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Abstract 

The forecast of rainfall and temperature is a difficult task due to their variability in time and space and also 
the inability to access all the parameters influencing rainfall of a region or locality. Their forecast is of relevance 
to agriculture and watershed management, which significantly contribute to the economy. Rainfall prediction 
requires mathematical modelling and simulation because of its extremely irregular and complex nature. Auto-
regressive integrated moving average (ARIMA) model was used to analyse annual rainfall and maximum tem-
perature over Tordzie watershed and the forecast. Autocorrelation function (ACF) and partial autocorrelation 
function (PACF) were used to identify the models by aid of visual inspection. Stationarity tests were conducted 
using the augmented Dickey–Fuller (ADF), Mann–Kendall (MK) and Kwiatkowski–Phillips–Schmidt–Shin 
(KPSS) tests respectively. The chosen models were evaluated and validated using the Akaike information crite-
rion corrected (AICC) and also Schwartz Bayesian criteria (SBC). The diagnostic analysis of the models com-
prised of the independence, normality, homoscedascity, P–P and Q–Q plots of the residuals respectively. The 
best ARIMA model for rainfall for Kpetoe and Tordzinu were (3, 0, 3) and (3, 1, 3) with AICC values of 190.07 
and 178.23. That of maximum temperature for Kpetoe and Tordzinu were (3, 1, 3) and (3, 1, 3) and the corre-
sponding AICC values of 23.81 and 36.10. The models efficiency was checked using sum of square error (SSE), 
mean square error (MSE), mean absolute percent error (MAPE) and root mean square error (RMSE) respectively. 
The results of the various analysis indicated that the models were adequate and can aid future water planning 
projections. 
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INTRODUCTION 

The most important part of the hydrological cycle 
is rainfall [RAMANA et al. 2013]. It is the result of 
many complex physical processes that induce particu-
lar features and make its observation complex 
[AKROUR et al. 2015]. In the prediction of meteoro-
logical information the investigation and analysis of 
precipitation is so essential [RADHAKRISHNAN, 
DINESH 2006], and accurate forecast of precipitation 

is crucial for improved management of water re-
sources, particularly in arid environment [FENG et al. 
2015]. 

According to SOMVANSHI et al. [2006], rainfall is 
natural climatic occurrences and its prediction re-
mains a difficult challenge as a result of climatic vari-
ability. The forecast of precipitation is particularly 
relevant to agriculture, growth of plants and develop-
ment, which profoundly contribute to the economy of 
Africa. In the statement of the above authors, attempts 
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have been made to predict behavioural pattern of rain-
fall using autoregressive integrated moving average 
(ARIMA) technique. ARIMA model is fundamentally 
a linear statistical technique for modelling the time 
series and rainfall forecasting with ease to develop 
future predictions. Though rainfall estimation is an 
important component of water resources planning, its 
accurate assessment at locations where rainfall sta-
tions are scarce can be very difficult. This makes es-
timate of rainfall a valid concern using the right 
method. Thus in the empirical hydro-meteorological 
modelling of time series data, the emphasis is on 
modelling and predicting the mean characteristic of 
the time series using the conventional methods of an 
autoregressive moving average (ARMA) techniques 
propounded by BOX et al. [2015]. 

In agricultural planning the understanding of rain-
fall variability and its prediction has great significance 
in the agricultural management and helps in decision-
making process. Rainfall information is an important 
input in the hydrological modelling, predicting ex-
treme precipitation events such as droughts and 
floods, for planning and management of irrigation 
projects and agricultural production is very important 
[NIRMALA 2015]. 

The surface air temperature (SAT) represents an 
important element of a regional climate. Therefore 
maximum and minimum values of SAT are usually 
used as an input in various environmental applica-
tions, including agriculture, forestry, fisheries and 
ecological models to predict likely changes at field 
and landscape level attributes [KUMARI et al. 2012]. 
During the twentieth century and currently one of the 
topical issues discussed extensively among research-
ers and scientists in the field of climate change is 
changes in SAT. The likely impact of rise in tempera-
ture on human beings which is a global phenomenon 
is being pondered over by a host of scientists.  

KAPOOR and BEDI [2013] reported that consider-
ing all the climatic variables, forecasting of tempera-
ture variability is very essential for diverse applica-
tions. Applications of temperature prediction are for 
climate monitoring, drought detection, agriculture and 
production, planning in energy industry and many 
others. In a related study by KENITZER et al. [ 2007], 
they argued that temperature forecasting is the most 
essential services delivered by the meteorologist to 
safeguard life and property of dwellers in a locality 
and also to improve the efficiency of operations and 
besides to aid individuals to plan a wide range of ac-
tivities daily. 

