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Abstract 

Minimally invasive procedures for the kidney tumour removal require a 3D visualization of topological relations 

between kidney, cancer, the pelvicalyceal system and the renal vascular tree. In this paper, a novel methodology 

of the pelvicalyceal system segmentation is presented. It consists of four following steps: ROI designation, 

automatic threshold calculation for binarization (approximation of the histogram image data with three exponential 

functions), automatic extraction of the pelvicalyceal system parts and segmentation by the Locally Adaptive 

Region Growing algorithm. The proposed method was applied successfully on the Computed Tomography 

database consisting of 48 kidneys both healthy and cancer affected. The quantitative evaluation (comparison to 

manual segmentation) and visual assessment proved its effectiveness. The Dice Coefficient of Similarity is equal 

to 0.871 ± 0.060 and the average Hausdorff distance 0.46 ± 0.36 mm. Additionally, to provide a reliable assessment 

of the proposed method, it was compared with three other methods. The proposed method is robust regardless of 

the image acquisition mode, spatial resolution and range of image values. The same framework may be applied to 

further medical applications beyond preoperative planning for partial nephrectomy enabling to visually assess and 

to measure the pelvicalyceal system by medical doctors. 

Keywords: the pelvicalyceal system segmentation, kidney segmentation, kidney compartments, Computed 

Tomography (CT), kidney cancer. 
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1. Introduction 

 
In 2013 in Poland, there were 5178 new cases of kidney cancer reported. The incidence rates 

for males and females reached respectively 16.8 and 10.3 per 100.000 [1]. Widely used imaging 

techniques, especially ultrasonography, cause that nowadays a majority of new renal tumours 
are detected at an early stage. This provides an opportunity for removing only the cancer lesion 
and preserving as much of the healthy kidney parenchyma as possible (nephron sparing surgery 

– NSS, partial nephrectomy – PN). In recent years, this approach has become a gold standard 
in treatment of small renal masses. The NSS offers better functional results comparing with the  

radical nephrectomy (RN), with an acceptable profile of peri- and postoperative complications 
and a similar long-term oncological outcome.  

Although the decision regarding treatment feasibility must include all clinical aspects 

(the patient’s age, general conditions, comorbidities, etc.), the preoperative planning based on 
thorough image analysis is essential. It is particularly important to correctly assess the tumour 

extent and its boundaries, to distinguish all surrounding structures within and beyond the kidney 
and to examine their mutual topological relations in order to identify possible conflicts in the 

operated area. This assessment may be based on conventional 2D CT scans, but it can be also 
supported by 3D reconstructions together with other post-processing techniques, such as 
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various types of rendering and segmentation. It was suggested that, in preoperative planning 

or intraoperative navigation, automated segmentation can outperform rendering, as it can 
produce semi-transparent dynamic models grouping information obtained from different 
phases, in comparison with limited to a single phase opaque pictures offered by rendering alone 

[2]. The approach based on image analysis meets the latest trends in surgical oncology. One 
of its key stages is a 3D segmentation of anatomical structures (kidney, the pelvicalyceal system 

(PCS), vascular tree). In this paper we focus on the PCS segmentation. 
According to the European Association of Urology Guidelines on Renal Cell Carcinoma 

(RCC) [3] both CT and MRI are used to characterise the renal mass. The diagnostic decision 

on RCC is made on the basis of a change of 15 HU or more on the depicted renal mass on CT 
scans before and after administration of a contrast, preferably in the nephron-graphic phase to 

maximise differential diagnosis and detection. If the results of CT scan are ambiguous, then 
MRI may be considered. Additionally, the triple-phase abdominal contrast-enhanced CT 
provides useful and detailed information on the renal vascular tree and PCS. Although the MRI 

tissue resolution is considered as higher than CT’s, the possibility of acquiring all required 
information for surgery planning during one examination led to the fact that a triple-phase 

abdominal CT scan became a standard diagnostic procedure preceding the renal cancer 
treatment. Therefore, our research material consisted of triple-phase abdominal contrast-
enhanced CT scans. 

The major challenge of the PCS segmentation on a CT scan is the lack of synchronization 
between the contrast agent flow and the image acquisition time, which results in visualization 

of undesired structures and poor recognition of the target ones. Also, the intensity values within 
the same structure may vary (PCS inhomogeneity). These inconsistencies impact data 
processing and require a robust segmentation method that can automatically handle different 

acquisition protocols.  
Since the presented issue is relatively new, there are only a few papers concerning the 

segmentation of kidney compartments. Most of the previously proposed solutions refer to MRI. 
The algorithms focus on the kidney segmentation without giving particular attention to the PCS.  

