasible to follow the lane. To define a

possible measure of error, we use the lateral geeearor defined by thE/2 predicted road
points:

a) b) c)
o ) a2 o ; .02
Lo+ coy + 1y Lo + oy + 1y
1600 1600 1600
1400 1400 1400
1200 1200 1200
1000 1000 1000
= = =
(3]
< < <
£ 800 =l 800 E 800
3 = B
( {
600 600 e 600 ’7’7
400 400 —/ 400
|
200 w iy 200
" /
0 ol : 0o ——
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
f[1113p/CIIl :L‘Illap/(}lll :[]llap/CIIl

Fig. 7. Lane tracking results.: a) measured aneatied lane data; b) polynomial fitting; c) Kalméarexcking.
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2

1 i=N
err:ﬁ, Z (Xmeasuré,_ X predicteid), : (17
i=N/2+1

Using this measure of error, we can determine ésalting error dependent of the chosen
tracking method and the chosen underlying road indsidditionally, we can calculate

according to formula (17 the error for the past and present value as Wwaljl. 8 contrasts
the errors. One can clearly identify that the Kainapproach minimizes the error due to
explicitly modeling the inherent noise.

a) b)
7 140
e 120
5 100
E 4 8 80
o <o
~ ~
= hy
U 3 O 60
2 40
1 20
0 0 J §
2 2
2 o % 2 2 A
“x 4 X< X X< X< X
o 2% % °e % v
% e & o o 2
) « X X
NEE 4 N
o st o2 [ e £
2 o

Fig. 8. Average errors. In blue: error based omenirand past measurements, in red: error forathe |
prediction: a) average errors for Kalmann trackimgaverage errors for polynomial fitting.

7. Conclusion and outlook

The contribution introduced a lidar-based methoddatect and track the lane. The
detection is performed independently of continuausincontinuous lane markings. We
showed how a spatio-temporal fusion strategy caves® accumulate data arising from the
one-layer scanner. Within the fused map, one céectiéhe lane on the basis of current and
past information. Parametrizing the detected lane widely used clothoidal model closes the
article.

In future work, we want to fuse our method withuak sensors. To this end, a fusion
scenario at an abstract parameter level can beam@hpo a low-level signal-based approach.
Further, we also will incorporate the informatiaierh a laser scanner placed planar to the
ground level to detect and track objects, as wawsle.g, in [9].
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