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Abstract 

A robust Kalman filter improved with IGG (Institute of Geodesy and Geophysics) scheme is proposed and used to 
resist the harmful effect of gross error from GPS observation in PPP/INS (precise point positioning/inertial 

navigation system) tightly coupled positioning. A new robust filter factor is constructed as a three-section function 

to increase the computational efficiency based on the IGG principle. The results of simulation analysis show that 

the robust Kalman filter with IGG scheme is able to reduce the filter iteration number and increase efficiency. The 

effectiveness of new robust filter is demonstrated by a real experiment. The results support our conclusion that the 

improved robust Kalman filter with IGG scheme used in PPP/INS tightly coupled positioning is able to remove 
the ill effect of gross error in GPS pseudorange observation. It clearly illustrates that the improved robust Kalman 

filter is very effective, and all simulated gross errors added to GPS pseudorange observation are successfully 

detected and modified. 
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1. Introduction 
 

Integration of Global Positioning System (GPS) and Inertial Navigation System (INS)  
is being used more often for obtaining several high precision navigation data (position, velocity 

and attitude) [1]. The past integration research has been performed in different application areas 
(i.e., monitoring, transportation, etc.). GPS provides highly accurate position and velocity 
results over extended periods in the GPS/INS integrated system, and short-term position, 

velocity, and attitude values are provided by INS. The GPS-alone positioning is difficult 
in challenging environments due to weakness and blockage of signals. INS is a self-contained 

velocity and attitude measurement system that does not require an external signal. Therefore, 
integration of GPS and INS provides enhanced performance in comparison with each individual 
system [2]. The Precise Point Positioning (PPP) using un-differenced carrier phase and 

pseudorange observations has been developed recently, and is capable of obtaining positions 
with  a centimetre precision in the static mode and sub-centimetre precision in the dynamic 

mode. This is accomplished by using precise satellite orbits and clock correction products (e.g. 
the International GNSS Service) [3]. Some PPP and INS integration research results enable 
to obtain more accurate position and attitude values in the single receiver mode. With an aid 

of INS aid cycle slip detection and repair methods for the un-differenced GPS/MEMS (Micro-
Electromechanical Systems) INS integrated system are proposed. These methods are capable 

of efficient cycle slip detection and repair, effectively increasing the positioning accuracy of the 
integrated system [4]. 

The key process between INS and other sensors in the integrated positioning system  

is information fusion. During the kinematic positioning, GPS signals are prone to be disturbed 
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by trees, buildings and other shelters. Thus, the performance of integrated positioning will be 

seriously degraded because of the gross error from GPS observation in GPS challenging 
environments. A robust Kalman filter could be employed to reduce the effect of gross error in 
GPS observation. Many forms of robust Kalman filters have been proposed in the literature. 

A   robust Kalman filter has been researched in the last dozen or so years in different application 
fields, such as in-motion alignment of INS [5], SINS/SAR integrated system [6], real-time 

estimation of satellite clock offset [7], precise point positioning (PPP) [8], and others. A robust 
Kalman filter using the Chi square test to detect outliers in measurement was proposed in [9]. 
The outlier judging index was defined as the square of the Mahalanobis distance between the 

observed and predicted results. Based on the robust Kalman filter using the Chi square test, 
a robust Kalman filter improved with IGG (Institute of Geodesy and Geophysics) scheme is 

proposed and applied in PPP/INS tightly coupled positioning to increase its computational 
efficiency. The new robust filter factor is constructed as a three-section function on the basis 
of IGG principle. 

The paper is divided into 5 sections. Following this introduction, a PPP/INS tightly coupled 
positioning model is overviewed in Section 2. Section 3 presents the robust Kalman filter 

improved with IGG scheme, and the simulation analysis corresponding to it. The field test 
results are then presented and analysed in Section 4, followed by a summary of the main 
conclusions. 