A comprehensive review of the algorithms proposed for kidney volume assessment on MRI 
provided in [4] presents different acquisition techniques and tailored segmentation methods. 
Will et al. [5] proposed a renal cortex, medulla and renal pelvis segmentation from MRI by 

simple thresholding. In the case of cortex, the classification is based on a threshold calculated 
as a row's mean inside the kidney mask minus a standard deviation. With regard to the image 

value variation within the same structure (explained in Section 2) this kind of solution cannot 
be applied to the PCS segmentation. Yang et al. [6] after kidney segmentation from DCE-MRI 
data used Principal Component Analysis to describe the data. Based on this, the k-means 

classification was applied to label data into particular structures. In the last stage, noise and 

misclassification problems were reduced. They achieved − according to Dice Coefficient 

of Similarity (DICE) − the result of renal pelvis (a part of PCS, Fig. 1) segmentation equal to 
0.69  for disordered kidneys and 0.95 for healthy kidneys. Li et al. [7] proposed renal cortex 
segmentation on the CT data using an optimal surface search method. The quality of multiple 
surfaces’ searching method was improved by a graph construction scheme. The segmentation 

effectiveness was equal to 0.741 ± 0.032 in the true positive volume fraction (precision) and 
0.0008 ± 0.0013 in the false positive volume fraction (1-specificity).  

Furthermore, we can distinguish two major groups of segmentation algorithms for kidney 
or/and its compartments: region growing (RG) and level set (LS) methods. In the RG group 
three papers are worth mentioning. Pohle et al. [8] developed a 2D adaptive region growing 

(ARG) method consisting of two steps. In the first one, the region inhomogeneity is iteratively 
estimated starting from one seed pixel and after each region doubling the ad hoc coefficients 

are used to compensate for constant underestimation of the standard deviation. The estimated 
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parameters (median and both upper and lower standard deviations) are then used in the second 

RG step. Important assumptions of this method cover the requirement of region compactness, 
the seed location not on the structure boundary and a sufficient number of pixels in the region. 
The second paper, written by Abiria et al. [9], concerns an RG algorithm (EdgeWave) 

constrained by a user-specified morphological erosion radius and edge strength. The seed set 
can be defined by thresholding the selected region, which is facilitated by the average value 

of a selected region that is displayed in a control window. In the third paper [10], due to the 
false assumption that there are only two types of renal perfusion signals in the object area, the 
RG is used to find an approximate solution to Chan-Vese (ChV)-based energy functional [11] 

to overcome this. The RG is driven by the correlation coefficient quantifying the similarity 
between the average temporal sequences of two adjacent regions. Among the LS methods 

developed for kidney segmentation, two can be distinguished [12, 13]. The first one applies 
a 3D kidney segmentation to DW-MRI images and is based on an adaptive shape, prior guided 
by the first- and second-order visual appearance features of DWI-MRI data. The kidney and the 

background models are provided by integrating these features into a joint Markov-Gibbs 
random field. Although this method is well designed for the kidney segmentation, it is 

inadequate for the PCS segmentation due to a variety of PCS shapes requiring a huge database 
to create a reliable model. In the second paper, a 4D LS framework combining both spatial and 
temporal information is proposed to segment the cortex, medulla and collecting system from 

a dynamic MRI. Again, since our material is included in a CT database, the temporal 
information cannot be provided. Although the LS algorithms have been proposed for the MR 

data and have taken into account their specificity, the common denominator of these two 
methods is the usage of the ChV term [11]. 

In this paper we propose an automatic PCS segmentation method on the delayed CT data 

phase. The presented methodology is based on our previous work – the Locally Adaptive Region 
Growing technique (LARG) [14] driven by an image value with the automatic initialization 

stage. In order to provide a reliable assesment of the proposed method, its comparison with 
ARG [8], EdgeWave [9] and ChV [11] methods was performed on the same CT database.  

This paper is constructed as follows: Section 2 presents the CT database description together 
with associated challenges to be addressed; Section 3 highlights the medical importance of PCS 
segmentation; the proposed segmentation methodology is described in Section 4; the results 

and conclusion are discussed in Sections 5 and 6, respectively.  
 

2. Material and associated challenges 

 
The research material consisted of 24 abdominal CT scans that were acquired in standard 

medical procedures preceding the oncological surgery. The studies were performed in various 
medical centres and on different devices. Individual studies differed in the acquisition mode 

and using various protocols. This resulted in acquiring a set of data that vary in their image 

intensity values and spatial resolution (spacing: 0.609−0.885 mm, slice thickness 1−5 mm). 
The dataset for each patient consisted of three phases (the arterial, venous and delayed ones). 

