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Abstract 

The paper presents methods of on-line and off-line estimation of UAV position on the basis of measurements from 

its integrated navigation system. The navigation system installed on board UAV contains an INS and a GNSS 

receiver. The UAV position, as well as its velocity and orientation are estimated with the use of smoothing 

algorithms. For off-line estimation, a fixed-interval smoothing algorithm has been applied. On-line estimation has 

been accomplished with the use of a fixed-lag smoothing algorithm. The paper includes chosen results 

of simulations demonstrating improvements of accuracy of UAV position estimation with the use of smoothing 

algorithms in comparison with the use of a Kalman filter. 
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1. Introduction 

 
Unmanned Aerial Vehicles (UAV) are becoming more and more popular in military and 

civilian applications. In military context, they are applied mainly in Electronic Intelligence 
(ELINT) and Imagery Intelligence (IMINT) [1], which includes radar terrain imaging with the 

use of Synthetic Aperture Radar (SAR) [2−4]. 
The autonomy of operation requires that the position, velocity and angular orientation 

of UAV are estimated on-line and used for appropriate execution of its mission. Such 
an estimation is usually accomplished in an on-board integrated navigation system, typically 

composed of an Inertial Navigation System (INS) [5, 6] and a Global Navigation Satellite 

System (GNSS) receiver [5, 7], with the use of some form of Kalman Filter (KF) [8−15]. 
In some applications, e.g. SAR imagery, requirements with respect to the accuracy 

of positioning are very high [3, 4, 16, 17]. On the other hand, short delays in image availability 
are often acceptable. Thus, in this group of applications, fixed-lag smoothing algorithms 

[18, 19], which provide delayed but more accurate estimates than Kalman filters, can be applied 
to on-line estimation of UAV position. There are also applications where UAV trajectory and 
parameters of flight can be reconstructed off-line, after mission, on the basis of logged 

navigation data. In such a case, the authors suggest using very accurate fixed-interval smoothing 
algorithms [10, 18]. 

The layout of the paper is as follows. Firstly, a state-space model of an integrated navigation 
system used on-board UAV is presented. It is assumed that the system is loosely integrated 
according to the compensation method with feed-forward correction [5, 19] and is composed 

of an INS and a GNSS receiver. Such an INS/GNSS system has been designed and produced 
within the scope of the WATSAR project, performed by the Military University of Technology, 

Warsaw, Poland, and a Polish private company WB Electronics S.A. [17, 20]. Subsequently, 
the fixed-interval and the fixed-lag smoothing algorithms are described. The paper includes 

also chosen results of simulations, demonstrating improvements of accuracy of UAV position 
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estimation with the use of smoothing algorithms in comparison with the one using a Kalman 

filter. Finally, a discussion of the results and conclusions are presented. 
 

2. State-space model of INS/GNSS system 

 
Implementation of a Kalman filter or a smoothing algorithm in an INS/GNSS system 

requires previous formulation of its state-space model [5, 7]. In the case of a loosely integrated 
system [9], designed in the WATSAR project [17, 20], the discrete state-space model is linear 

and it is given by a pair of equations [11, 13−15]: 

                                                    )()(),1()1( kkkkk wxΦx ++=+ ,                                         (1) 

                                                  )1()1()1()1( ++++=+ kkkk vxHz ,                                      (2) 

where: x – a state vector; w – a vector of discrete random process disturbances; z – 

a measurement vector; v – a vector of measurement errors; Φ – a transition matrix; H – 
an observation matrix. 

Equation (1) is called the dynamics model and for the designed INS/GNSS system it 
describes propagation in time of errors of a custom-built INS. These errors include position, 
velocity and orientation errors resulting from processing erroneous inertial data inside the INS. 

Detailed INS errors models can be very complicated and may contain even several tens of states 
[7]. Some of these states are observable only conditionally, e.g. during maneuvers of UAV, and 

only in high-quality navigation-grade inertial systems. As in the WATSAR project only 
a medium-quality, tactical-grade INS has been used, a simple 9-state model of INS errors has 
been applied [17], with 3 states for position errors, 3 states for velocity errors and 3 states for 

orientation errors with respect to various axes of the local reference horizontal system 
of coordinates NED (North-East-Down) [9]. 

