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STATIC AND DYNAMIC DEBONDING STRENGTH
OF BUNDLED GLASS FIBERS

Experimental design and computational model for predicting debonding initiation
and propagation are of interest of scientists and engineers. The design and model
are expected to explain the phenomenon for a wide range of loading rates. In this
work, a method to measure and quantify debonding strength at various loading rates
is proposed. The method is experimentally verified using data obtained from a static
test and a pulse-type dynamic test. The proposed method involves the cohesive zone
model, which can uniquely be characterized with a few parameters. Since those
parameters are difficult to be measured directly, indirect inference is deployed where
the parameters are inferred by minimizing discrepancy of mechanical response of
a numerical model and that of the experiments. The main finding suggests that the
design is easy to be used for the debonding characterization and the numerical model
can accurately predict the debonding for the both loading cases. The cohesive strength
of the stress-wave case is significantly higher than that of the static case; meanwhile,
the cohesive energy is twice larger.

1. Introduction

Composite materials are extremely important in development of many recent
technologies that require engineeringmaterials having very high strength-to-weight
ratio. For example, each Boeing 787 contains approximately 35 tons of carbon fiber
reinforced plastic [1]. Traditionally, damages and failures in composite materials
are harder to model in comparison with those in conventional materials. However,
during the last few years, we have witnessed that the energy-based approach using
the cohesive zone model seems to provide reasonable prediction particularly for
delamination and debonding [2–5]. This numerical approach is more pervasive
than the analytical approach [6].
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As for the debonding quantification, the existing methods can be categorized
into the micro-bond method [7–10], the fiber pull-out method [11–14], the fiber
push-outmethod [15–18], and the single-fiber fragmentation test [25–27].However,
each of those existing methods is often only suitable for a specific mode and rate of
loading. The micro bond and fragmentation test methods are only suitable when the
applied load is static. The push-out test method can be used for static and dynamic
loads; however, a major adjustment has to be made particularly in the specimen
design when the applied load is dynamic.

In [3], we proposed a method for debonding test at high loading rate. In
the present work, the same method will be extended to the static case and the
debonding behavior will be discussed for both loading conditions. This article
should demonstrate that the proposed method is suitable to test the debonding
phenomenon at any rates of loading.

2. Debonding experiment

2.1. Static and dynamic debonding specimens

The proposed specimen for the static and dynamic debonding tests is shown in
Fig. 1. It has the following geometry: the specimen nominal diameter d = 9.5 mm,
the diameter of the bundled fiber d f = 1 mm and 2 mm, the notch depth c = 3 mm,
and the gauge location b was 20 mm from the notch. For the static test, the
specimen length L is 72 mm, and the notch is located in the middle. Meanwhile,
for the dynamic test, the length is 200 mm, and the notch Ln is located at 90 mm.
The fiber material has Young’s modulus of 76 GPa, Poisson’s ratio of 0.23, and
density of 1165 kg/m3. Meanwhile, the matrix material has Young’s modulus of
5.4 GPa, Poisson’s ratio of 0.32, and density of 2450 kg/m3.

The specimens are fabricated in the laboratory. Glass fibers with 7 µm nominal
diameter are bundled up into 1 mm and 2 mm diameters. The fiber bundle is placed
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Fig. 1. Proposed specimen geometry for the static and dynamic debonding tests [3]
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along the axis of a cylindrical mold. Then, the unsaturated polyester resin is poured
into the mold with prudential attention to be free of air bubbles in the specimen.
Subsequently, the specimen is cured at 75◦C for two hours in an oven and cooled
down in the oven. Finally, a v-notch is introduced to each specimen for a depth of
3 mm by using a lathe machine.

2.2. Experimental apparatus for static and dynamic debonding

In the static test, the specimen is placed in the holder depicted in Fig. 2, and
then is pulled with a tension test machine until the debonding take places on the
fiber-matrix interface. Three data are recorded: the applied load, the debonding
length, and the specimen displacement.
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Fig. 2. Design and geometry of the holder for the static test

In the dynamic test, the debonding is generated using a Hopkinson bar test
apparatus as shown in Fig. 3. In this test, the specimen is placed ahead of the load
transfer rod, which is made of the steel material and has a size of 20 mm in diameter
and 1 m in length. The projectile is a sphere made of steel material with a diameter
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Fig. 3. Testing apparatus for the stress-pulse debonding test [3]
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of 20 mm. Four strain gauges are mounted to the specimen, two gauges before the
notch, and two gauges after. Those gauges are connected to a Wheatstone bridge,
then to a transient converter, which sampling the data at every 0.1 µs.