In each phase the contrast passes different compartments of the kidney. In the delayed phase 
most of the contrast agent should be excreted in urine, depicting selectively the urinary tract 
(including the PCS). Therefore, this phase was chosen for the PCS segmentation. In detail, 

the PCS segmentation process involves segmentation of several structures that are indicated in 
Fig. 1. For the sake of simplicity, we refer to all of them as the PCS.  

The major challenge is the lack of synchronization between the contrast agent flow and the 
image acquisition time. This results in visualization of undesired structures and poor 

recognition of the target ones. For instance, at the beginning of excretory (delayed) phase there 
is still a high concentration of contrast agent in collecting ducts making papillae barely 
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distinguishable from calyces. Also, the intensity values within the same structure may vary 

(from this point of view the PCS is not a homogenous structure).  
 

 

 
 

Fig. 1. The kidney compartments. The parts of the PCS are underlined; [F1]. 

 
To ensure proper validation of the segmentation results the manual segmentation was 

performed (48 outlines of PCSs), using the ITK-SNAP software [15], by an experienced 

urologist. Although the PCS is a continuous structure, in some of the manual outlines there are 
visible gaps, most commonly in the calyceal neck topography and in the transition between 
renal pelvis (Fig. 1.6) and ureter (Fig. 1.7). These structures are the narrowest sections of the 

upper urinary tract. The calyceal neck width normally ranges from 2 to 4mm in 17−48% 
of patients, depending on the group of calyces, and in the case of 3% of patients the width of 

the central calyceal is below 2mm [16]. Thus, due to an insufficient transversal resolution and/or 
thickness of the scanned slices (here, up to 5mm), these structures are incompletely depicted in 
a CT scan. The discontinuous representation of PCS is another challenge that affects both the 

accuracy of manual outlines and the effectiveness of segmentation. The situation is also 
worsened by two following reasons. The PCS is a complex, tree- like structure, which makes 

the process of manual segmentation of branches into 2D slices more difficult (sometimes a 
branch is only partially visible on one slice). However, it can be resolved by tracking the 
outlines simultaneously in other planes (coronal and sagittal), which is extremely time-

consuming. The second issue is the slice visualization mode selected for the manual 
segmentation. Fig. 2 shows how various window setups (window level – WL and window width 

– WW) lead to different manual outlines. The way of performing the manual segmentation has 
a significant impact on its volume and therefore on the automatic segmentation evaluation. 
Moreover, the same window setups may give different results depending on an image 

acquisition protocol (different intensity range and image resolution). Standardization of this 
process is still a matter of debate. 

 

 

 
 

Fig. 2. An example of visualizing CT slices with different windows’ parameters; (A) WW = 4137, WL = 1023;  

(B) WW = 216, WL = 238; (C) WW = 101, WL = 143. The influence of visualization parameters on manual 

contouring results (marked with a solid line) can be seen. 
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3. Medical importance of PCS segmentation 

 

Besides preoperative PN planning, the anatomy of PCS is one of the crucial elements 
assessed, basing on imaging studies, during preoperative planning in many other kidney 

surgeries. Therefore, in order to facilitate its assessment and measurement, a proper 
segmentation is necessary.  

In the surgical treatment of kidney cancer, a crucial parameter is the distance between tumour 
and the PCS as whole. It corresponds to the risk of opening  the PCS and postoperative 
complications following unsuccessful reconstruction (urinary fistula). In treatment of kidney 

stones, the information about both shape and spatial configuration of individual components 
of the PCS (minor and major calyx and renal pelvis, Fig. 1: 8, 15, 6, respectively) are more 

important, especially when deposits are located in the lower group of calyces. This specific 
location hinders the possibility of reaching them during flexible ureterorenoscopy (RIRS) and 
impairs evacuation of remnants after extracorporeal lithotripsy (ESWL).  

In the late 80s Sampaio [17] published an analysis of a large series of corrosive endo-casts 
of cadaveric kidneys’ PCSs, determining particular calyceal patterns (anatomical variants) and 

their distribution. His anatomical classification remains the most widely used system in the 
preoperative assessment in endo-urology and ESWL. A few years later, together with Aragao 
[18], he published a paper indicating a correlation between the parameters describing 

the anatomy of the lower group of calyces (calyceal pattern, pelvicalyceal angle, length and 
width of the lower calyceal neck) and the effectiveness of ESWL. Since then, a large number 

of studies were carried out on the role of the PCS anatomy and the efficacy of ESWL/RIRS.  