The 9-state dynamics model is originally continuous and it is based on a set of 9 scalar first-
order differential equations, describing the relationship between the states constituting the state 
vector x and their first derivatives [5, 7]: 
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where: δN, δE, δD – INS position errors along the North, East and Down axes; δvN, δvE, δvD – 

INS velocity errors along the North, East and Down axes; φN, φE, φD – INS attitude errors around 
the North, East and Down axes; fN,  fE,  fD – specific forces along the North, East and Down axes; 

ωN, ωE – components of the angular velocity around the North and East axes; g – gravity 
acceleration; R – the Earth’s radius in the spherical model; uvN, uvE, uvD – errors of INS 

accelerometers; uφN,  uφE,  uφD – errors of INS gyros. 
Grouping the above set of scalar equations into a single equation, we obtain the following 

continuous dynamics model of the system: 
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                                                                                                                                                (12) 
where: F – a fundamental disturbances. 

The algorithms of filtration and smoothing presented further on in this paper are discrete, 
thus they require formulation of a discrete version of the state-space model for a given sampling 
period T. Thus, the above continuous dynamics model must be transformed into its discrete 

counterpart with the use of known methods presented e.g. in [7, 9−11]. The obtained discrete 

dynamics model is as follows: 
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The observation model of the system describes a relationship between the measurements 
contained in the vector z and the states contained in the vector x. In the designed INS/GNSS 
system the measurements are formed from differences between INS and GNSS position and 

velocity components, thus they are linearly related to chosen elements of the state vector. 
The observation model for the described system is given as follows: 
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where: ϕINS, λINS, hINS  – INS position coordinates (latitude, longitude, altitude); ϕGNSS, λGNSS, 

hGNSS  – GNSS position coordinates; INS

N
ν , 

INS

E
ν , 

INS

D
ν  – INS velocity components; GNSS

N
ν , 

,

GNSS

E
ν  

GNSS

D
ν  – GNSS velocity components; vN,  vE, vD, vvN, vvE, vvD – GNSS measurement 

errors; ϕ – the true latitude (in practice − approximated by the measured or estimated latitude). 

To complete the model of the system it is necessary to calculate the covariance matrix Q 
of the vector w of discrete process disturbances and the covariance matrix R of the vector v 
of measurement errors. The matrix Q has been obtained with the use of the method presented 

in [9, 11] and is given below with (15) − (34): 
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where: 
DvDNvEEvN

SS,SSSS φφφ ,,,,  – power spectral densities of Gaussian white noise in the 

vector u of continuous random process disturbances. 
The measurement errors of GNSS receiver have been for simplicity modelled as uncorrelated 

in time and between each other Gaussian random sequences of zero mean and constant variance. 
As a result, the covariance matrix of measurement errors R is diagonal and is given as follows: 
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where: 2

N
σ , 

2

E
σ , 

2

D
σ  – variances of position errors of the GNSS receiver; 2

vN
σ , 2

vE
σ , 2

vD
σ  – 

variances of velocity errors of the GNSS receiver. 
 

3. Kalman filtering algorithm 

 

In applications requiring on-line estimation of the state-vector x(k) without delays, various 
filtering algorithms of the incoming navigation measurements are usually applied. The problem 
of filtering consists in finding state estimates of x(k) for all time steps k on the basis of all 

measurements made up to this time. Such an estimate is given as follows: 

 )](,),1(|)([)|(ˆ kkEkk zzxx …= . (36) 

For linear systems, the optimal filtering algorithm is the linear Kalman filter [5, 9, 19]. Due 

to the linearity of the formulated model of the INS/GNSS integrated navigation system, the 
linear Kalman filter has been chosen as one of the algorithms to be designed and implemented 
in the system. A block diagram of the algorithm is presented in Fig. 1. It contains the 

initialization (step 1), executed once at the beginning of filter’s operation, and recursively 
executed steps of time update (step 2), acquiring a new measurement (step 3) and 

a measurement update (step 4). 
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Fig. 1. The Kalman filtering algorithm. 