In Ghana, several studies have been conducted in 
recent times to analyse and forecast rainfall and tem-
peratures change using the techniques of ARIMA 
modelling to assess the changes of rainfall and tem-
perature regime both at the national, regional and wa-
tershed levels [ABDUL-AZIZ et al. 2013; AFRIFA- 
-YAMOAH 2015; ASAMOAH-BOAHENG 2014]. 
A search of the literature revealed the gap of no rain-

fall and temperature analysis and forecast using the 
ARIMA model exist on the Tordzie watershed. The 
Tordzie basin is an important basin in the Volta re-
gion of Ghana. It has enormous economic benefit to 
its catchment dwellers. The water from the basin 
serves as a source of drinking water, washing, water-
ing of animal, irrigation etc. The forecast model will 
be of tremendous assistance to National Disaster 
Management Organisation (NADMO). A further 
analysis of the forecast rainfall and temperature will 
alert them to prepare for disasters like drought and 
flood. These hydro-meteorological disasters results in 
loss of live and properties and millions of dollars are 
spent in assisting the victims of such natural calami-
ties. A short coming in the agencies responsible for 
disaster management in Ghana is the weak capacity to 
forecast this events ahead of time to inform the gen-
eral populace to prepare or find place of safety. Thus 
this study is to aid and complement the effort of the 
decision makers and those responsible for the safe-
guarding of life and property to plan for the future 
[AFRIFA-YAMOAH et al. 2016]. The result will further 
engender community resilience in terms of prepared-
ness, mitigation and adaptation strategies. The overall 
objective of this study is to determine which ARIMA 
model is the best suited to predict the future rainfall 
and temperature in the Tordzie watershed. 

MATERIALS AND METHODS 

STUDY AREA AND DATA USED 

The study was carried out in selected network sta-
tions in the Tordzie watershed in Ghana. The climatic 
data from the network of meteorological stations cov-
ering two different physiographic areas within the 
Tordzie watershed was collected for analysis. The 
network stations in the Tordzie watershed which data 
were analysed were Kpetoe and Tordzinu with coor-
dinates of (6°54’0” N, 0°69’0”ꞌ E) and (5°5’0” N, 
0°45’0” E) at elevation 79.0 and 5.4 m respectively. 
The selection of the physiographic sample area for the 
study was based on the data availability and the study 
requirements. Historical rainfall and temperature data 
were collected from the Ghana Meteorological Ser-
vices Department. The data for the mentioned two 
network stations were of good quality as their con-
sistency was checked. The data was continuous, there 
was no gap in it from the preliminary checks that was 
conducted to ascertain the data quality and consisten-
cy as require for any scientific analysis. The Tordzie 
watershed is shown in Figure 1.  

Tordzie is trans-boundary basin, the area in Gha-
na is 1865 km2 which constitute 83.7% and the re-
maining area in Togo is 363 km2 which is 16.3% 
making the total area of the basin 2228 km2 [WRC 
2010]. However, the emphasis of the current study is 
on the area within Ghana (b). 
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Fig. 1. Study area: a) map of Ghana in relation to Volta region, Tordzie watershed, b) digital elevation model  
of Tordzie watershed; source: own elaboration 

METHODS 

Study procedure 

The data was organised and tabulated in Excel 
then XLSTAT, 2015 was used to model the mean an-
nual rainfall and maximum temperature for the period 
1984 to 2014 for Kpetoe and Tordzinu portion of the 
Tordzie watershed. The procedure for the autoregres-
sive integrated moving average (ARIMA) model is 
described below.  

The Box–Jenkins method of ARIMA modelling 
was used in this study. The procedure adopted by Box 
and Jenkins in the ARIMA modelling was an iterative 
process the best models were determined through trial 
and error. But, the iterative process has been made 
easy by the aid of statistical software packages. The 
said model has three parts and they are: autoregres-
sive (AR), integrated (I) and moving-average (MA). 
The AR part denotes the autocorrelation between cur-
rent and past observations while the MA part de-
scribes the autocorrelation structure of error (residu-
als). In the report of HASMIDA [2009], the integrated 
part denotes the level of differencing needed to trans-
form a non-stationary series into a stationary series. 
The non-seasonal ARIMA model is normally denoted 
(p, d, q) where the AR part of the model is represent-
ed by p, while d denotes the level of differencing re-
quired and q is the MA part. For non-seasonal com-
ponents of a seasonal ARIMA model, the MA opera-
tor is written as: 

 𝜃ሺ𝐵ሻ ൌ 1 െ 𝜃ଵ𝐵 െ 𝜃ଶ𝐵ଶ െ ⋯ െ 𝜃௤𝐵௤  (1) 

Where: q = the order of non-seasonal MA operator; 
𝜃௝, j = 1, 2, …, q = the MA parameters, B = the back-
ward shift operator such that  

 BZt = Zt–1 (2) 

The AR operator is written as  

 ∅ሺ𝐵ሻ ൌ 1 െ ∅ଵ𝐵 െ ∅ଶ𝐵ଶ െ ⋯ ∅௣𝐵௣  (3) 

Where: p = the order of non-seasonal AR operator, ∅௜, 
I = 1, 2… p = the non-seasonal AR parameters. 