The majority of authors [19−22] use original parameters developed by Sampaio; some 
of them use their modifications, e.g. Elbahnasy [23], whereas others developed new ones, e.g. 

Fong [24]. Among all three aforementioned parameters, the pelvicalyceal angle remains the 
most important predictor of ESWL efficacy. The European Association of Urology guidelines 
[25] discourage using ESWL if the lower calyx (containing deposit) is either long (> 3 cm) or 

narrow (< 5mm), and the pelvicalyceal angle is steep (below 90 degrees). Although these 
parameters reflect spatial 3D configurations, they are routinely determined, basing on plain 

urography.  
It has been reported that using the CT urography with a 3D reconstruction may increase the 

accuracy of PCS morphometry assessment, because it enables to measure its parameters in the 

actual PCS plane, not in a projection on the coronal plane, which is the case in plain urography 

[26−27]. In percutaneous nephron-lithotomy (PCNL), specification of an adequate access to 
the collecting system represents the most important success factor. It can be facilitated by using 
a 3D model of a particular PCS. 

To meet the requirements of the described procedures and provide accurate measurements, 

a proper PCS segmentation on 3D CT images is essential.  

 
4. PCS segmentation 

 

The problems and challenges described in Section 2 influence the development of a 
segmentation method. Due to these problems we have proposed a method aiming at overcoming 

them (Fig. 3).  
 

 
 

Fig. 3. An outline of the proposed method. A description is provided in the text. 
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At the beginning, the region of interest (ROI) (in this case, the kidney area) is determined 

(1st step). In the 2nd step binarization is performed in order to acquire the starting seed points 
for further segmentation. In the 3rd step the PCS parts and ureter are extracted from the 
binarized ROI image. The final segmentation is performed in the 4th step by the LARG 

algorithm [14], proposed by the authors.  
 

4.1. Designation of region of interest (ROI), step 1 
 

The 1st step involves manual designation of ROI by indicating the kidney area (maximum 

span in each anatomical plane) with an adequate margin. It is very important not to crop the 
kidney as the image is also used for the kidney segmentation, therefore the margins around the 

kidney reach up to a few pixels (2−3). Additionally, cropping the whole image to ROI enables 

to significantly reduce the calculation time.  
 

4.2. Binarization of ROI image (BW), step 2 
 

Due to the lack of study protocol standardization (various medical centres, devices, 

acquisition modes and, therefore, different image spatial resolution and value ranges) it is 
impossible to explicitly identify universal parameters, in particular the threshold value used for 

LARG initialization. As a consequence, it becomes necessary to develop an automatic method 
for accurate threshold determination for each individual case. A characteristic distribution 
of image values (Fig. 4) enabled to establish the following solution. It is inspired by the method 

proposed in [28], where a histogram of ROI image values is approximated by the sum 
of Gaussian functions. The main difference between this and our approaches lies in the way 

of threshold selection. In [28] the optimal threshold is set at the intersection of particular normal 
distributions. In the proposed method, the initial segmentation threshold is defined based on the 
normalized histogram of ROI image values approximated by the sum of three exponential 

functions:  
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The function F (1) is designated by a nonlinear approximation using the Trust-Region-
Reflective Least Squares Algorithm [29]. Such an approximation was performed for each of 48 
PCS images. In each case, the information extracted from F was used to designate thresholds. 

The determined image intensity values of ai were sorted in the ascending order : a1, a2, a3, 
together with corresponding values of bi, so that a3 = max(ai). In each case, a threshold was set 

to A·a3 + B·b3. In order to calculate parameters A and B, the dataset was divided randomly into 
two halves constituting the training set and the test set. Then,  an optimization procedure, using 
the Nelder-Mead simplex direct search [30] aimed at minimizing the negation of the sum 

of DICEs calculated for the training set, was performed. The designated parameter values were 
as follows: A = 1.006, B = 2.326. Next, during the remaining steps of the proposed method (3rd 

and 4th step) only the test set was used. Additionally, to examine the dispersion of A and B 
parameters’ values, a 10-fold partition of the training set was performed and A and B values 

were calculated independently for each fold. The experiment revealed that the coefficients did 
not differ significantly for the subsequent folds, as their values were equal to 1.005 ± 0.002 for 
A and 2.353 ± 0.142 for B. Examples of approximations of the ROI image data by exponential 

functions are shown in Fig. 4. The calculated threshold value is indicated on the presented plots. 
Also, the variety of image intensity values depending on the patient CT data can be compared 
based on these two figures. 
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Fig. 4. Histograms of ROI image data normalized with an approximation function, two cases with different 

image values; a3 = 1083.469, b3 = 22.778 and threshold = 1142.95 (A); a3 = 3102.805, b3 = 22.792 

 and threshold = 3174.44 (B).  
 