 

The symbols used in the above diagram are as follows: )|1(ˆ kk +x  − a predicted state vector 

in the time step k + 1; )1|1(ˆ ++ kkx  − corrected state vector in the time step k + 1; P(k + 1|k) − 

a covariance matrix of prediction errors; P(k + 1|k + 1) − a covariance matrix of filtration errors; 

K(k + 1) − a Kalman gains’ matrix; I − an identity matrix. The other matrices used in the 
equations come from the previously defined state-space model of the system. 
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4. Smoothing algorithms 

 
Apart from the above Kalman filter, two smoothing algorithms have been developed, i.e. 

a fixed-interval algorithm for off-line estimation and a fixed-lag algorithm for on-line 
estimation of position, velocity and orientation of UAV. The operation of smoothing consists 

in estimation of the state-space vector x(k) in the time step k on the basis of measurements from 
time steps later than k. Thus, it can be accomplished after mission of UAV or during its flight 
but with a short delay. 

 

4.1. Fixed-interval smoothing algorithm 

 
In the fixed-interval smoothing we assume that the measurements gathered in an interval 

[0, N] are known. In our system they are registered on board UAV during flight. The algorithm 

is responsible for finding optimal state estimates of x(k) for all time steps k inside this interval 
on the basis of all known measurements. Such an estimate is given as follows: 

 )](,),1(|)([)|(ˆ NkENk zzxx …= , (37) 

for k = 0,1, …, N. As the estimate is based on all available measurements, a properly executed 
fixed-interval smoothing provides the best possible estimate of the state vector. 

There exist several methods of fixed-interval smoothing. One of the most commonly applied 
is an algorithm proposed by Rauch, Tung and Striebel [10, 19, 21, 22], known as the RTS 

algorithm. It is accomplished in two consecutive stages, i.e. forward and backward filtering. 
The forward filtering consists in calculation of estimates of the state vector x(k) with the use 
of the optimal KF. The results obtained in each time step k have to be registered for further use. 

It is necessary to store the estimates of the state vector obtained during filtration )|(ˆ kkx  and 

one-step prediction )|1(ˆ kk +x  as well as their error covariance matrices )|( kkP  and 

)|1( kk +P . In non-stationary systems, also variable values of the transition matrix Φ(k + 1,k) 

have to be stored. After this first stage of data processing, the backward filtering is 

accomplished with the initial conditions )|(ˆ NNx  and )|( NNP , obtained as the final results 

of the forward filtering. 
The optimal estimate of the state vector x(k) obtained during the fixed-interval smoothing is 

given as follows: 

                                      )]|1(ˆ)|1(ˆ)[()|(ˆ)|(ˆ kkNkkkkNk +−++= xxAxx ,                           (38) 

where A(k) is the smoothing gain matrix: 

                            )|1(),1()|()( 1T
kkkkkkk ++=

−

PΦPA    for 0 , ,2,1 …−−= NNk .            (39) 

The error covariance matrix of the fixed-interval smoothing is as follows: 

                                )()]|1()|1()[()|()|( T
kkkNkkkkNk APPAPP +−++= ,                      (40) 

for k = N – 1, N – 2, …, 0. The idea of fixed-interval smoothing is explained in Fig. 2. 
 
 

 

Fig. 2. The idea of fixed-interval smoothing. 
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The RTS algorithm is easy to implement but its drawback is a necessity of time-consuming 

inversions of the covariance matrix of prediction errors in (39). Other, less time-consuming 
fixed-interval smoothing algorithms can be found in literature [19, 23]. 