The non-seasonal ARIMA model for a set of 
equidistant measurements Z = [Z1, Z2…Zn] can be 
written as 

 ∅ሺ𝐵ሻሺ1 െ 𝐵ሻௗሺ𝑍௧ሻ ൌ ∅ሺ𝐵ሻ𝑎௧ (4) 

Where: d = the number of differences; t = discrete 
time; at = the white noise. 

The general ARIMA (p, d, q) model is: 

𝑈௧ ൌ ∅ଵ𝑈௧ିଵ ൅ ∅ଶ𝑈௧ିଶ ൅ ⋯ ൅ ∅௣𝑈௧ି௣ ൅ 
 ൅𝜀௧ െ 𝜃ଵ𝜀௧ିଵ െ 𝜃ଶ𝜀௧ିଶ െ ⋯ 𝜃௤𝜀௧ି௤  (5) 

 𝑈௧ ൌ 𝑋௧ െ 𝑋௧ିௗ  (6) 

Where: ∅௣ = autoregressive parameter; εt = residual or 
white noise; θq = moving average parameter; Xt = de-
pendable variable; Ut = dth difference of the dependa-
ble variable. 

The first step in building the model was to estab-
lish whether there is any stationarity in the observed 
data. Visual inspection of the ACF (autocorrelation 
function) and PACF (partial autocorrelation function) 
indicated whether the series was stationary or not.  

Stationarity tests 

According to BOX et al. [2015] if a series is non 
stationary, then it necessitates a differencing to be 
carried out to transform it to a stationary series in or-
der to continue with the ARIMA modelling. The tests 
carried out to identify that consist of: 

The unit root’s presence in the time series data 
was carried out. The standard tests for unit root is the 
augmented Dickey–Fuller (ADF) test. This test is 
based on estimates from an augmented autoregres-
sion. The selection of lag length k is one of the key 
issues in the ADF test [HUANG et al. 2016]. The pres-
ence of a unit root is an indication of non-stationarity 

a) b) 
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of the series. The test was carried at 5% significant 
level. If the series is non-stationary differencing is 
required to convert it to a stationary data. 

Another test for stationarity is the Kwiatkowski–
Phillips–Schmidt–Shin (KPSS) test. It tests for the 
null hypothesis of stationarity as opposed to the ADF 
test which tests for the null hypothesis of non-
stationarity. It also tests for a unit root of the series 
[HUANG et al. 2016]. 

The Mann–Kendall (MK) test is principally con-
ducted to test for a trend in the time series data. The 
presence of a trend in the series indicates a non-sta-
tionary series and must be transformed into a station-
ary series for an ARIMA process to continue. On the 
other hand if the series is stationary then the series is 
modelled as an ARMA process which do not require 
a differencing to be conducted [HUANG et al. 2016]. 

Differencing. It is required in fitting ARIMA 
model to attend stationarity in both the mean and var-
iance. To attend stationarity in the data, it could be 
done by log transformation and differencing of the 
original data [HUANG et al. 2016]. In this study, sta-
tionary first difference (d = 1) of the original data was 
carried out to achieve stationarity. The ACF and 
PACF of the differenced data were observed and test-
ed for stationarity.  

Independence. The fundamental assumption of 
the residuals of an ARIMA model are that they white 
noise. A white noise is a serially uncorrelated varia-
ble. If a series has a white noise it indicates uncorre-
lated random shock with a mean of zero and a vari-
ance which is constant [HUANG et al. 2016]. An inde-
pendent residual indicates that no information can be 
extracted from the data. The independence of the se-
ries is arrived at by the visual inspection of the corre-
logram of the residuals. A correlogram with values 
close to zero is an indication that the residuals are 
uncorrelated and independent.  

Homoscedasticity. If the variance of a disturb-
ance term of each observation in a series is constant it 
is described as homoscedastic. A homoscedastic re-
siduals have their variances stable. The probability of 
the disturbance terms attaining a given positive or 
negative value is same in all observations, meaning 
they have the same dispersion [HUANG et al. 2016]. 

Forecasting. Statistical methods and for that rea-
son ARIMA models are good for short-term forecast-
ing because the historical data normally exhibit inertia 
and do not show drastic changes [MONTGOMERY et al. 
2008]. Short-term forecasting is based on identifying, 
modelling and extrapolating the patterns found in the 
data.  

Analysis of ACF and PACF  

One of the techniques used to identify the models 
was the visual inspection of the series, which included 
the autocorrelation function (ACF) and the partial 
autocorrelation function (PACF). The mean annual 
rainfall and temperature data were used as the input 

variable. The auto covariance function, the autocorre-
lation coefficients and the partial correlation coeffi-
cients were computed from the said input variables 
and the series with its ACF and PACF were plotted 
using XLSTAT software.  