 
 

2. PPP/INS tightly coupled positioning 

 

2.1. PPP observation model 

 

The observation models of un-differenced GPS pseudo-range, carrier phase and Doppler 

measurements for PPP can be expressed as follows [10]: 
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where: P, Φ  and D  are pseudo-range, carrier phase and Doppler observations, respectively; ρ  

is a geometric distance between the receiver antenna and satellite phase centres; ρɺ  is a 

geometric range rate; c is the velocity of light in vacuum; dt  and 
s

dt  are satellite and receiver 

clock errors, respectively; dtɺ  and 
s

dtɺ  are the satellite clock error drift and receiver clock error 

drift, respectively; I and Iɺ  are a first-order ionospheric delay and an ionospheric delay drift, 

respectively; f1 and f2 are frequencies of the carrier phases 
1

Φ   and 
2
;Φ   T and Tɺ  are 
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a tropospheric delay and a tropospheric delay drift. Because the hydrostatic part of tropospheric 

delay can be predicted using models, T represents the wet component of tropospheric delay; 

P
M  and 

Φ
M  are multipath errors of the pseudo-range and carrier phase measurements; 

P
ε , 

Φ
ε  

and 
D

ε  are combination noise values of the pseudo-range, carrier phase and Doppler 

measurements, and subscripts 1 and 2 refer to the observations at different frequencies. 
By using the high-accuracy GPS satellite orbit and clock products, the errors in the satellite 

orbit and clock corrections can be significantly reduced. Other error sources including the 
satellite antenna phase centre offset, phase wind up, earth tide, ocean tide loading and 

atmosphere loading can be removed by a correction model. The widely used ionosphere-free 
combination makes use of the GPS radio frequency’s dispersion property to mitigate the first-
order ionospheric delay effect. The observation model of ionosphere-free combination can be 

expressed as follows [11]: 
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where a subscript if refers to the ionosphere-free combination observation. 

Because the change of tropospheric delay is very slow, the tropospheric delay drift can be 
considered to be zero. The variables estimated in PPP resolution are: the three-dimensional 
position, receiver clock error, receiver clock error drift, zenith tropospheric delay, and 

ionosphere-free combination ambiguity. 
 

2.2. Tightly coupled dynamics model 

 
The dynamics error model of PPP/INS integrated positioning for the Kalman filter is 

constructed on the basis of INS error equations. The insignificant terms are neglected in the 
linear approximation process [12]. The error equations of INS navigation could be theoretically 

expressed as [13]: 
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where: δ r , δv  and δψ  are position, velocity and orientation error vectors, respectively; 
en

ω  

is an angular rate of the navigation frame with respect to the earth frame, and 
ie

ω  is an angular 

rate of the earth frame with respect to the inertial frame. The system dynamics error of PPP/INS 

integration navigation is obtained by expanding the accelerometer bias error vector η  and the 

gyro drift error vector ε . 

The dynamic behaviour of accelerometer bias error η  and gyro drift error ε  usually can be 

modelled as a first-order Gauss-Markov process, which can be represented as follows [14]: 
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1

ε

ε
λ
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where:
η
λ  and 

ε
λ  are correlation times for the accelerometers and the gyros, respectively; 

η
u  

and 
ε

u  are white noise vectors of the accelerometer bias error and the gyro drift error, 

respectively. 
The state dynamic equations of receiver clock, tropospheric delay and ionosphere-free 

carrier ambiguity which are related to PPP can be written as [11]: 
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where 
dt

u , 
dt

u
δ

, 
T
u  and 

N
u  are white noise vectors of the receiver clock error, receiver clock 

error drift, zenith tropospheric delay and ionosphere-free carrier ambiguity, respectively. 
According to the equations (10) to (18), the system dynamics model can be generalized in a 

matrix and vector form: 

                                                             = +X FX uɺ ,                                                                  (19) 

wherein: X is an error state vector; F is a transition matrix and u is a process noise vector. 