 

4.2. Fixed-lag smoothing algorithm 

 
The fixed-lag smoothing algorithm processes incoming measurements on-line and calculates 

estimates of the state vector x(k) for time steps k delayed by a constant number of N steps 

in comparison with the current measurement. Such an estimate is given as follows: 

                                 )](,),1(),(,),1(|)([)|(ˆ NkkkkENkk ++=+ zzzzxx …… ,                    (41) 

for k = 0,1,2, … . The results of fixed-lag smoothing are less accurate than those of fixed-
interval smoothing, since its estimates are based on a smaller amount of data. However, for 
large values of N, the accuracy of fixed-lag smoothing approaches the accuracy of the fixed-

interval one, which will be demonstrated further on. Moreover, a possibility of using this 
algorithm on-line, during the flight of UAV, may be an important advantage in many 

applications. 
The optimal estimates of the state vector in the fixed-lag smoothing are formed with the use 

of the following equation [10, 19]: 

                                    )1(~)1()|1(ˆ)1|1(ˆ +++−+=+−+ kkkikkik
i

zKxx ,                             (42) 

for i = 1,2, …, N, where Ki(k +1) represents the gain matrix of the optimal fixed-lag smoother 
and it can be calculated as presented in [19]. The smoothing algorithm uses estimates of the 

state vector and residuals )1(~ +kz  from a Kalman filter designed for the original state-space 

model. Thus, such a Kalman filter must be implemented to provide the data for the fixed-lag 
smoother. The smoothing algorithm can be accomplished in parallel to the Kalman filter. 

As the estimate from the fixed-lag smoothing algorithm is delayed by N time steps, we can 
consider the smoothing process as accomplished in a time window of length N. This window is 

moving forward along the time scale as new measurements are processed. The idea of fixed-
lag smoothing in a moving time window is explained in Fig. 3. 

 

 

Fig. 3. The idea of fixed-lag smoothing. 

 
The fixed-lag smoothing algorithm used in this paper is more complicated than the fixed-

interval one as it requires numerous matrix multiplications in the process of calculation of the 

gain matrix of the optimal fixed-lag smoother Ki (k + 1). If necessary, a simpler solution, where 
a fixed-interval smoothing is used to solve the fixed-lag smoothing problem can be found in the 

literature [18, 21]. 
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5. Simulation results 

 
The Kalman filter as well as both presented smoothing algorithms have been implemented 

in the assumed model of INS/GNSS system and simulated with the use of Matlab®. A Matlab 

toolbox called IRENA, developed at the Institute of Radioelectronics, at the Military University 
of Technology, Warsaw, Poland, have been used for this purpose [24]. The toolbox extends the 

Matlab functionality with useful functions enabling to simulate integrated navigation systems 
and their components. 

During the simulations, a trajectory of flight of UAV, lasting 400 seconds, has been 

generated and used as a reference in testing filtering and smoothing algorithms. Then, INS and 
GNSS errors have been generated and added to the reference positions and velocities of UAV. 

For simplicity, the influence of internal Kalman filter, which is typically implemented in GNSS 
receivers, has been neglected and GNSS errors have been assumed to be Gaussian zero-mean, 
constant-variance white noise. Such an omission affects both filtering and smoothing, thus the 

comparisons of both types of algorithms do not affect their validity [25]. 
The parameters of INS and GNSS errors in the simulations have been chosen on the basis 

of technical specifications of real navigation devices used in the integrated system developed 
during the WATSAR project. These devices include an inertial 1750 IMU measurement unit 
from KVH Industries and a GNSS receiver built into an INS/GNSS(RTK) Ekinox-D system 

from SBG Systems. The values of the assumed parameters are given in Table 1. 
 

 
Table 1. The values of parameters of INS and GNSS errors assumed in simulations. 

Parameter Value 

SφN, SφE, SφD 1.15·10−11 rad2/s 

SvN, SvE, SvD 1.4·10−6 m2/s3 

σN, σE, σD 1.2 m (SP), 0.4 m (DGNSS) 

σvN, σvE, σvD 0.02 m/s 

 
 

The parameters SφN, SφE, SφD represent power spectral densities of errors of gyros, whereas 
SvN, SvE, SvD are power spectral densities of errors of accelerometers composing INS. The 
parameters σN, σE, σD represent standard deviations of GNSS position errors, and σvN, σvE, σvD 
are standard deviations of GNSS velocity errors expressed in the NED system of coordinates. 
The simulations have been performed for two different accuracy levels of GNSS possible in 
our system: the standard positioning (SP) accuracy and the accuracy of GNSS with differential 

corrections (DGNSS) [5]. A period of availability of new GNSS data has been assumed to be 
0.5 second. The parameters given in Table 1 have also been used in implementation of the 

Kalman filter. 
In the first step of simulations, the positioning errors of INS/GNSS system for SP and 

DGNSS levels of GNSS accuracy, with the Kalman filter and with the fixed-interval smoothing 

algorithm have been compared. These errors are expressed in the local horizontal NED 
reference system and their chosen results for the DGNSS level of accuracy are presented 

in Fig. 4−6. 
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Fig. 4. The positioning errors in INS/GNSS system in the north direction. 