From the both tests, the debonding on the specimens is visible with a naked
eye (for an example, see Fig. 4); thus, the debonding length can be measured easily.

Debonding

Fig. 4. The visible debonding on the fiber-matrix interface of the specimen [3]

2.3. Experimental results of static and dynamic tests

In the static test, the main results are the debonding length and its associated-
applied load; meanwhile, the main results of the dynamic tests are the debonding
length and its associated maximum strain of the reflected stress-wave at the rear of
the notch. For the sake of conciseness, these results will be presented in Section 3.3
in conjunction with results of the numerical predictions.

3. Numerical analysis

Debonding is often difficult to be characterized directly from experimentally
measured data. An indirect approach is more common and is adopted in this work.
The approach is based on the finite element method with a cohesive zone model to
model the decohesion. The parameters associated with the cohesive zone model are
established iteratively such that the numerical model produced responses similar
to those observed in the experiments in microscopic and macroscopic scales.

3.1. Debonding initiation and propagation model

We consider the interface as a surface with normal direction n and tangential
direction s. At any point on the surface, the traction t has two components, i.e., in
the normal direction tn and in the tangential direction ts; thus, t = (tn ts)T , and
the associated deformation: ∆ = (∆n ∆s)T . The traction t and deformation ∆ are
related according to the bilinear softening model [19, 20] (see Fig. 5).
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Fig. 5. The bilinear traction-separation model [3]

The debonding is started when(
〈tn〉

tcn

)2
+

( ts
tcs

)2
= 1, (1)

where tcn and tcs are the criticalmaterial strength in normal and in shear, respectively;
〈·〉 is the Macaulay brackets, which set any negative value to zero. The debonding
propagation is governed by [21]:(

Gn
Gc

n

)
+

(
Gs
Gc

s

)
= 1, (2)

where G denotes the strain energy, and Gc
n and Gc

s are the critical strain energy in
normal and in shear, respectively.

3.2. The Finite Element models and fracture parameters

Numerical analysis is carried out using the finite element method by means of
Abaqus finite element package [19].

For the static case, Abaqus/Standard is usedwith the finite element model mesh
that is depicted in Fig. 6. The model is axisymmetrical. It has 1826 nodes and 1707
elements for 1 mm bundled-fiber diameter, and 1723 nodes and 1605 elements for
2 mm bundled-fiber diameter. Zero thickness interface elements are used along the
matrix interface and the fiber-matrix interface (see Fig. 6). The model is subjected
to uniform displacement at the right end and the displacement was increased to
0.5 mm in 100 steps. Thus, we assume that the matrix fracture and the debonding
occurred along a line in the 2D model.

The fracture parameters – tcn, t
c
s ,G

c
n,G

c
s – for both matrix interface and fiber-

matrix interface are determined iteratively in two steps such that the finite element
model provides mechanical response similar to that observed in the experiment.
The matrix interface parameters are determined in the first step, and the fiber-
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Fig. 6. Axisymmetrical FE model mesh for the static test specimen; (a) global scale, and (b) detailed
scale

matrix interface parameters are in the second step. As results, the interface fracture
parameters are obtained: tcn = 15 MPa, tcs = 15 MPa, Gc

n = 1.0 MPa ·mm, and
Gc

s = 1.0 MPa ·mm.
Abaqus/Explicit is used for the dynamic case with the finite element mesh

of Fig. 7. The mesh has 272 013 elements and 275 355 nodes with an element
length about 6.25 × 10−2 mm. On the model left end, uniform pressure is ap-
plied and is varied in time following a half-sine function where peak and pe-
riod are adjusted so that the strain time history at the ‘gauge’ points closely
follows the specimen response. The interface fracture parameters are obtained
in the same manner as for the static case. As results, the interface fracture pa-
rameters are obtained: tcn = 54 MPa, tcs = 67 MPa, Gc

n = 2.0 MPa ·mm, and
Gc

s = 2.0 MPa ·mm.
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Fig. 7. Axisymmetrical FE model mesh for the dynamic test specimen in a detailed scale [3]

3.3. Discussion

As stated in Section 3, the parameters of the interface materials should be cal-
ibrated in such a way that the computational model provides mechanical responses
in the macroscopic and microscopic scales that similar to those observed in the
experiments. The calibration is made for the static case as well as for the dynamic
case. For the static case, the similarity in the macroscopic scale is concluded by
comparing the applied load-displacement curve obtained from the computational
model to that recorded in the experiment. In the microscopic scale, it is measured
by comparing the applied load-debonding length curve. For the dynamic case,
the similarity is measured by comparing the strain-time history at the gauge lo-
cation and the change of the debonding length in relation to the maximum of the
strain-time history.