Since the desired structure – the PCS − is located inside the kidney, the goal of binarization 
is to separate it from the kidney parenchyma. The threshold should be high enough to achieve 
this separation even at the cost of discontinuity and loss of some PCS parts. Therefore, this step 

increases the fragmentation of PCS. For 2 examples from the test set the threshold had to be 
manually increased to the kidney parenchyma due to over-segmentation. 

 

4.3. Extraction of PCS parts from binarized ROI image BW, step 3 

 
Within  an ROI, after the preliminary segmentation, there often occur undesirable elements 

such as parts of spine or ribs. These elements have image intensity values at a comparable level 

as the structures with a contrast agent, which limits the possibility of indicating desirable 
structures based only on their values. In addition, discontinuities of the PCS after the 

preliminary segmentation preclude designation of the structure of interest by indicating one 
point located within the PCS. Fig. 5 explains the aforementioned issues (the outcome of initial 
segmentation – 2nd step). 

 
      a)                                                              b)                                    c) 

 
 

Fig. 5. Examples  of initial segmentation results (2nd step) with indication of occurring problems. 

Discontinuities of the PCS (light green area) (a); close proximity between the PCS and spine (red area) (b); 

close proximity between the PCS and rib (red area), with transversal view (c). 

 
Taking into account both the unfavourable mutual spatial location of desired and undesired 

structures and discontinuities of the PCS, we propose a Hybrid Level Set (HLS) method [31] to 

overcome it. The HLS is a modified classical ChV algorithm. In [32], among others, 
an additional prior term of ellipsoidal shape is introduced to keep the segmentation result within 

a desired range and to prevent it from leakage to the surrounding structures. This method was 
used for kidney segmentation and therefore enabled to identify the structures located inside it. 

Individual structures were recognized as the PSC when at least their portions were located 
inside the kidney. Visualizations of kidney segmentation results are shown in Fig. 6, the PCS 
parts and undesired structures are marked. Examples  of the PCS extraction results  – E, together 

with indication of undesirable structures after binarization (BW, 2nd step), are presented 
in Fig. 7.  
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Fig. 6. Examples of  results after step 3: kidney segmentation by the HLS (light grey color)  

 with indicated structures located outside the kidney (orange) and extracted PCS (dark blue).  

 

 

 
 

Fig. 7. Examples of the PCS extraction results. In each case the first picture indicate results  

after the binarization (BW, 2nd step, undesired structures are highlighted bya  red area),  

and the second one − the results of extraction process (E, 3rd step). 

 

4.4. Segmentation by Locally Adaptive Region Growing Algorithm, step 4 

 
 The LARG algorithm [14] was developed and implemented as a remedy to the problems 

associated with the lack of homogeneity of voxel intensity values due to an improper contrast 
propagation. The method described in [14] was adjusted to meet the requirements of PCS 

segmentation. In comparison with the method proposed in [14], dedicated to vessel 
segmentation, the regularization was introduced and the region growing conditions were 

adopted to the PCS segmentation. In the proposed solution the conditions for voxel selection 
are specified individually for each candidate basing on analysis of its surroundings. The criteria 
for addition of a next voxel to the previously chosen ones are based on such parameters as the 

maximum permissible difference between the candidate voxel value and the source of growth 
tDiff (4) and the minimum required intensity value for a voxel candidate tMin (5). For data 

segmentation enhanced by a contrast agent only the lower threshold is meaningful. An outline 
of LARG algorithm is presented in Fig. 8. 

At the beginning the default values are set such as:  

− the maximum permissible difference between the candidate voxel value and the source 
of growth: 

   
3

 2defaultDiff b= ⋅ ; (2) 

− the minimum required value:  

  
3

0.5thresholddefaultMin b−= ⋅ . (3) 

The parameters threshold and b3 are derived from the 2nd step of the proposed method. This 
ensures the stability of LARG process providing individual parameter values adequate to a 

particular image. Since the default parameter values are used only if there are not enough 
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already chosen voxels, a candidate should be examined basing on the restrictive conditions. 

Therefore, the defaultMin is set slightly below the preliminary segmentation threshold  

(2nd step) and defaultDiff  − to 2·b3. 
The initial seed set consists of voxels from the preliminary segmentation (3rd step, 

extraction). A set of seed values is sorted in the descending order to reduce the calculation time. 