 
 

2.3. Tightly coupled observation model 

 

The observation model of Kalman filter in PPP/INS integrated positioning is a vector 

composed of the pseudo-range, carrier phase and Doppler difference between the GPS 
observation and INS prediction values [15]: 
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where: GPS

j
P , GPS

j
Φ  and GPS

j
D  are ionosphere-free pseudo-range, carrier phase and Doppler 

values of the jth satellite observed by GPS, respectively; INS

j
P , INS

j
Φ  and INS

j
D  are ionosphere-

free pseudo-range, carrier phase and Doppler measurement values of the jth satellite predicted 
by INS with the satellite position and velocity information, respectively. 

The variable form of tightly coupled observation equation for Kalman filter can be 
generalized in a matrix and vector form: 

                                                            
k k k
= +Z H X τ ,                                                            (21) 

where: 
k

Z  is an observation matrix; 
k

H  is an observation equation coefficient matrix and τ  is 

a vector of the observation noise, assumed to be white Gaussian noise. 
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2.4. Tightly coupled positioning flow 

 

Figure 1 shows a PPP/INS tightly coupled positioning system. INS mechanization is an 
algorithm that calculates the current position, velocity, and attitude solutions from the IMU 

information. Exact satellite position and clock correction information is obtained from the 
precise orbit and clock products. The position and velocity outputs from the INS mechanization 

are used to predict the pseudo-range, carrier phase, and Doppler measurements for GPS. After 
correcting the errors (i.e. satellite antenna phase centre offset, phase wind up, earth tide, ocean 
tide loading) in the raw GPS measurements, the difference value between the corrected pseudo-

range, carrier phase, and Doppler measurement results from PPP and the INS-predicted 
measurement results is input into the Kalman filter as the observation vector. The final position, 

velocity and attitude are obtained by the filter fusion and update. Higher accuracy predictions 
of pseudo-range, carrier phase, and Doppler are input into the filter and compared with the 
traditional PPP algorithm without INS.  

 

 

Fig. 1. A PPP/INS tightly coupled positioning system. 

 

 

3. Robust Kalman filter with IGG scheme 

 

3.1. Kalman filter 

 
When GPS is available, the Kalman filter estimation will be employed to update the state 

parameters by time and observation updates in PPP/INS tightly coupled positioning. The time 
update process is expressed as: 

                                                               , 1 1
ˆ

k k k k− −

=X F X ,                                                              (22) 

                                                       T

, 1 1 , 1 1k k k k k k k− − − −

= +P F P F Q .                                                 (23) 

The observation update equation of Kalman filter is written as: 
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where: 
k

X  is an a priori state estimation; ˆ
k

X  is an a posteriori state estimation; 
k

G  is a gain 

matrix of Kalman filter; 
k

P  is an a priori covariance matrix of the state vector; 
k
P  is an a 

posteriori covariance matrix of the state vector; 
k

R  is a covariance matrix of the observation 

noise vector; 
1k−

Q  is a covariance matrix of the process noise, a subscript k denotes a moment, 

and a subscript -1k,k  represents the state or covariance estimates in a period between k-1 and 

k moments. 

In a closed loop integration scheme, a feedback loop is used for correcting the systematic 
errors of INS. In this way, the assumption of small errors can be employed [16]. Thus, an a 
posteriori state estimate is expressed as: 

                                                       ( )
-1

T Tˆ
k k k k k k k k
= +X P H H P H R Z .                                         (29) 

In a closed loop, the a posteriori state estimation will be used for correcting the positioning 

parameters which set the a priori state estimation 
k

X  to zero in the next filter prediction.  

 

3.2. Robust Kalman filter based on Mahalanobis distance 

 

Under the Gaussian assumption, 
k

Z  should obey a Gaussian distribution with mean 
k

H X  

and covariance 
k

V
P . Therefore, the squared Mahalanobis distance of 

k
Z  should be a Chi square 

distribution [17], and its freedom is equal to the number of dimensions for the observation 

vector: 
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where 
k

M  is the Mahalanobis distance. 