Model diagnostic  

To evaluate the model in order to select the best 
model for each category of data, the criteria used by 
KHADR [2011], for selecting the best model was 
used. The criteria used were: 
1. Akaike information criteria (AIC) 
2. Schwarz-Bayesian information criteria (SBC) 

The Akaike information criterion corrected 
(AICC) was established by AKAIKE [1974] to choose 
the best model among the class of plausible models. 
The models with the lowest value of AICC and SBC 
were selected as the most suitable model and used for 
the forecasting. The equations governing the above 
mentioned criteria [SCHWARZ 1978] are: 

𝐴𝐼𝐶𝐶ሺ𝑝, 𝑞, 𝑃, 𝑄ሻ ൌ 𝑁 lnሺ𝜎ଶሻ ൅
ଶሺ௣ା௤ା௉ାொାଵሻே

ሺேି௣ି௤ି௉ିொିଶሻ
  (7) 

𝑆𝐵𝐶 ൌ െ2 logሺ𝐿ሻ ൅ ሺ𝑝 ൅ 𝑞 ൅ 𝑃 ൅ 𝑄 െ 2ሻln ሺ𝑁ሻ  (8) 

Where: N = the number of observations; L = the like-
lihood function of the ARIMA models; δ = the mean 
square error.  

When the number of samples is low, SBC is usu-
ally a better criterion than AIC. However, the study of 
MISHRA and DESAI [2005] and ALAM et al. [2014] 
indicated that AICC which is the revised version of 
AIC acts well even by low number of samples. 

Model estimation  

It is required to determine the model that best fits 
the data being analysed. This was achieved by observ-
ing the ACF and the PACF of the differenced data. 
The models were considered with both p and q start-
ing from one to three. The models tested were: (1, 1, 
1), (1, 1, 2), (1, 1, 3), (2, 1, 1), (2, 1, 2), (2, 1, 3), (3, 1, 
1), (3, 1, 2) and (3, 1, 3). The model having the lowest 
AICC value was chosen as the best for each station. 

Model diagnostic analysis 

In order to be sure that the models were repre-
sentative for the observed rainfall and temperature 
data and can be used to forecast the future data, the 
models were subjected to diagnostic tests. The best 
chosen models with their corresponding model pa-
rameter values are presented. Diagnostic checks were 
carried out to determine whether the models fit the 
data very well. If the model fits well the residuals 
should be uncorrelated (white noise) with a constant 
variance and also the residuals should be normally 
distributed [HUANG et al. 2016].  
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Fig. 2. Flow chart of ARIMA modelling; source: own elaboration 

Plot of residuals of ACF and PACF. After es-
tablishing the appropriate model with the above men-
tioned criteria, goodness of fit of the model was de-
termined by plotting ACF and PACF of the residuals. 
A white noise residuals was an indication of the mod-
el fit being adequate. A residual with a zero mean and 
uncorrelated is termed white noise. 

Calibration and validation. Calibration was 
done to assess the models for quality and accuracy of 

prediction. Calibration procedures were carried out to 
strengthen the models performance. Part of the ob-
served field data, that is data from the meteorological 
station (from 1984 to 2004) was used for calibration 
of the model, while the remaining data were used to 
validate the model (2004–2014). Validation test was 
conducted after finalising calibration data which is 
important for testing the simulation capacity of the 
model. The model validation is in fact the extension 
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of the calibration process. Thus validation was carried 
out without any further adjustments to the calibrated 
model parameters. The model was validated for the 
period 2004 to 2014. The selected suitable models 
were validated using the available data. 

Model validation and forecasting. The validated 
time series data was then used to forecast the future 
time series data of rainfall and temperature for ten 
years. The significance of the validation procedure 
was to determine the reliability of the model for fore-
casting of rainfall and temperature time series data. 
The procedure entails the comparison of the actu-
al/observed data series with the forecasted data series 
to see how the model simulate the actual observation. 

Performance evaluation criteria. The models 
were evaluated and validated using the following per-
formance criteria: root mean square error (RMSE), 
sum of squares error (SSE), mean square error (MSE) 
and mean absolute percent error (MAPE). The equa-
tions of the performance criteria are stated below: 

 𝑀𝑆𝐸 ൌ
ଵ

௡
∑ ሺ𝑌௣ െ 𝑌௢ሻଶ௡

௜ୀଵ  (9) 

 𝑀𝐴𝑃𝐸 ൌ
ଵ

௡
∑ ቚ

௒೚ି௒೛

௒೚
ቚ௡

௜ୀଵ  (10) 

 𝑅𝑀𝑆𝐸 ൌ ටଵ

௡
∑ ሺ𝑌௢ െ 𝑌௜ሻଶ௡

௜ୀଵ  (11) 

 𝑆𝑆𝐸 ൌ
ଵ

௡
 ∑ ൫𝑌௢ െ 𝑌௣൯

ଶ௡
௜ୀଵ   (12) 

Where: Yp = the predicted values; Yo = the observed 
values; n = the number of observation. 

At the forecasting stage, the estimated parameters 
were tested for their validity using the above error 
statistics. The procedure is summarised in Fig. 2. 