 

 

Fig. 5. The positioning errors in INS/GNSS system in the east direction. 

 

 

Fig. 6. The positioning errors in INS/GNSS system in the vertical (down) direction. 

 
The above results show that the smoothed estimates of position are more accurate than the 

estimates from the Kalman filter. The level of improvement can be quantitatively assessed when 
we compare theoretical errors for various states estimated by both algorithms. The Kalman filter 
provides such information as its standard equations include a calculation of the error covariance 

matrix of filtration )|( kkP  in each time step k. The smoothing algorithms do not include 
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or require such calculations, however, the error covariance matrix of smoothing can also 

be easily evaluated [9, 10, 19], which has been done for the purpose of comparisons. 
The diagonal elements of the error covariance matrices represent theoretical variances 
of estimation errors of respective states and their square roots are standard deviations of these 

errors. The comparison of theoretical standard deviations of positioning errors in the north 
direction for the entire period of simulations is shown in Fig. 7. Similar results have been 

obtained for other components of the state vector, therefore they are not included in the paper. 
From Fig. 7 we can see that, apart from the initial and final intervals of simulations, lasting 20 
seconds each, the fixed-interval smoothing is about twice more accurate than the Kalman filter. 

 

 

Fig. 7. The theoretical standard deviations of positioning errors in the north direction. 

 
The comparison of filtering and fixed-interval smoothing accuracy can also be performed 

when calculating root mean-squared (RMS) errors of positioning for the whole period 
of simulation. The RMS errors of position for all axes of the NED reference system, as well as 
the total RMS positioning error calculated according to the following formula: 

                                   222
)]([)]([)]([)(

DENP
RMSRMSRMSRMS δδδδ ++=   (43) 

for SP and DGNSS levels of GNSS accuracy are presented in Table 2. 
 

 
Table 2. The RMS errors of positioning in INS/GNSS system with a Kalman filter and a fixed-interval smoother. 

Errors 

[m] 

SP DGNSS 

Filtering Smoothing Reduction Filtering Smoothing Reduction 

RMS(δN) 0.131 0.072 45.6% 0.067 0.038 43.6% 

RMS(δE) 0.134 0.073 45.4% 0.069 0.037 45.4% 

RMS(δD) 0.127 0.068 46.3% 0.065 0.036 45.0% 

RMS(δP) 0.226 0.123 45.8% 0.115 0.064 44.7% 

 

The above results prove that the fixed-interval smoothing significantly reduces errors 
of position estimation in comparison with the Kalman filtering. Thus, for the assumed 

parameters of navigation devices, the off-line reconstruction of the UAV trajectory with the use 
of a fixed-interval smoother can be about twice as accurate as that with the use of a Kalman 
filter. This result is in accordance with the previously presented comparison of theoretical 

standard deviations of positioning errors (Fig. 7). The effects of error reduction are similar for 
all the coordinates and for both levels of GNSS accuracy. 
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In the next step of simulations, the positioning errors of INS/GNSS system for SP and 

DGNSS levels of GNSS accuracy, with a Kalman filter, fixed-interval and fixed-lag smoothing 
algorithms for various lags N have been compared. As a period between time steps in 

simulations is equal to 0.5 second, the time delay of the smoothed estimate is equal to ∆t = N/2 
seconds. The behavior of positioning errors follows a similar pattern for all the axes, therefore 

only the errors along the north axis, for the DGNSS level of accuracy, have been chosen for 

presentation and shown in Fig. 8−13. 
The total RMS positioning errors for SP and DGNSS levels of GNSS accuracy for the 

Kalman filter, the fixed-interval smoother and the fixed-lag smoother with various delays are 
presented in Table 3. The error reduction in comparison with the filtering is shown in brackets. 