In order to find whether there is gross error in an observation 
k

Z , a Chi square test is formed 

to determine whether the actual observation 
k

Z  obeys a Gaussian distribution. A significant 

level α, the probability threshold below which the null hypothesis will be rejected, is selected. 

In this contribution 1% is adopted, and the corresponding upper α-quantile is 2

,m α
χ : 

                                                             2

,
Pr

k m α
γ χ α > <  ,                                                                  (31) 

where Pr[·] represents the probability of a random event. According to the law of Chi square 

distribution, the probability of 
k

γ  being larger than 2

,m α
χ  should be minute. Therefore, if the 

actual 
k

γ  is larger than this α-quantile, the basic assumptions are very likely incorrect, which 

means that the observation is profoundly more likely disturbed by gross error. 

If the index 
k

γ  is larger than 2

,m α
χ , a robust factor β is introduced to inflate the covariance 

matrix of measurement noise vector: 

                                                                   
k k k
β=R R .                                                             (32) 

The robust factor is calculated as: 
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According to the above method, when 
k

γ  is larger than 2

,m α
χ , the observation 

k
Z  is 

presumed to be disturbed by gross error.  

 
3.3. Robust Kalman filter improved with IGG scheme 

 

In the above robust Kalman filter, only one threshold value is used to identify whether the 
observation is with gross error or not. If the observation is disturbed by gross error, the robust 

factor β is calculated to implement the robust filter algorithm. In the engineering projects, the 

observation usually is disturbed by different levels of gross error. If the gross error is small, the 
observation will play a part role in the filter update by expanding the covariance matrix 
of measurement noise vector. If the gross error is large, the observation is of no any positive 

effect. In that case, the covariance matrix of measurement noise vector can be directly set to 
infinity to remove the negative effect of observation with gross error. So an improved robust 

Kalman filter is constructed by adding a new robust factor with IGG scheme to improve the 
calculation efficiency using a piecewise function [18]: 
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The probabilities 
0
α  and 

1
α  are set to 1% and 0.01%, respectively. If the actual 

k
γ  is larger 

than this 
1
-quantileα , the equivalent covariance matrix 

k
R  is set to ∞ rather than iteratively 

computed. The stage of detecting a gross error is slightly more complex and the computational 

efficiency is increased. Comparing the above with a plain robust Kalman filter, the main 
difference is in the condition when the gross error is large. An easier algorithm will be 
implemented and a higher efficiency will be achieved in this situation for the improved filter. 

 

3.4. Simulation analysis 

 

The two-dimensional kinematic positioning simulation with a constant velocity is employed. 
The dynamic model can be written as: 
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where 
N

p , 
E

p , 
N
v  and 

E
v  are positions and velocities in the north and east directions, 

respectively, 
N
α  and 

E
α  are the north and east accelerations, which are considered random 

noise in the constant velocity model. A discrete time form of the dynamical model is as follows: 

                                                                
, 1 1k k k k k− −

= +X F X u .                                                 (36) 

The simulation test’s observation data are positions in the north and east directions, so the 
observation model of Kalman filter is: 
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The process noise u and observation noise τ  obey a Gaussian distribution. The standard 

deviations of process noise and observation noise are set to 0.15 m/s2 and 1 m, respectively. 
The gross error case is studied to compare the performance of different construction methods 

of the robust factor. In the gross error case, gross errors with values of 5 m, 8 m and 20 m are 
added into the position observations in the north and east directions every 100 s, 200 s and 300 
s, respectively, and a standard Kalman filter (scheme 1), a robust Kalman filter (scheme 2) and 

a robust Kalman filter with IGG scheme (scheme 3) are employed. 