RESULTS AND DISCUSSION 

The time series plot of Figures 3 and 4 of mean 
annual rainfall and maximum temperature on two 
network stations (Kpetoe and Tordzinu) encounters 
problem of non-stationarity. In order to use the  
ARIMA procedure for the modelling, the non-statio-
narity was removed by differencing to make the data 
set stationary. The time series plot portray an increas-
ing but waving maximum temperature whiles the 
converse is the case for mean annual rainfall. The dif-
ference in the magnitude of time series plot of the said 
network stations is due to the differences in the eco-
logical zones. 

The stationarity tests were conducted on the mean 
annual rainfall and the maximum temperature data 
 

 

Fig. 3. Time series plot of maximum temperature  
(1984–2014); source: own study 

 

Fig. 4. Time series plot of mean annual rainfall  
(1984–2014); source: own study 

series to check and confirm the autocorrelation func-
tion (ACF) and partial autocorrelation function 
(PACF) analysis on the non-stationarity of the data 
series. The results of augmented Dickey–Fuller 
(ADF), Mann–Kendall (MK) and Kwiatkowski–
Phillips–Schmidt–Shin (KPSS) tests respectively are 
presented in Table 1. The tests buttressed that all the 
mean annual rainfall and maximum temperature data 
series were not stationary for Kpetoe and Tordzinu 
respectively. The ADF and KPSS tests indicated the 
data series had a unit root. Additionally, the MK test 
also revealed a trend in the data series which further 
buttressed the non-stationarity. From the pattern of 
the ACF and PACF plots as shown in Figures 5 and 6, 
the mean annual rainfall and the mean maximum 
temperature series respectively were non-stationary. 
The patterns exhibited a very slow decay which was 
an indication of possible non-stationarity. Besides 
some of the spikes were outside the confidence inter-
val and some very close to it. This indicated the val-
ues were significant and were not white noise 
[HUANG et al. 2016]. Thus differencing was carried 
 

Table 1. Stationary tests 

Station 
Augmented Dickey–Fuller test Kwiatkowski–Phillips–Schmidt–Shin test Mann–Kendall test 

Remarks p-value  
(rainfall) 

p-value  
(max temp) 

P-value  
(rainfall) 

P-value  
(max temp) 

P-value  
(rainfall) 

P-value  
(max temp) 

Kpetoe 0.3727 0.2628 0.8293 0.0005 0.9156 0.0018 non-stationary
Tordzinu 0.1854 0.0264 0.0068 0.0006 0.0060 0.0003 non-stationary

Source: own study. 
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Fig. 5. Autocorrelation function (a, c) and partial autocorrelation function (b, d) plot of rainfall series; source: own study 

         

         

Fig. 6. Autocorrelation function (a, c) and partial autocorrelation function (b, d) plot of maximum temperature series;  
source: own study 

out to convert the data to a stationary one. The impli-
cation of the above results is that ignoring non-
stationarity of the data series will have led to the se-
lection of sub-optimal model whose estimate may be 
misleading. This means the accuracy of the model 
depended on the stationarity information. The asser-
tion is in agreement with the report of JUNG and SHAH 
[2015] who study the implication of non-stationarity 
on predictive models and HENDRY and PRETIS [2016] 
who considered the implication of non-stationarity on 
empirical modelling and forecasting. 

The first diagnostic check was the plot of histo-
gram of the residuals (Figs. 7, 8) which confirmed the 
normality of the residuals for rainfall and maximum 
temperature respectively. The other requirement of 
a good model is that the residuals should be homosce-

dastic. The homoscedasticity plots were indicated in 
Figures 9 and 10 respectively of rainfall and maxi-
mum temperature models. The results of Breusch–
Pagan test as shown in Table 2 confirmed the homo-
scedascity plots. A residual with constant variance is 
said to be homoscedastic. Homoscedasticity is a de-
terminant of the model’s ability to predict variables 
consistently. A heteroscedastic residuals cannot pro-
vide predictions that are reliable [HUANG et al. 2016].  
 
Table 2. Results of Breusch–Pagan test 

Stations 
p-value  

(rainfall) 
p-value  

(temperature) 
Interpretation 

Kpetoe 0.9171 0.8565 homoscedastic 
Tordzinu 0.3766 0.1998 homoscedastic 

Source: own study. 
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Fig. 7. Histogram of residuals (rainfall) for:  
a) Kpetoe, b) Tordzinu; source: own study 

 

 

Fig. 8. Histogram of residuals (temperature) for:  
a) Kpetoe, b) Tordzinu; source: own study 

The normality of residuals distribution was essential 
to produce a satisfactory confidence interval for the 
forecast. The results of Shapiro–Wilk, Anderson–Dar-
ling, Jarque–Bera and Lilliefors tests respectively fur-
ther confirmed the normality of the residuals (Tab. 3). 
The p-values of the aforementioned tests were more 
than 0.05 at 95% confidence interval. The P–P and 
Q–Q plots of the residuals also attested the normality 
(Figs. 11–14). The Q–Q plot of standardised residuals 
was based on gamma distribution assumption for 
a data set.  The Q–Q plot  compared the observed data 

 

 

Fig. 9. Distribution of standard residuals (rainfall) for:  
a) Kpetoe, b) Tordzinu source: own study 