Starting from the highest value (primary voxel) a region is growing in specified conditions. For 
each candidate the parameters tDiff and tMin are calculated basing only on previously added 

voxels. Starting from a radius equal to 1 (a cube (3,3,3)) it is checked whether there are enough 
previously classified voxels as objects to perform calculations. The size of the cube’s 
neighbourhood is gradually increased until either the above condition is met or the maximum 

permissible size of the surroundings is achieved (max radius 5). The maximum radius is set to 
5 to cover the standard diameter of the PCS structure (proper for the CT database transversal 

plane resolution). For each candidate the parameters are calculated as follows: 

 ( )( )  min 3 std / ,tDiff radius defaultDiff= ⋅ tmpCT , (4) 

 ( ) ( )( )( )max mean std ,tMin - radius defaultMin= ⋅  tmpCT tmpCT , (5) 

where tmpCT is a sub-image of a size defined by the radius and centre of the candidate’s 
location.  
 

 

 

Fig. 8. The LARG – 4th step, an outline of algorithm. 

 
If the number of previously added voxels is not required, the default values: defaultDiff  (2) 

defaultMin  (3) are used. If the parameters were calculated on the basis of a neighbourhood with 
a relatively large size, we put less confidence to their values (to a smaller extent they reflect the 
actual threshold for a candidate). Therefore, the regularization, that provides more stringent 

requirements for voxels located farther away from the candidate, is introduced. Also, the distant 
voxels may produce a greater variation of values and thus a relatively high tDiff (4). It has been 

observed during experiments that when disregarding the influence of neighbourhood size, the 
effectiveness of segmentation decreases. In some cases, this leads to overflow of the 
neighbouring structures. A candidate is added if its value is greater than tMin and the difference 

between the candidate and the source of grow is smaller than tDiff (4).  
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Starting from the primary voxel, voxels are put on the stack and subsequently removed after 

their growth ends. After emptying the whole stack, chosen voxels are removed from the initial 
seed set. The following step involves choosing a next primary voxel again. The operation is 
executed until the initial set of seeds is empty.  

There are several advantages of defining region growing conditions locally, instead of using 
global parameters. First of all, it enables to add voxels whose intensity values descend towards 

the boundaries and along the vessel branch. Secondly, the voxels with lower intensity values, 
due to improper contrast propagation, may be also included. Furthermore, it prevents from 
leakage to unwanted structures. Finally, the continuity of the obtained structure is improved.  

 
 

5. Results and discussion 

 

Quantitative evaluation of the results from the test set (24 PCSs) was carried out on the basis 

of the following volumetric metrics derived from a confusion matrix (explanation in  
Table 1): accuracy, precision, sensitivity, specificity, over- and under-segmentation rate and 

DICE [33]. Apart from the volumetric metrics, also the distance measures: the maximum 
(mHD) [34] and the averaged Hausdorff distance (aHD) [35] were calculated. In general, the 
Hausdorff distance determines how far two subsets of a metric space are from each other. 

In particular, mHD denotes the maximum distance and aHD the average distance between 
points belonging to two subsets. The aHD distance is more suitable for image processing 

purposes as it decreases the impact of outliers [35]. Assuming that Pmc is a manual segmentation 

binary mask and pmc is a set of its points’ coordinates, Pseg − the binary mask obtained by the 

algorithm and pseg − a set of its points’ coordinates, the aforementioned measures (mHD and 
aHD) can be formulated as: 

                                ( ) ( )( )1 1
max , , ,

mc seg seg mc
mHD h h= P P P P ,                                       (6) 
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h h
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+
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h p p
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= −
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P P  and  

denotes the Euclidian distance. 

In simple words, the Hausdorff distance specifies how far (meaning a spatial distance) 
the acquired result boundary is from the manual outline. In order to denote the Hausdorff 

distance, first corresponding points in two subsets (the resulting boundary points and the 
expected ground true) are identified. Next, the distances between them are calculated. mHD is 
the longest distance among them and aHD is the average one. In this paper, the scores (6), (7) 

are provided in mm, presenting the distance between the segmentation result and the manual 
outline with regard to the image resolution.  

The proposed method was applied successfully in each of 24 PCSs belonging to the test set. 
Both visual and quantitative analyses were accomplished to evaluate its performance. A visual 

comparison between manual outlines and the segmentation results is shown in Fig. 9. 
The provided examples indicate a good quality of the segmentation together with a substantial 
improvement achieved when applying LARG after PCS extraction. The visual assessment is 

supported by DICE provided for each case. The results are presented in Table 2. After the 3rd 
step of the proposed method the mean DICE is above 84%. Further improvements are achieved 

when applying the 4th step − LARG (87%). The calculated average Hausdorff distance (0.46 

± 0.36 mm) is satisfactory from a medical point of view. 
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Table 1. A confusion matrix together with definitions of evaluation metrics: accuracy,  

precision, sensitivity, specificity, DICE, over-segmentation and under-segmentation rates. 
 