Figure 2 shows the values of judgment statistic 
k

γ . The red and green lines represent the 

threshold values (9.2 and 18.4) of significance levels 
0
α  and 

1
α , respectively. There are 28 

values of 
k

γ  which are less than 18.4 and greater than 9.2 and 28 values of 
k

γ  which are greater 

than 18.4. Different strategies using the IGG scheme are employed to process the various levels 
of gross error. The position error series for different schemes is plotted in Fig. 3. The RMSs 

of position errors for three schemes are illustrated in Table 2. The position error for a standard 
Kalman filter is large due to the fact that gross errors with values of 5 m, 8 m, and 20 m are 
added to the position observation. As expected, both scheme 2 and scheme 3 show a very similar 

robust performance. The position error of scheme 2 is somewhat larger than the position error 
of scheme 3, which demonstrates that the robust Kalman filter with IGG principle achieves 

a better performance. Fig. 4 shows the filter iteration numbers for schemes 2 and 3 when gross 
error occurs. The sum total of filter iteration numbers for scheme 2 is greater than that for 
scheme 3. The filter iteration numbers of schemes 2 and 3 for the situation with gross error are 

1391 and 983, respectively. Scheme 3 achieves nearly the same performance as scheme 2 and 
even a slightly better efficiency than scheme 2. In conclusion, scheme 3 achieves a better 

performance and a higher efficiency than scheme 2. 
 

 

 
Fig. 2. The value of judgement statistic for gross error. 
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  a)                                                         b)                                                         c) 

 

Fig. 3. Position errors for different schemes without gross error: 

a standard Kalman filter (a); a robust Kalman filter (b); an improved robust Kalman filter (c). 

 

 
Fig. 4. The filter iteration numbers for different schemes with gross error. 

 
Table 1. Comparison of RMSs for different schemes regarding a position error. 

 

Scheme North (m) East (m) 

Standard filter 0.955 0.968 

Robust filter 0.654 0.653 

Improved robust filter 0.651 0.649 

 

 

4. Field test and analysis 

 

A field test with one MEMS grade IMU (Inertial Measurement Unit), one tactical grade 

IMU, and two GPS receivers was performed on the roof of the Nottingham Geospatial Institute 
(NGI), and its intent was to validate performance of the proposed filter method. Initially, one 
Leica AS10 GNSS dual-frequency antenna was installed on the top of a pillar above the NGI 

locomotive. The MEMS IMU, connected to the Leica antenna, recorded raw observations onto 
an SD card for post-processing from inside the locomotive. The reference station consisted 

of another GPS receiver placed on one of the NGI roof pillars. Sampling rates of GPS receivers 
and IMU were set to 10 Hz and 200 Hz, respectively. The sky plots (azimuth vs. elevation) 
of GPS at the moving station are shown in Fig. 5. Observations from PRN3, PRN7, PRN8, 

PRN16, PRN18, PRN19, PRN21, PRN22 and PRN27 during the field test were available. 
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Fig. 5. Sky plots (azimuth vs. elevation) of GPS at the moving station. 

 

The entire test was completed in approximately 20 minutes. The GPS software, GrafNavTM 
8.0, was used to process GPS observation in the DGPS mode, and the solution was regarded as 

the position and velocity reference. The Inertial Explorer processing software generated the 
attitude reference using observations from two GPS receivers and one tactical grade IMU. 
The root mean square (RMS) error is used based on the reference value to obtain accuracy 

of different schemes. Fig. 6 presents the experience trajectory and the devices used during the 
test. Table 2 provides specifications of the MEMS-IMU.  

 

GPS reference station

Locomotive

 
Fig. 6. A field test. 

 
Table 2. The MEMS grade IMU technical data. 