 

 

Fig. 10. Distribution of standard residuals (temperature) for: 
a) Kpetoe, b) Tordzinu; source: own study 

with the fore-casted data by plotting their quantile 
against each other. The data set almost lying in 
straight line is an indication that the two distributions 
were similar. The implication is that the fitted models 
are correct as their standardised residuals were from 
the same gamma distribution. The few data points far 
from the straight line may be due to deviation from 
the mean stemming from variability of the date set 
(heavy or low rainfall). The attribution made is cor-
roborated by GEORGE et al. [2016]. The computed 
Hessian standard errors and all the estimated model
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Table 3. Results of normality tests 

Stations 
Shapiro–Wilk test Anderson–Darling test Jarque–Bera test Lilliefors test 

p-value  
(rainfall) 

p-value  
(temperature) 

p-value  
(rainfall) 

p-value  
(temperature) 

p-value  
(rainfall) 

p-value  
(temperature) 

p-value  
(rainfall) 

p-value  
(temperature) 

Kpetoe 0.8089 0.2260 0.5186 0.2512 0.8023 0.5378 0.3625 0.1076 
Tordzinu 0.2728 0.3623 0.6158 0.5234 0.1473 0.5934 0.9017 0.7085 

Source: own study. 

 

 

Fig. 11. The P–P plot of residuals (rainfall) for:  
a) Kpetoe, b) Tordzinu; source: own study 

 

 

Fig. 12. The Q–Q plot of the residuals (rainfall) for:  
a) Kpetoe, b) Tordzinu; source: own study  

 

 

Fig. 13. The Q–Q plot of standardised residuals (max  
temperature) for: a) Kpetoe, b) Tordzinu; source: own study 

 

 

Fig. 14. The P–P plot of standardised residuals  
(max temperature) for: a) Kpetoe, b) Tordzinu;  

source: own study 
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parameters were within the confidence band. The im-
plication of the non-normality of the data series is that 
the inference or prediction made with the model may 
be unreliable and misleading. The evidence of nor-
mality is corroborated by the histogram of the residu-
als which is almost bell shape (Fig. 7–8). 

OBSERVED AND FORECAST SERIES 

The models accuracy was checked by comparing 
the observed series with the forecast series generated 
by the ARIMA model. A forecast series of a lead time 
of ten years were generated with a confidence interval 
of 95%. The forecast series for both rainfall and tem-
perature data for the observed and forecast series for 
the physiographic stations on Tordzie watershed se-
lected for this study were shown in Figures 15 and 16 
respectively. The generated forecast data series fol-
lowed the observed data set, with variability as is 
generally reported by other studies. The variability in 
the rainfall pattern as generated by the forecast model 
can be attributed to the global warming and the land 
use and land cover changes. The forecasted rainfall is 
on slow declining trend while the temperature is on 
a rise. This assertion agrees with [LOGAH et al. 2013; 
NKRUMAH et al. 2014; OWUSU, WAYLEN 2009; 
2013]. The implication of the declining rainfall is an 
increasing drought leading to food insecurity [ŁA-
BĘDZKI, BĄK 2017; NYATUAME, AGODZO 2017], also 
the variability in the forecast rainfall value could also 
be responsible for hydrological drought as has been 
reported by a similar study by [BĄK, KUBIAK-WÓJ-
CICKA 2017]. 

 

After fitting the models the residual plots of ACF 
and PACF were examined and it was observed that 
the residuals were within the confidence intervals 
which is an indication of a good fit and the adequacy 
of the model. That is correlogram analysis of a plot of 
ACF and PACF. For a good forecasting model, the 
residuals left after fitting the model, must satisfy the 
requirements of a white noise process [HUANG et al. 
2016]. From Figures 17 and 18 it was clear that the 
correlogram of the ACF and PACF of the residuals of 
the stations for both rainfall and temperature data fell 
within the confidence interval. This was an indication 
that they were not significant and that the residuals 
were independent and thus satisfying the residual cri-
terion. Besides no patterns were observed in the re-
siduals which further buttressed the point that the 
models could be used to represent the observed data. 
It means the residuals were very small in magnitude 
and have no pattern or trend. The residual is the dif-
ference between the observed and the forecast data. 
The implication is that the forecast value is as close as 
the observe data further indicating the performance 
efficiency of the model. Residuals are therefore em-
ploy to validate models. The study of NOBRE and 
SINGER [2007] is consistent with the above assertion. 
Also, the observed ACF and PACF plots indicated 
that one order differencing is adequate. Further differ-
encing of higher orders revealed higher standard devi-
ations, an indication of over differencing. Thus the 
minimum standard deviations were achieved with 
differencing order one (d = 1). Therefore the prelimi-
nary ARIMA (p, d, q) was selected. 