  Actual value   

object background   

P
re
d
ic
te
d
 

v
a
lu
e
 object 

TP 
(true positive) 

FP 
(false positive) 

Precision (Prec) 
=TP/(TP+FP) 

Over-segmentaton (OS)  
= FP/TP 

background 
FN 

(false negative) 
TN 

(true negative) 
Accuracy (Acc)  

=(TP+TN)/ (TP+FP+FN+TN) 
Under-segmentation (US) 

= FN/TP 

  Sensitivity 
(Sens) 

=TP/(TP+FN) 

Specificity 
(Spec) 

=TN/(FP+TN) 

DICE 
=2TP/ (2TP+FN+FP) 

 

 

  

 

 
 

Fig. 9. An example of visualization of the obtained results in a 3D view. The rows indicate two subsequent steps 

of the proposed method, the columns represent 7 different cases.The DICE is presented for each case and each 

step. The dark blue color represents the output of the algorithm while the green one − the manual outline. 

 

 

Table 2. A summary of the results indicating improvements after applying  

subsequent steps of the proposed method. 
 

 Acc Prec Sens Spec OS US DICE mHD [mm] aHD [mm] 

Step 3:  
After Extraction 

0.997 
±0.004 

0.945 
±0.063 

0.778 
±0.114 

0.999 
±0.001 

0.070 
±0.079 

0.315 
±0.219 

0.845 
±0.068 

9.96 
± 7.60 

0.74 
± 0.49 

Step 4:  
After LARG 

0.997 
±0.004 

0.872 
±0.107 

0.883 
±0.074 

0.998 
±0.003 

0.166 
±0.165 

0.141 
±0.101 

0.871 
±0.060 

7.73 
± 6.67 

0.46 
± 0.36 

 
The comparative assesment was also performed. The results of the proposed method were 

compared with those obtained with EdgeWave [9], ARG [8] and ChV [11] methods. For this 
purpose both ARG and ChV methods were implemented, while the EdgeWave tool was shared 

with its authors. The ARG was adapted for the 3D case. To assure the assumptions of this 
method (region compactness) each separatated part of the PCS was estimated and grown 

separately. Moreover, for the second RG step, only the lower threshold was taken into account, 
as for data with a contrast agent it is the only meaningful one. While using both thresholds 
the RG frequently stuck preventing the growth among the whole region. On the other hand, 

during estimation, it was essential to use both upper and lower thresholds to keep the standard 
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deviation estimates within reasonable limits. For ARG and ChV the initial mask for the 

segmentation contained one voxel per each separate region (up to 22 regions) making sure that 
it is not located on the border of the structure. Parameters for the ChV evolution were adopted 
using a 10-fold partition and were applied for all data. The same optimization procedure was 

used to designate ChV parameters, as for A and B in the 2nd step. In some cases, both ARG (3 
cases) and ChV (5 cases) lead to leakage to the surrounding structures. These examples were 

excluded from evaluation of ChV and ARG methods. Regarding the above, the EdgeWave is a 
stable tool, however it involves manual indication of the segmentation threshold and therefore 
is prone to subjective setting. Regarding DICE, the Hausdorff distances, both mHD and aHD, 

accuracy, sensitivity, under- and over-segmentation rates, the proposed method provided the 
best results. However, in respect of precision and sensitivity, the EdgeWave algorithm 

outperformed other evaluated methods. A relatively low performance of ARG and ChV can be 
attributed to homogeneity assumption of the segmented region which is not true due to improper 
contrast propagation. The detailed results of the comparison are presented in Table 3 and Fig. 

10. 
Additionally, the issue of the efficiency of different methods has been addressed. Table 4 

presents the overall computation time required by each method (the proposed method, 
EdgeWave [9], ChV [11] and ARG [8]) regarding the mean calculation time per case. The 
calculations were performed on a PC equipped with Intel® Core™ i3-3240 CPU, 3.4GHz, 2 

cores with 32GB RAM. The input images for each method were derived from the 1st step (ROI 
designation) and therefore the computation time of this step is excluded from comparison. Such 

a comparison has several limitations that should be mentioned before making a direct reference 
to the values presented in Table 4. The ARG was implemented and modified by us and perhaps 
is different from the original one proposed by Authors regarding its computational efficiency. 