It is worth to notice that the relative level of error reduction asymptotically approaches a level 
equal to that of the fixed-interval smoother for both SP and DGNSS. However, when the 

correcting device (GNSS receiver) is more accurate, the progress of this reduction is quicker. 
Thus, the fixed-lag smoothing requires less delay to approach the quality of the fixed-interval 
one when a more accurate correcting sensor is used in the integrated navigation system. 

 
 

 

Fig. 8. The positioning errors in INS/GNSS system in the north direction  

(N = 1, ∆t = 0.5 s, in the fixed-lag smoothing). 

 
 

 

Fig. 9. The positioning errors in INS/GNSS system in the north direction 

(N = 2, ∆t = 1 s, in the fixed-lag smoothing). 
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Fig. 10. The positioning errors in INS/GNSS system in the north direction  

(N = 5, ∆t = 2.5 s, in the fixed-lag smoothing). 

 
 
 

 

Fig. 11. The positioning errors in INS/GNSS system in the north direction  

N = 10, ∆t = 5 s, in the fixed-lag smoothing). 

 
 
 

 

Fig. 12. The positioning errors in INS/GNSS system in the north direction  

(N = 20, ∆t = 10 s, in the fixed-lag smoothing). 
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Fig. 13. The positioning errors in INS/GNSS system in the north direction  

(N = 50, ∆t = 25 s, in the fixed-lag smoothing). 

 
Table 3. The RMS errors of positioning in INS/GNSS system with a Kalman filter and a fixed-lag smoother. 

RMS(δP) 

[m] 
Filtering 

Fixed-lag smoothing for various delays 
Fixed-interval 
smoothing 

N = 1 N = 2 N = 5 N = 10 N = 20 N = 50 

∆t = 0.5s ∆t = 1s ∆t = 2.5s ∆t = 5s ∆t = 10s ∆t = 25s 

SP 0.226 
0.217 

(2.3%) 

0.211 

(5.4%) 

0.197 

(11.7%) 

0.183 

(18.2%) 

0.164 

(26.7%) 

0.138 

(39%) 

0.123 

(45.8%) 

DGNSS 0.115 
0.109 

(4.8%) 

0.104 

(9.2%) 

0.093 

(18.2%) 

0.083 

(27.6%) 

0.072 

(37.5%) 

0.064 

(44.4%) 

0.064 

(44.7%) 

 

 

6. Conclusions 

 
The results presented in this paper demonstrate that both fixed-interval and fixed-lag 

smoothing algorithms can be very useful in specific navigation applications. A fixed-interval 

smoother can be used in post-processing of registered navigation data, e.g. for off-line 
reconstruction of the trajectory and parameters of flight of a UAV. In such an application, the 

accuracy of smoother is significantly better than the accuracy of a Kalman filter, which is 
typically used for this purpose. For the assumed parameters of devices, the errors of fixed-
interval smoothing have been about twice smaller than the errors of filtering. 

On the other hand, a fixed-lag smoother can be used instead of a Kalman filter for on-line 
estimation of position, velocity and orientation of a UAV, in applications accepting relatively 

small delay of the output data. Such applications include  e.g. synthetic aperture radars which 
are an important type of image intelligence systems of today. The results presented in this paper 

demonstrate that a fixed-lag smoothing algorithm is more accurate than a Kalman filter. Its 
accuracy increases along with the increasing delay of estimates. Moreover, the accuracy 
of a fixed-lag smoother asymptotically approaches that of a fixed-interval one and makes it in 

a relatively short time. In the case of our system, it requires only several tens of seconds 
of delay, which can be acceptable in many applications. 

It is important to notice that the use of a more accurate correcting device or a more accurate 
mode of its operation (e.g. DGNSS instead of SP in the case of a GNSS receiver) shortens the 
time necessary to achieve the required level of reduction of errors and a fixed-lag smoother can 

achieve the same level of accuracy with shorter delays. 
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