 

   

Fig. 15. Observed, synthetic and forecast series of mean rainfall for: a) Kpetoe, b) Tordzinu; source: own study 

  

Fig. 16. Observed, synthetic and forecast series of maximum temperature for: a) Kpetoe, b) Tordzinu; source: own study 
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Fig. 17. Residual plots of autocorrelation function (a, b) and partial autocorrelation function (c, d) of maximum temperature; 
source: own study 

      

     

Fig. 18. Residual plots of autocorrelation function (a, b) and partial autocorrelation function (c, d) of annual rainfall;  
source: own study 

PERFORMANCE EFFICIENCY OF THE MODELS 

The models performance efficiency were evaluat-
ed using sum of squares error (SSE), mean absolute 
percentage error (MAPE), mean square error (MSE) 
and root mean square error (RMSE) for both rainfall 
and temperature models respectively. The values for 
the respective models for each of the stations from 

each physiographic area of the studied watershed are 
presented in Table 4. In the table mentioned, the 
(MAPE) which is an unbiased statistic was employed 
to evaluate the ability of the model to predict correct-
ly. Its low value is an evidence of the models adequa-
cy. It is reported in literature that the smaller the value 
the better the model’s performance [GALAVI et al. 
2013; VALIZADEH et al. 2014]. 
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Table 4. Best autoregressive integrated moving average 
models and goodness of fit statistics 

Best  
model 

Goodness of fit statistics 
Kpetoe Tordzinu 

(3, 0, 3)  
(rainfall) 

(3, 1, 3)  
(temperature) 

(3, 1, 3)  
(rainfall) 

(3, 1, 3)  
(temperature)

AICC 190.07 23.81 178.23 36.10 
SBC 187.71 20.24 174.66 32.53 

MAPE 11.27 0.43 17.34 0.74 
SSE 4525.44 0.69 2651.55 1.50 
MSE 226.27 0.04 139.56 0.08 

RMSE 15.04 0.19 11.81 0.28 

Source: own study. 

The forecast model for Kpetoe rainfall is:  

Yt = –1.69Yt–1 – 1.55Yt–2 – 0.81Yt–3 – 1.64εt–1 +  
 – 1.67εt–2 – 0.89εt–3 + 3.46 (13) 

Where: Yt = the forecast of rainfall for Kpetoe for 
time t years; Yt–1 = the forecast of rainfall for Kpetoe 
for previous year; Yt–2 = the forecast of rainfall for 
Kpetoe for previous two years; Yt–3 = the forecast of 
rainfall for Kpetoe for previous three years; εt–1 = the 
previous one year residuals of rainfall for Kpetoe; εt–2 
is the previous two years residuals of rainfall for 
Kpetoe; εt–3 is the previous three years residuals of 
rainfall for Kpetoe. 

The model for Tordzinu rainfall is:  

Yt = –1.14Yt–1 – 0.36Yt–2 + 0.41Yt–3 – 0.53εt–1 +  
 + 0.53εt–2 + 0.99εt–3 + 1.31 (14) 

The forecast model Kpetoe mean maximum tem-
perature is:  

Yt = – 1.92Yt–1 – 1.68Yt–2 – 0.53Yt–3 – 0.75εt–1 + 
 + 0.75εt–2 + εt–3 + 0.03 (15) 

The forecast model for Tordzinu temperature is: 

Yt = –0.75Yt–1 – 0.23Yt–2 + 0.50Yt–3 – 0.07εt–1 + 
 + 0.07εt–2 + εt–3 + 0.04 (16)  

The Table 5 provides the model input parameters 
that was input into Equation (5) to obtain Equations 
(13–16). The models were used for the forecasting. 
The difference between the observed values and the 
forecasted values follows the normal distribution and 
other performance efficiency values which is an indi-
cation of the reliability of the models. 

APPLICATION OF THE FORECAST MODELS 

The developed models could be used for water re-
sources planning and management. Sound water man-
agement planning and cropping system design can be 
achieved with an understanding of the statistical prop-
erties of long-term records of major climatic parame-
ters like rainfall and temperature. 

The probable climate change impacts on rainfall 
and temperature assessment and its forecast is crucial 
for disaster alertness, planning of irrigation infrastruc-
tural and development.  The studied watershed has not  

Table 5. Autoregressive integrated moving average  
(ARIMA) model parameters  

Model Parameter 
Estimate 

(coefficient) 
Hessian  

standard error 

ARIMA (3, 0, 3) 
Kpetoe rainfall 

Φ1 –1.69 0.88 
Φ2 –1.55  0.95
Φ3 –0.81  0.31
ϴ1 1.64 0.82 
ϴ2 1.67  0.76 
ϴ3 0.89 0.50 

ARIMA (3, 1, 3) 
Tordzinu rainfall 

Φ1 –1.14 0.73 
Φ2 –0.36 2.55 
Φ3 0.41  1.66
ϴ1 0.53  0.36
ϴ2 –0.53  0.36
ϴ3 –0.99 0.30 

ARIMA (3, 1, 3) 
Kpetoe  
temperature 

Φ1 –1.92 0.29 
Φ2 –1.68 0.39 
Φ3 –0.53 0.30 
ϴ1 0.75 0.29 
ϴ2 –0.75 0.32 
ϴ3 –1.00 0.29 

ARIMA (3, 1, 3) 
Tordzinu  
temperature 

Φ1 –0.75 0.25 
Φ2 –0.23 0.30 
Φ3 0.50 0.23 
ϴ1 0.07  0.29
ϴ2 –0.07  0.29
ϴ3 –1.00 0.29 

Explanations: Φ1, Φ2 Φ3 = autoregressive parameters; ϴ1, ϴ2, ϴ3 = 
moving average parameters. 
Source: own study. 

received adequate research attention in climate change 
impact assessment and for that reason this study and 
the model developed will serve as a foundation for 
decision making on the watershed. 