Parameters Gyroscope Accelerometer 

Initial bias error ±0.25º/sec ±0.002 g 

In-run bias stability 18º/hr ±0.04 mg 

Scale factor stability ±0.05% ±0.05% 

Random walk 0.03º/s/sqrt (Hz) 80 µg/sqrt (Hz) 

 

In order to test performance of a robust Kalman filter in PPP/INS tightly positioning, the 
gross error case is studied, and a standard Kalman filter (scheme 1), a robust Kalman filter 

(scheme 2) and an improved robust Kalman filter (scheme 3) are employed. Gross errors with 

values of −20 m, −15 m, and 20 m were added to the pseudo-range observation on PRN7, 

PRN18, and PRN22 every 100 s, respectively. Gross errors with values of 10 m, −5 m, and 15 
m were added to the pseudo-range observation on PRN3, PRN21, and PRN27 every 80 s, 
respectively. 
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In Fig. 7 field test trajectories for different schemes are compared. Fig. 8 shows the time 

series of position errors in the north, east and down directions for scheme 1, scheme 2 and 
scheme 3. The RMSs of position errors of three schemes are presented in Table 3. Fig. 9 shows 
a histogram of position errors’ RMSs in the north, east and down directions for schemes 1, 2 

and 3. The positioning resolution trajectory by the standard Kalman filter seriously deviates 
from the reference. Similarly to the simulation analysis results, accuracies of schemes 2 and 3 

are again almost of the same quality. So the field test trajectories and position error curves from 
schemes 2 and 3 almost coincide. Scheme 3 achieves nearly the same performance as scheme 
2 and even a slightly better efficiency than scheme 2 from the statistical result of RMS, which 

is also similar to the simulation test results. The improved robust Kalman filter is able to remove 
the ill effect of gross error. The RMSs of position errors in the north, east and down direction 

are 0.695 m, 0.875 m and 0.548 m, respectively, when the standard Kalman filter is used. 
However, the RMSs of position errors are 0.465 m, 0.524 m and 0.293 m, respectively, when 
the improved robust Kalman filter is applied. In comparison with scheme 1, the improvements 

are about 33%, 40% and 47% for using scheme 3 in the north, east and down directions, 
respectively. The position RMS of scheme 3 is 0.759 m which is better than that of scheme 1 

with an improvement of 39% in the three-dimensional component. It clearly illustrates that the 
robust Kalman filter with IGG scheme is very effective, and all gross errors are successfully 
identified. Significantly, there are obvious improvements for PPP/INS tightly coupled 

positioning if a robust Kalman filter with IGG scheme is used. IGG scheme can be used as 
a very efficient filtering tool. 

 

 
Fig. 7. Field test trajectories for different schemes with gross error. 

 

 
Fig. 8. Position error series for different schemes with gross error. 
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Fig. 9. Comparison of position errors for different schemes with gross error. 

 
Table 3. Comparison of RMSs for different schemes regarding a position error. 

 

Scheme North (m) East (m) Down (m) 

Standard filter 0.695 0.875 0.548 

Robust filter 0.481 0.527 0.293 

Improved robust filter 0.465 0.524 0.293 

 

 

5. Conclusions 

 

During the robust filter process, iterative computations will take much time, thus reducing 
the computational efficiency. To increase it, an improved robust scheme is proposed based on 

the robust Kalman filter with Mahalanobis distance and a new robust filter factor is constructed 
as a three-section function using the IGG principle. By simulation and comparing errors 
obtained for a standard Kalman filter, a robust Kalman filter based on Mahalanobis distance 

and an improved robust Kalman filter with the IGG principle, the improved robust Kalman 
filter provides the best performance and fewer filter iteration numbers than the robust Kalman 

filter based on Mahalanobis distance. 
A PPP/INS tightly coupled positioning experiment was carried out to further validate the 

performance of the proposed filtering method. The position accuracy for PPP/INS integrated 

positioning can be degraded by the gross error in GPS observation. The improved robust 
Kalman filter with the IGG principle was employed in PPP/INS tightly coupled positioning to 

remove the harmful effects from gross error of GPS pseudorange observation. Compared with 
the standard Kalman filter, the improved robust Kalman filter accuracy regarding the east, north 

and down components can be improved by 33%, 40% and 47%, respectively. The improved 
robust Kalman filter is very effective in identifying a simulated gross error added to GPS 
pseudo-range observation, which proves its good performance.  
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