Firstly,we discuss the similarity of the computationalmodel and the experiment
for the static case in the macroscopic scale. The comparison is made in Fig. 8 where
the applied stress-displacement curves obtained from the two methods plotted. The
curve obtained in the experiment shows that the matrix-matrix interface, ahead of
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Fig. 8. The applied stress versus the displacement for the 1 mm bundled-fiber specimen:
comparison between the experimental data and the numerical prediction

the notch, gradually fractures;meanwhile, in the computationalmodel, the interface
is designed to fracture at once. In addition, the experimental curve indicates that
the bundled-fiber gradually fractures from point D until the final fracture, which
occurs at point F. The nonlinearity of the curve, which indicates the propagation
of the debonding, seems to start earlier in the model than that in the experiment.

For the dynamic case, the similarity between the model and experiment re-
sponses at the macroscopic scale is demonstrated by the strain-time history data at
the measurement point (see Fig. 9). The evident depicted by Figs. 8 and 9 suggests
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Fig. 9. Strain-time history at the gauge location for 1 mm bundled-fiber specimen [3]
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that the model responses at the macroscopic scale seem to closely resemble to the
experimentally observed responses.

Fig. 10 shows a comparison of the model prediction and the experimental data
for the static case.

The model seems to provide better estimation for the 1 mm bundled-fiber
diameter than for the 2 mm bundled-fiber diameter. However, it may be due to the
nature of the data, which highly scatter for the latter case.

Fig. 11 shows a comparison for the dynamic case. Again, we see that the model
reasonably estimates the propagation of the debonding.

0 5 10 15 20
0

10

20

30

40

1 mm bundled fiber

2 mm bundled fiber

Debonding length (mm)

A
pp

lie
d 

st
re

ss
 (

M
P

a)

Fig. 10. Comparison of the experimental data and numerical prediction for the static case
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Fig. 11. Comparison of the experimental data (‘◦’) and numerical prediction (‘×’)
for the stress-pulse case; the bundled fiber diameter is 1 mm; the maximum

strains are those recorded by the two rear gauges (see Fig. 3)

The results of this study are concisely summarized in Table 1. The table
shows that the dynamic strength is higher than the static strength by a factor of
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3–4; meanwhile, the dynamic fracture energy is about twice higher than the static
fracture energy.

The idea that thematerial strength and fracture energy is higher in the high load-
ing rate is traditional and acceptable. For example, according to Zheng et al.[22],
dynamic strength of concrete would increase by 30%–50% when the loading rate
was varied from 1.5 to 3 1/s. In addition, Kalthoff and Wrinkler [23], as cited
by Nishioka and Atluri [24], shown that the fracture toughness of Araldite B
double-cantilever-beam specimen increased from 0.7 MPa·mm1/2 at the static test
to 1.4 MPa·mm1/2 at the dynamic test with a crack speed of 300 m/s. Thus, these
results in Table 1 seem to be reasonable.

Table 1.
The parameters of the cohesive zone model for the static and dynamic cases

Load Case Parameter Matrix-fiber interface Matrix-matrix interface Unit
Static Tc

n 15.0 21.0 MPa
Tc

s 15.0 – MPa
Gc

n 1.0 1.0 MPa·mm
Gc

s 1.0 – MPa·mm
Dynamic Tc

n 54.0 72.0 MPa
Tc

s 67.0 – MPa
Gc

n 2.0 2.0 MPa·mm
Gc

s 2.0 – MPa·mm

In regard to the debonding length prediction, the model was only capable
estimating the debonding at a reasonable length, which was longer than 7.5 mm
for the statically loaded case. However, when the load was dynamic, the smallest
debonding was estimated at 2 mm length. These limitations were not affected by
the mesh size as was indicated by a mesh sensitivity study.

4. Conclusions

Understanding the characteristics of the debonding of composite materials is
important in order to safely use the materials for engineering applications. For
the purpose, many methods have been proposed. Those methods are the micro-
bond, the fiber pull-out, the fiber push-out, and the single-fiber fragmentation test
methods. Each method has benefits and limitations. This article has discussed a
method to test debonding subjected to the static load and the pulse-type load. The
proposed method is experimentally verified, and the results indicates the proposed
method, in conjunction with the cohesive zone model, is capable to quantify the
debonding on those loading conditions. Clearly, the method has potential for use
for the case of moderate rates of loading.

Manuscript received by Editorial Board, January 31, 2018;
final version, May 29, 2018.
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