The analysis carried out provides vital infor-
mation in addressing projected climatic changes and 
their impacts on the fresh water resources of the wa-
tershed. 

An exact knowledge of the future water resources 
of a watershed is a strategic information which is re-
quired for long-term planning of a watershed water 
users and food security issues of its users among other 
needs. Modelling tools permit this quantification fea-
sible. The implication of the changing climate that is 
generally reported may be impacting at the local level 
and rendering the indigenous knowledge of predicting 
the climate pattern a Herculean task. Thus integrating 
the scientific procedure with that of the indigenous 
know-how is ideal in surmounting the challenge. The 
variability in the forecasted rainfall is in agreement 
with the earlier findings of NYATUAME et al. [2014] 
who reported that the climate change might have been 
responsible for the variability in the rainfall pattern in 
the Volta region of Ghana. 

CONCLUSIONS 

In this study, the annual rainfall and maximum 
temperature of Tordzie watershed was modelled using 
ARIMA models for the two stations on the basin. The 
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results showed a slight decrease and in oscillatory 
manner in the rainfall for the future up to 2024 (2014–
2024) in most part of the watershed. Interestingly, the 
maximum temperature forecast revealed a gentle up-
ward increase but oscillating in nature. The upward 
fluctuating trend in the maximum temperature might 
be the reason for the decreasing rainfall in the said 
watershed. However, further comprehensive multivar-
iate analysis employing a digitized data is required for 
a definite pronouncement on the rainfall and tempera-
ture situation. The models have been evaluated and 
validated after tentative identification and diagnostic 
tests were performed on them and the selected models 
proved adequate and suitable for the forecast of future 
annual rainfall and temperature values in the Tordzie 
watershed which can aid decision makers establish 
priorities in terms of water demand management. 
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Stochastyczny model ARIMA do prognozowania rocznego opadu i maksymalnej temperatury  
w zlewni Tordzie w Ghanie 

STRESZCZENIE 

Prognozowanie opadu i temperatury jest trudnym zadaniem z powodu zmienności tych parametrów w czasie 
i przestrzeni, a także nieznajomości wszystkich czynników wpływających na opady w regionie czy w danej 
miejscowości. Prognozowanie opadów jest ważne dla rolnictwa i gospodarki zlewniowej, mających znaczący 
wkład w gospodarkę regionu. Przewidywanie opadu wymaga modelowania matematycznego i symulacji z po-
wodu jego skrajnie nieregularnego i złożonego charakteru. Do analizy i prognozowania rocznych opadów i mak-
symalnej temperatury w zlewni Tordzie wykorzystano autoregresyjny zintegrowany model średniej ruchomej 
(ARIMA). Do zidentyfikowania modeli metodą oglądu wizualnego użyto funkcji autokorelacji (ACF) i cząstko-
wej autokorelacji (PACF). Testy stacjonarności przeprowadzono za pomocą testów Dickeya–Fullera (ADF), 
Manna–Kendalla (MK) i Kwiatkowskiego–Phillipsa–Schmidta–Shina (KPSS). Wybrane modele poddano ocenie 
i walidacji z użyciem skorygowanego kryterium Akaike (AICC) i Bayesowskiego kryterium Schwartza (SBC). 
Diagnostyczna analiza modeli obejmowała niezależność, normalność, homoscedastyczność, wykresy P–P i Q–Q 
dla reszt. Najlepsze modele ARIMA dla opadu w Kpetoe i Tordzinu miały postać (3, 0, 3) i (3, 1, 3), gdy warto-
ści AICC równe odpowiednio 190,07 i 178,23. Modele dla maksymalnej temperatury w Kpetoe i Tordzinu miały 
postać (3, 1, 3) i (3, 1, 3), a ich odpowiednie wartości AICC wynosiły 23,81 i 36,10. Wydajność modelu spraw-
dzano, wykorzystując sumę błędu kwadratowego (SSE), średni błąd kwadratowy (MSE), średni bezwzględny 
błąd procentowy (MAPE) i pierwiastek ze średniego błędu kwadratowego (RMSE). Wyniki różnych analiz wy-
kazały, że modele są odpowiednie i mogą stanowić pomoc w przyszłej gospodarce wodnej.  
 
Słowa kluczowe: ARIMA, modele opadu, prognozowanie, temperatura, zlewnia Tordzie 