The mean calculation time required by the EdgeWave was obtained by dividing the total 
processing time by the number of cases. In addition to the algorithm worktime (approximately 

2s per case), also the user-interaction time is taken into account. Moreover, the proposed 
method, ChV, ARG are Matlab prototypes, whereas the EdgeWave is an executable application. 

Taking into account the aforementioned issues, interpreting these values should be made with 
caution. Nevertheless, the EdgeWave was proven to be slightly faster (243.7 s) than the 
proposed method (250.7 s), whereas the ChV and ARG were much slower (644.3 s and 

1047.6 s, respectively). 
 

 

Table 3. The quantitative results of all evaluated methods; the mean values and the standard deviations are given; 

the results in bold indicate the best method in each category.  

3 examples of ARG and 5 of ChV are excluded. 
 

 Acc Prec Sens Spec OS US DICE mHD [mm] aHD [mm] 

Proposed 
method 

0.997 
±0.004 

0.872 

±0.107 

0.883 
±0.074 

0.998 

±0.003 

0.166 
±0.165 

0.141 
±0.101 

0.871 
±0.060 

7.73 
±6.67 

0.46 
±0.36 

EdgeWave 
0.994 

±0.007 

0.893 

±0.177 

0.644 

±0.216 

0.999 
±0.003 

0.258 

±0.797 

2.410 

±8.883 

0.710 

±0.201 

18.71 

±11.22 

2.88 

±2.88 

ChV 
0.993 

±0.007  

0.901 
±0.205 

0.647 

±0.277 

0.999 
±0.003 

0.412 

±1.495 

7.237  

±28.41 

0.682 

±0.250 

17.69 

±12.84 

3.08 

±3.50 

ARG 
0.985 

±0.020 

0.703 

±0.323 

0.684 

±0.684 

0.988 

±0.022 

1.128 

±1.809 

1.191 

±2.813 

0.583 

±0.218 

11.82 

±8.16 

1.99 

±3.25 
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Fig. 10. Compared results of the proposed method, EdgeWave, ChV and ARG in respect of accuracy (A); 

precision (B); sensitivity (C); specificity (D); aHD (E); mHD (F) and DICE (G).  

Due to leakage 3 examples of ARG and 5 of ChV are excluded. 

 

 

Table 4. The methods’ efficiency (computation time) – comparison of the proposed method, EdgeWave [9], 

ChV [11] and ARG [8] in respect of mean calculation time per case. 
 

 Overall Computation Time [s] 

Proposed method 2nd step: 0.1  3rd step 3 (HLS): 141.6 4th step 4 (LARG): 82.1 250.7 

EdgeWave 243.7  

ChV 644.3 

ARG 1047.6 

 
6. Conclusion 

  
This paper proposes a PCS segmentation methodology, consisting of an automatic threshold 

selection method for binarization (preliminary segmentation), extraction of the PCS parts from 



 

K. Heryan, A. Skalski, et al.: AUTOMATIC EXTRACTION OF THE PELVICALYCEAL SYSTEM … 

 

the binarized ROI image by HLS and − finally − the LARG algorithm driven by the image 
intensity values.  

The quantitative evaluation was performed for 24 PCSs belonging to the test set. 
A significant improvement was observed between the 3rd and 4th steps of the proposed method: 
the DICE coefficient increased (from 84% to 87%) and the average Hausdorff distance 

decreased (from 0.74 mm to 0.46 mm). A comparison with the other described methods (ARG, 
ChV, EdgeWave) revealed that the proposed method outperforms them in respect of DICE 

coefficient, the maximum and average Hausdorff distances, accuracy, sensitivity, under- and 
over-segmentation rates. Regarding precision and sensitivity the EdgeWave algorithm provided 
the best results.  

Basing on the proposed PCS segmentations each anatomic detail of the kidney collecting 
system can be selectively displayed in 3D and used for planning various urological procedures. 

Additionally, measurements of different objects (the distance between tumour and the PCS, 
both shape and spatial configuration of individual components of the PCS, the calyceal pattern, 

the pelvicalyceal angle, a length and width of the lower calyceal neck) are facilitated. 
The presented PCS segmentation algorithm may constitute a considerable part of a support 
system for planning minimally invasive procedures. Moreover, the same segmentation 

framework may be applied to further medical applications. Preoperative imaging and operation 
planning are the first step in image-guided surgery and now we are planning to study this 

approach on clinical aspects, especially on a complication rate during PN, PCNL or RIRS. The 
next step will be development of intraoperative imaging and tracking systems. 
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